1
|
Hosseinzadeh A, Jamshidi Naeini A, Sheibani M, Gholamine B, Reiter RJ, Mehrzadi S. Melatonin and oral diseases: possible therapeutic roles based on cellular mechanisms. Pharmacol Rep 2024; 76:487-503. [PMID: 38607587 DOI: 10.1007/s43440-024-00593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Oral diseases, including periodontal disorders, oral cancer, periodontitis, and mucositis are the major challenges for both patients and healthcare providers. These conditions often involve inflammation, oxidative stress, and impaired cellular processes, leading to symptoms ranging from discomfort to severe debilitation. Conventional treatments for such oral diseases exhibit constraints, prompting the investigation of innovative therapeutic approaches. Considering the anti-inflammatory, anti-oxidant, and anti-cancer effects of melatonin, this study was carried out to investigate the potential protective effects of melatonin in mitigating the severity of oral diseases. Studies indicate that melatonin influences the differentiation of periodontal stem cells, inhibits oral cancer progression, reduces inflammation associated with periodontitis, and alleviates the severity of oral mucositis. Melatonin has demonstrated potential efficacy in both preclinical and clinical investigations; however, findings are frequently heterogeneous and contingent upon contextual factors. This review provides a comprehensiveoverview of current state of knowledge in this domain, elucidating the multifaceted role that melatonin may assume in combatingoral diseases. Further research should be directed toward determining the most effective dosing, timing, and administration methods for melatonin-based therapies for oral diseases.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Gholamine
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Hirayama J, Hattori A, Takahashi A, Furusawa Y, Tabuchi Y, Shibata M, Nagamatsu A, Yano S, Maruyama Y, Matsubara H, Sekiguchi T, Suzuki N. Physiological consequences of space flight, including abnormal bone metabolism, space radiation injury, and circadian clock dysregulation: Implications of melatonin use and regulation as a countermeasure. J Pineal Res 2023; 74:e12834. [PMID: 36203395 DOI: 10.1111/jpi.12834] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
Exposure to the space environment induces a number of pathophysiological outcomes in astronauts, including bone demineralization, sleep disorders, circadian clock dysregulation, cardiovascular and metabolic dysfunction, and reduced immune system function. A recent report describing experiments aboard the Space Shuttle mission, STS-132, showed that the level of melatonin, a hormone that provides the biochemical signal of darkness, was decreased during microgravity in an in vitro culture model. Additionally, abnormal lighting conditions in outer space, such as low light intensity in orbital spacecraft and the altered 24-h light-dark cycles, may result in the dysregulation of melatonin rhythms and the misalignment of the circadian clock from sleep and work schedules in astