1
|
Labani N, Gbahou F, Noblet M, Masri B, Broussaud O, Liu J, Jockers R. Pistacia vera Extract Potentiates the Effect of Melatonin on Human Melatonin MT 1 and MT 2 Receptors with Functional Selectivity. Pharmaceutics 2023; 15:1845. [PMID: 37514032 PMCID: PMC10386454 DOI: 10.3390/pharmaceutics15071845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Melatonin is a tryptophan derivative synthesized in plants and animals. In humans, melatonin acts on melatonin MT1 and MT2 receptors belonging to the G protein-coupled receptor (GPCR) family. Synthetic melatonin receptor agonists are prescribed for insomnia and depressive and circadian-related disorders. Here, we tested 25 commercial plant extracts, reported to have beneficial properties in sleep disorders and anxiety, using cellular assays (2─[125I]iodomelatonin binding, cAMP inhibition, ERK1/2 activation and β-arrestin2 recruitment) in mock-transfected and HEK293 cells expressing MT1 or MT2. Various melatonin receptor-dependent and -independent effects were observed. Extract 18 (Ex18) from Pistacia vera dried fruits stood out with very potent effects in melatonin receptor expressing cells. The high content of endogenous melatonin in Ex18 (5.28 ± 0.46 mg/g extract) is consistent with this observation. Ex18 contains an additional active principle that potentiates the effect of melatonin on Gi protein-dependent pathways but not on β-arrestin2 recruitment. Further active principles potentiating exogenous melatonin were detected in several extracts. In conclusion, we identified plant extracts with various effects in GPCR-based binding and signalling assays and identified high melatonin levels and a melatonin-potentiating activity in Pistacia vera dried fruit extracts that might be of therapeutic potential.
Collapse
Affiliation(s)
- Nedjma Labani
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| | - Florence Gbahou
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| | - Marc Noblet
- Science Hub, Sanofi Consumer Healthcare, F-75017 Paris, France
| | - Bernard Masri
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| | | | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ralf Jockers
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| |
Collapse
|
2
|
Alghamdi BS. The neuroprotective role of melatonin in neurological disorders. J Neurosci Res 2018; 96:1136-1149. [PMID: 29498103 PMCID: PMC6001545 DOI: 10.1002/jnr.24220] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
Melatonin is a neurohormone secreted from the pineal gland and has a wide-ranging regulatory and neuroprotective role. It has been reported that melatonin level is disturbed in some neurological conditions such as stroke, Alzheimer's disease, and Parkinson's disease, which indicates its involvement in the pathophysiology of these diseases. Its properties qualify it to be a promising potential therapeutic neuroprotective agent, with no side effects, for some neurological disorders. This review discusses and localizes the effect of melatonin in the pathophysiology of some diseases.
Collapse
Affiliation(s)
- B. S. Alghamdi
- Department of Physiology, Faculty of MedicineKing Abdulaziz UniversityJeddahKSA
- Neuroscience Unit, Faculty of MedicineKing Abdulaziz UniversityJeddahKSA
| |
Collapse
|
3
|
Jiki Z, Lecour S, Nduhirabandi F. Cardiovascular Benefits of Dietary Melatonin: A Myth or a Reality? Front Physiol 2018; 9:528. [PMID: 29867569 PMCID: PMC5967231 DOI: 10.3389/fphys.2018.00528] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
The role of the diet as well as the impact of the dietary habits on human health and disease is well established. Apart from its sleep regulatory effect, the indoleamine melatonin is a well-established antioxidant molecule with multiple health benefits. Convincing evidence supports the presence of melatonin in plants and foods with the intake of such foods affecting circulating melatonin levels in humans. While numerous actions of both endogenous melatonin and melatonin supplementation are well described, little is known about the influence of the dietary melatonin intake on human health. In the present review, evidence for the cardiovascular health benefits of melatonin supplementation and dietary melatonin is discussed. Current knowledge on the biological significance as well as the underlying physiological mechanism of action of the dietary melatonin is also summarized. Whether dietary melatonin constitutes an alternative preventive treatment for cardiovascular disease is addressed.
Collapse
Affiliation(s)
- Zukiswa Jiki
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Maarman GJ, Andrew BM, Blackhurst DM, Ojuka EO. Melatonin protects against uric acid-induced mitochondrial dysfunction, oxidative stress, and triglyceride accumulation in C2C12myotubes. J Appl Physiol (1985) 2017; 122:1003-1010. [DOI: 10.1152/japplphysiol.00873.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023] Open
Abstract
Excess uric acid has been shown to induce oxidative stress, triglyceride accumulation, and mitochondrial dysfunction in the liver and is an independent predictor of type-2 diabetes. Skeletal muscle plays a dominant role in type 2 diabetes and presents a large surface area to plasma uric acid. However, the effects of uric acid on skeletal muscle are underinvestigated. Our aim was therefore to characterize the effects of excessive uric acid on oxidative stress, triglyceride content, and mitochondrial function in skeletal muscle C2C12myotubes and assess how these are modulated by the antioxidant molecule melatonin. Differentiated C2C12myotubes were exposed to 750 µM uric acid or uric acid + 10 nM melatonin for 72 h. Compared with control, uric acid increased triglyceride content by ~237%, oxidative stress by 32%, and antioxidant capacity by 135%. Uric acid also reduced endogenous ROUTINE respiration, complex II-linked oxidative phosphorylation, and electron transfer system capacities. Melatonin counteracted the effects of uric acid without further altering antioxidant capacity. Our data demonstrate that excess uric acid has adverse effects on skeletal muscle similar to those previously reported in hepatocytes and suggest that melatonin at a low physiological concentration of 10 nM may be a possible therapy against some adverse effects of excess uric acid.NEW & NOTEWORTHY Few studies have investigated the effects of uric acid on skeletal muscle. This study shows that hyperuricemia induces mitochondrial dysfunction and triglyceride accumulation in skeletal muscle. The findings may explain why hyperuricemia is an independent predictor of diabetes.
Collapse
Affiliation(s)
- Gerald J. Maarman
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, University of Cape Town, Newlands, South Africa; and
| | - Brittany M. Andrew
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, University of Cape Town, Newlands, South Africa; and
| | - Dee M. Blackhurst
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Edward O. Ojuka
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, University of Cape Town, Newlands, South Africa; and
| |
Collapse
|
5
|
Liang C, Li A, Yu H, Li W, Liang C, Guo S, Zhang R, Chu C. Melatonin Regulates Root Architecture by Modulating Auxin Response in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:134. [PMID: 28223997 PMCID: PMC5293752 DOI: 10.3389/fpls.2017.00134] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/23/2017] [Indexed: 05/17/2023]
Abstract
It has been suggested that melatonin acts as an important regulator in controlling root growth and development, but the underlying molecular mechanism driving this relationship remains undetermined. In this study, we demonstrated that melatonin acts as a potent molecule to govern root architecture in rice. Treatments with melatonin significantly inhibited embryonic root growth, and promoted lateral root formation and development. Genome-wide expression profiling by RNA-sequencing revealed auxin-related genes were significantly activated under melatonin treatment. Moreover, several transcription factors and candidate cis-regulatory elements involved in root growth and developments, as well as auxin-related processes, were over-represented in both co-up and -down differentially expressed genes, suggesting that melatonin-mediated root growth occurs in an auxin signal pathway-dependent manner. Further, gravitropic response analysis determined that melatonin affects auxin-regulated processes in rice root. These data show that melatonin shapes root architecture by directly or indirectly activating the auxin signaling pathway.
Collapse
Affiliation(s)
- Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Aifu Li
- National Center for Plant Gene Research (Beijing), State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Hua Yu
- National Center for Plant Gene Research (Beijing), State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Wenzhen Li
- National Center for Plant Gene Research (Beijing), State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Chengzhi Liang
- National Center for Plant Gene Research (Beijing), State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Chengcai Chu
- National Center for Plant Gene Research (Beijing), State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
6
|
Melatonin and derived l-tryptophan metabolites produced during alcoholic fermentation by different wine yeast strains. Food Chem 2017; 217:431-437. [DOI: 10.1016/j.foodchem.2016.08.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022]
|
7
|
Validation of an Analytical Method to Determine Melatonin and Compounds Related to l-Tryptophan Metabolism Using UHPLC/HRMS. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0529-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Iriti M, Varoni EM. The good health of Bacchus: Melatonin in grapes, the unveiled myth. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Meng JF, Xu TF, Song CZ, Yu Y, Hu F, Zhang L, Zhang ZW, Xi ZM. Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Food Chem 2015; 185:127-34. [DOI: 10.1016/j.foodchem.2015.03.140] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/15/2015] [Accepted: 03/25/2015] [Indexed: 11/25/2022]
|
10
|
Liang C, Zheng G, Li W, Wang Y, Hu B, Wang H, Wu H, Qian Y, Zhu XG, Tan DX, Chen SY, Chu C. Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J Pineal Res 2015; 59:91-101. [PMID: 25912474 DOI: 10.1111/jpi.12243] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022]
Abstract
Melatonin, an antioxidant in both animals and plants, has been reported to have beneficial effects on the aging process. It was also suggested to play a role in extending longevity and enhancing abiotic stress resistance in plant. In this study, we demonstrate that melatonin acts as a potent agent to delay leaf senescence and cell death in rice. Treatments with melatonin significantly reduced chlorophyll degradation, suppressed the transcripts of senescence-associated genes, delayed the leaf senescence, and enhanced salt stress tolerance. Genome-wide expression profiling by RNA sequencing reveals that melatonin is a potent free radical scavenger, and its exogenous application results in enhanced antioxidant protection. Leaf cell death in noe1, a mutant with over-produced H2O2, can be relieved by exogenous application of melatonin. These data demonstrate that melatonin delays the leaf senescence and cell death and also enhances abiotic stress tolerance via directly or indirectly counteracting the cellular accumulation of H2O2.
Collapse
Affiliation(s)
- Chengzhen Liang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences (CAS), Beijing, China
| | - Guangyong Zheng
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Wenzhen Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences (CAS), Beijing, China
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences (CAS), Beijing, China
| | - Bin Hu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences (CAS), Beijing, China
| | - Hongru Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences (CAS), Beijing, China
| | - Hongkai Wu
- School of Agriculture and Food Science, Zhejiang A & F University, Hangzhou, China
| | - Yangwen Qian
- Biogle Genome Editing Research Center, Hangzhou, China
| | - Xin-Guang Zhu
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Shou-Yi Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences (CAS), Beijing, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
11
|
Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK. Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 2014; 56:238-45. [PMID: 24350934 DOI: 10.1111/jpi.12115] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/13/2013] [Indexed: 12/19/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) has been implicated in abiotic and biotic stress tolerance in plants. However, information on the effects of melatonin in cold-stress tolerance in vivo is limited. In this study, the effect of melatonin was investigated in the model plant Arabidopsis thaliana challenged with a cold stress at 4⁰C for 72 and 120 hr. Melatonin-treated plants (10 and 30 μm) had significantly higher fresh weight, primary root length, and shoot height compared with the nontreated plants. To aid in the understanding of the role of melatonin in alleviating cold stress, we investigated the effects of melatonin treatment on the expression of cold-related genes. Melatonin up-regulated the expression of C-repeat-binding factors (CBFs)/Drought Response Element Binding factors (DREBs), a cold-responsive gene, COR15a, a transcription factor involved in freezing and drought-stress tolerance CAMTA1 and transcription activators of reactive oxygen species (ROS)-related antioxidant genes, ZAT10 and ZAT12, following cold stress. The up-regulation of cold signaling genes by melatonin may stimulate the biosynthesis of cold-protecting compounds and contribute to the increased growth of plants treated with exogenous melatonin under cold stress.
Collapse
Affiliation(s)
- Vikramjit S Bajwa
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON, Canada
| | | | | | | | | |
Collapse
|
12
|
Tan DX, Hardeland R, Manchester LC, Rosales-Corral S, Coto-Montes A, Boga JA, Reiter RJ. Emergence of naturally occurring melatonin isomers and their proposed nomenclature. J Pineal Res 2012; 53:113-21. [PMID: 22332602 DOI: 10.1111/j.1600-079x.2012.00979.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melatonin was considered to be the sole member of this natural family. The emergence of naturally occurring melatonin isomers (MIs) has opened an exciting new research area. Currently, several MIs have been identified in wine, and these molecules are believed to be synthesized by either yeasts or bacteria. A tentative nomenclature for the MIs is proposed in this article. It will be important to explore whether all organisms have the capacity to synthesize MIs, especially under the conditions of environmental stress. These isomers probably share many of the biological functions of melatonin, but their activities seem to exceed those of melatonin. On basis of the limited available information, it seems that MIs differ in their biosynthetic pathways from melatonin. Especially in those compounds in which the aliphatic side chain is not attached to ring atom 3, the starting material may not be tryptophan. Also, the metabolic pathways of MIs remain unknown. This, therefore, is another promising area of research to explore. It is our hypothesis that MIs would increase the performance of yeasts and probiotic bacteria during the processes of fermentation. Therefore, yeasts producing elevated levels of these isomers might have a superior alcohol tolerance and be able to produce higher levels of alcohol. This can be tested by comparing existing yeast strains differing in alcohol tolerance. Selection for MIs may become a strategy for isolating more resistant yeast and Lactobacillus strains, which can be of interest for industrial alcohol production and quality improvements in bacterially fermented foods such as kimchi.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas, Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Mena P, Gil-Izquierdo Á, Moreno DA, Martí N, García-Viguera C. Assessment of the melatonin production in pomegranate wines. Lebensm Wiss Technol 2012. [DOI: 10.1016/j.lwt.2012.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, Reiter RJ. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:577-97. [PMID: 22016420 DOI: 10.1093/jxb/err256] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The presence of melatonin in plants is universal. Evidence has confirmed that a major portion of the melatonin is synthesized by plants themselves even though a homologue of the classic arylalkylamine N-acetyltransferase (AANAT) has not been identified as yet in plants. Thus, the serotonin N-acetylating enzyme in plants may differ greatly from the animal AANAT with regard to sequence and structure. This would imply multiple evolutionary origins of enzymes with these catalytic properties. A primary function of melatonin in plants is to serve as the first line of defence against internal and environmental oxidative stressors. The much higher melatonin levels in plants compared with those found in animals are thought to be a compensatory response by plants which lack means of mobility, unlike animals, as a means of coping with harsh environments. Importantly, remarkably high melatonin concentrations have been measured in popular beverages (coffee, tea, wine, and beer) and crops (corn, rice, wheat, barley, and oats). Billions of people worldwide consume these products daily. The beneficial effects of melatonin on human health derived from the consumption of these products must be considered. Evidence also indicates that melatonin has an ability to increase the production of crops. The mechanisms may involve the roles of melatonin in preservation of chlorophyll, promotion of photosynthesis, and stimulation of root development. Transgenic plants with enhanced melatonin content could probably lead to breakthroughs to increase crop production in agriculture and to improve the general health of humans.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Vitalini S, Gardana C, Zanzotto A, Simonetti P, Faoro F, Fico G, Iriti M. The presence of melatonin in grapevine (Vitis vinifera L.) berry tissues. J Pineal Res 2011; 51:331-7. [PMID: 21615489 DOI: 10.1111/j.1600-079x.2011.00893.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Melatonin has been reported in a variety of food plants and, consequently, in a number of plant-derived foodstuffs. In grapevine (Vitis vinifera L.) products, it was found in berry exocarp (skin) of different cultivars and monovarietal wines. Herein, we assessed, by means of mass spectrometry, the occurrence of melatonin in all berry tissues (skin, flesh, and seed) at two different phenological stages, pre-véraison and véraison. We detected the highest melatonin content in skin, at pre-véraison, whereas, at véraison, the highest levels were reported in the seed. Furthermore, during ripening, melatonin decreased in skin, while increasing in both seed and flesh. The relative concentrations of melatonin in diverse berry tissues were somewhat different from those of total polyphenols (TP), the latter measured by the Folin-Ciocalteau assay, and more abundant in seed at pre-véraison and in exocarp at véraison. The highest antiradical activity, determined by both DPPH (2,2-diphenyl-1-pycryl hydrazyl) and ABTS [(2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] radical-scavenging assay, was reported at pre-veráison in seed. To the best of our knowledge, we reported, for the first time, the occurrence of melatonin in grape seeds.
Collapse
Affiliation(s)
- Sara Vitalini
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Vitalini S, Gardana C, Zanzotto A, Fico G, Faoro F, Simonetti P, Iriti M. From vineyard to glass: agrochemicals enhance the melatonin and total polyphenol contents and antiradical activity of red wines. J Pineal Res 2011; 51:278-85. [PMID: 21585520 DOI: 10.1111/j.1600-079x.2011.00887.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resistance inducers are a class of agrochemicals, including benzothiadiazole and chitosan, which activate the plant own defence mechanisms. In this work, open-field treatments with plant activators were performed on two red grape (Vitis vinifera L.) varieties cultivated in different localities, Groppello (Brescia, Lombardia, Italy) and Merlot (Treviso, Veneto, Italy). Treatments were carried out every 10 days until the véraison and, after harvesting, experimental wines (microvinificates) were prepared. In general, both melatonin and total polyphenol content, determined by mass spectrometry and Folin-Ciocalteu assay, respectively, were higher in wines produced from grapes treated with resistance inducers than in those obtained from untreated control and conventional fungicide-treated grapes. Accordingly, antiradical power of wines derived from plant activator-treated grapes, measured by both DPPH (2,2-diphenyl-1-picrylhydrazyl) and the ABTS [(2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] radical-scavenging assay, was higher than in their counterparts. To the best of our knowledge, this is the first report on the effects of agrochemicals on the melatonin content of red wine.
Collapse
Affiliation(s)
- Sara Vitalini
- Dipartimento di Produzione Vegetale, Facoltà di Agraria, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Tan DX, Manchester LC, Sanchez-Barcelo E, Mediavilla MD, Reiter RJ. Significance of high levels of endogenous melatonin in Mammalian cerebrospinal fluid and in the central nervous system. Curr Neuropharmacol 2011; 8:162-7. [PMID: 21358967 PMCID: PMC3001210 DOI: 10.2174/157015910792246182] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 04/15/2010] [Accepted: 04/20/2010] [Indexed: 02/07/2023] Open
Abstract
Levels of melatonin in mammalian circulation are well documented; however, its levels in tissues and other body fluids are yet only poorly established. It is obvious that melatonin concentrations in cerebrospinal fluid (CSF) of mammals including humans are substantially higher than those in the peripheral circulation. Evidence indicates that melatonin produced in pineal gland is directly released into third ventricle via the pineal recess. In addition, brain tissue is equipped with the synthetic machinery for melatonin production and the astrocytes and glial cells have been proven to produce melatonin. These two sources of melatonin may be responsible for its high levels in CNS. The physiological significance of the high levels of melatonin in CNS presumably is to protect neurons and glia from oxidative stress. Melatonin as a potent antioxidant has been reported to be a neuroprotector in animals and in clinical studies. It seems that long term melatonin administration which elevates CSF melatonin concentrations will retard the progression of neurodegenerative disorders, for example, Alzheimer disease.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular & Structural Biology, University of Texas, Health Science Center, at San Antonio, 7703 Floyd Curl, San Antonio, TX, 78229, USA
| | | | | | | | | |
Collapse
|
18
|
Lamont KT, Somers S, Lacerda L, Opie LH, Lecour S. Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol- and melatonin-induced cardioprotection. J Pineal Res 2011; 50:374-80. [PMID: 21342247 DOI: 10.1111/j.1600-079x.2010.00853.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epidemiological studies suggest that regular moderate consumption of red wine confers cardioprotection but the mechanisms involved in this effect remain unclear. Recent studies demonstrate the presence of melatonin in wine. We propose that melatonin, at a concentration found in red wine, confers cardioprotection against ischemia-reperfusion injury. Furthermore, we investigated whether both melatonin and resveratrol protect via the activation of the newly discovered survivor activating factor enhancement (SAFE) prosurvival signaling pathway that involves the activation of tumor necrosis factor alpha (TNFα) and the signal transducer and activator of transcription 3 (STAT3). Isolated perfused male mouse (wild type, TNFα receptor 2 knockout mice, and cardiomyocyte-specific STAT3-deficient mice) or rat hearts (Wistars) were subjected to ischemia-reperfusion. Resveratrol (2.3 mg/L) or melatonin (75 ng/L) was perfused for 15 min with a 10-min washout period prior to an ischemia-reperfusion insult. Infarct size was measured at the end of the protocol, and Western blot analysis was performed to evaluate STAT3 activation prior to the ischemic insult. Both resveratrol and melatonin, at concentrations found in red wine, significantly reduced infarct size compared with control hearts in wild-type mouse hearts (25 ± 3% and 25 ± 3% respectively versus control 69 ± 3%, P < 0.001) but failed to protect in TNF receptor 2 knockout or STAT3-deficient mice. Furthermore, perfusion with either melatonin or resveratrol increased STAT3 phosphorylation prior to ischemia by 79% and 50%, respectively (P < 0.001 versus control). Our data demonstrate that both melatonin and resveratrol, as found in red wine, protect the heart in an experimental model of myocardial infarction via the SAFE pathway.
Collapse
Affiliation(s)
- Kim T Lamont
- Hatter Institute for Cardiovascular Research, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | |
Collapse
|
19
|
Tan DX, Manchester LC, Fuentes-Broto L, Paredes SD, Reiter RJ. Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obes Rev 2011; 12:167-88. [PMID: 20557470 DOI: 10.1111/j.1467-789x.2010.00756.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A worldwide increase in the incidence of obesity indicates the unsuccessful battle against this disorder. Obesity and the associated health problems urgently require effective strategies of treatment. The new discovery that a substantial amount of functional brown adipose tissue (BAT) is retained in adult humans provides a potential target for treatment of human obesity. BAT is active metabolically and disposes of extra energy via generation of heat through uncoupling oxidative phosphorylation in mitochondria. The physiology of BAT is readily regulated by melatonin, which not only increases recruitment of brown adipocytes but also elevates their metabolic activity in mammals. It is speculated that the hypertrophic effect and functional activation of BAT induced by melatonin may likely apply to the human. Thus, melatonin, a naturally occurring substance with no reported toxicity, may serve as a novel approach for treatment of obesity. Conversely, because of the availability of artificial light sources, excessive light exposure after darkness onset in modern societies should be considered a potential contributory factor to human obesity as light at night dramatically reduces endogenous melatonin production. In the current article, the potential associations of melatonin, BAT, obesity and the medical implications are discussed.
Collapse
Affiliation(s)
- D-X Tan
- Department of Cellular and Structural Biology, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
20
|
Kwon KJ, Kim JN, Kim MK, Lee J, Ignarro LJ, Kim HJ, Shin CY, Han SH. Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection. J Pineal Res 2011; 50:110-23. [PMID: 21073519 DOI: 10.1111/j.1600-079x.2010.00820.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Melatonin is an indoleamine secreted by the pineal gland as well as a plant-derived product, and resveratrol (RSV) is a naturally occurring polyphenol synthesized by a variety of plant species; both molecules act as a neuroprotector and antioxidant. Recent studies have demonstrated that RSV reduced the incidence of Alzheimer's disease and stroke, while melatonin supplementation was found to reduce the progression of the cognitive impairment in AD. The heme oxygenase-1 (HO-1) is an inducible and redox-regulated enzyme that provides tissue-specific antioxidant effects. We assessed whether the co-administration of melatonin and RSV shows synergistic effects in terms of their neuroprotective properties through HO-1. RSV significantly increased the expression levels of HO-1 protein in a concentration-dependent manner both in primary cortical neurons and in astrocytes, while melatonin per se did not. Melatonin + RSV showed a synergistic increase in the expression levels of HO-1 protein but not in the HO-1 mRNA level compared to either melatonin or RSV alone, which is mediated by the activation of PI3K-Akt pathway. Treatment of melatonin + RSV significantly attenuated the neurotoxicity induced by H(2) O(2) in primary cortical neurons and also in organotypic hippocampal slice culture. The blockade of HO-1 induction by shRNA attenuated HO-1 induction by melatonin + RSV and hindered the neuroprotective effects against oxidative stress induced by H(2) O(2) . The treatment of MG132 + RSV mimicked the effects of melatonin + RSV, and melatonin + RSV inhibited ubiquitination of HO-1. These data suggest that melatonin potentiates the neuroprotective effect of RSV against oxidative injury, by enhancing HO-1 induction through inhibiting ubiquitination-dependent proteasome pathway, which may provide an effective means to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Kyoung Ja Kwon
- Departments of Neurology Pharmacology Rehabilitation, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Compared with other industrialized countries, the lower incidence of chronic-degenerative disorders in Mediterranean populations has been emphasized in recent decades. The health-promoting effects arising from Mediterranean dietary habits have been attributed to the large intake of plant foodstuffs rich in bioactive phytochemicals, such as melatonin. Recently, it has been suggested that melatonin present in edible plants may improve human health, by virtue of its biological activities and its good bioavailability. Plant melatonin, besides contributing to optimize the physiological functions regulated, in humans, by endogenous melatonin, may be involved in nutritional therapy to reduce the risk of cancer, cardiovascular and neurodegenerative diseases in western populations. In this view, the presence of melatonin in some Mediterranean foods and beverages adds a new element to the hypothesis of health benefits associated to Mediterranean dietary patterns, although the available data are still preliminary and incomplete.
Collapse
Affiliation(s)
- Marcello Iriti
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Milano, Italy.
| | | | | |
Collapse
|
22
|
Murch SJ, Hall BA, Le CH, Saxena PK. Changes in the levels of indoleamine phytochemicals during véraison and ripening of wine grapes. J Pineal Res 2010; 49:95-100. [PMID: 20536685 DOI: 10.1111/j.1600-079x.2010.00774.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Melatonin and serotonin have previously been described in mature wine grapes and finished wines, but the metabolism of these signalling molecules in the development of wine grapes has not previously been investigated. We harvested wine grapes at different stages of development from lag phase through véraison from eight different commercial vineyards representing a diversity of growing conditions, management practices, merlot varietals and localized ecosystems to determine whether different patterns in melatonin and serotonin can be found in wine grapes during seed development and berry maturation. Melatonin was detected in 45% of the fully developed purple, postvéraison grapes but only found in 23% of prelag phase samples. However, the actual concentration of melatonin was highest in wine grapes harvested at the early stage of véraison when the seed is developing. Serotonin was not detected in any of the prelag phase grapes but was consistently detected in 30-35% of grapes harvested during the véraison transition at consistent levels of about 8-10 mug/g. Interestingly, the nitrogen storage compound gamma-aminobutyric acid was also found at about 115 mug/g in 77% of early stage green grapes and declined in both prevalence and concentration with ripening. Together, these data are indicative of a potential role for these molecules in the development and maturation of wine grapes.
Collapse
Affiliation(s)
- Susan J Murch
- Department of Chemistry, University of British Columbia Okanagan, Kelowna, BC, Canada.
| | | | | | | |
Collapse
|
23
|
Garrido M, Paredes SD, Cubero J, Lozano M, Toribio-Delgado AF, Muñoz JL, Reiter RJ, Barriga C, Rodríguez AB. Jerte Valley cherry-enriched diets improve nocturnal rest and increase 6-sulfatoxymelatonin and total antioxidant capacity in the urine of middle-aged and elderly humans. J Gerontol A Biol Sci Med Sci 2010; 65:909-14. [PMID: 20547498 DOI: 10.1093/gerona/glq099] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tryptophan, serotonin, and melatonin, present in Jerte Valley cherries, participate in sleep regulation and exhibit antioxidant properties. The effect of the intake of seven different Jerte Valley cherry cultivars on the sleep-wake cycle, 6-sulfatoxymelatonin levels, and urinary total antioxidant capacity in middle-aged and elderly participants was evaluated. Volunteers were subjected to actigraphic monitoring to record and display the temporal patterns of their nocturnal activity and rest. 6-sulfatoxymelatonin and total antioxidant capacity were quantified by enzyme-linked immunosorbent assay and colorimetric assay kits, respectively. The intake of each of the cherry cultivars produced beneficial effects on actual sleep time, total nocturnal activity, assumed sleep, and immobility. Also, there were significant increases in 6-sulfatoxymelatonin levels and total antioxidant capacity in urine after the intake of each cultivar. These findings suggested that the intake of Jerte Valley cherries exerted positive effect on sleep and may be seen as a potential nutraceutical tool to counteract oxidation.
Collapse
Affiliation(s)
- María Garrido
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, Avda. Elvas s/n, 06006 Badajoz, Extremadura, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM, Mayo JC, Fuentes-Broto L, Reiter RJ. The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb Philos Soc 2009; 85:607-23. [PMID: 20039865 DOI: 10.1111/j.1469-185x.2009.00118.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Melatonin is a molecule present in a multitude of taxa and may be ubiquitous in organisms. It has been found in bacteria, unicellular eukaryotes, macroalgae, fungi, plants and animals. A primary biological function of melatonin in primitive unicellular organisms is in antioxidant defence to protect against toxic free radical damage. During evolution, melatonin has been adopted by multicellular organisms to perform many other biological functions. These functions likely include the chemical expression of darkness in vertebrates, environmental tolerance in fungi and plants, sexual signaling in birds and fish, seasonal reproductive regulation in photoperiodic mammals, and immunomodulation and anti-inflammatory activity in all vertebrates tested. Moreover, its waning production during aging may indicate senescence in terms of a bio-clock in many organisms. Conversely, high melatonin levels can serve as a signal of vitality and health. The multiple biological functions of melatonin can partially be attributed to its unconventional metabolism which is comprised of multi-enzymatic, pseudo-enzymatic and non-enzymatic pathways. As a result, several bioactive metabolites of melatonin are formed during its metabolism and some of the presumed biological functions of melatonin reported to date may, in fact, be mediated by these metabolites. The changing biological roles of melatonin seem to have evolved from its primary function as an antioxidant.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park S, Kang K, Lee K, Choi D, Kim YS, Back K. Induction of serotonin biosynthesis is uncoupled from the coordinated induction of tryptophan biosynthesis in pepper fruits (Capsicum annuum) upon pathogen infection. PLANTA 2009; 230:1197-1206. [PMID: 19760262 DOI: 10.1007/s00425-009-1015-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 09/04/2009] [Indexed: 05/28/2023]
Abstract
It has been suggested that serotonin biosynthesis is regulated by tryptophan decarboxylase (TDC) in plants. To determine if TDC plays a rate-limiting role in serotonin biosynthesis, two TDC genes, PepTDC1 and PepTDC2, were cloned from pepper (Capsicum annuum L.) fruits infected with anthracnose fungus and their expression was then examined in various organs, including fruit that had been treated with the fungus or various chemicals. PepTDC1 expression was highly induced in pepper fruits after treatment with fungus and ethylene, while PepTDC2 was constitutively expressed at low levels in all pepper tissues. Additionally, predominant induction of PepTDC1 mRNA and TDC enzyme activity was detected in the unripe-green fruit, but not in the ripe-red fruit upon pathogen infection. Higher expression of TDC in unripe-green fruit was closely associated with increased levels of tryptamine, serotonin, and serotonin derivatives. However, unlike the enhanced serotonin synthesis, tryptophan levels responded unchanged when challenged with the pathogen in both the unripe-green fruit and the ripe-red fruit. Expression of two key tryptophan biosynthetic genes, anthranilate synthase (ASalpha) and tryptophan synthase (TSbeta), remained unchanged in response to treatment. Also, anthranilate synthase enzyme activity remained steady regardless of pathogen infection. Taken together, these results suggest that the synthesis of serotonin was regulated by the induction of TDC without a simultaneous increase in tryptophan levels in pepper fruits.
Collapse
Affiliation(s)
- Sangkyu Park
- Department of Biotechnology, Interdisciplinary Program for Bioenergy and Biomaterials of Graduate School, Agricultural Plant Stress Research Center, Chonnam National University, Gwangju, 500-757, South Korea
| | | | | | | | | | | |
Collapse
|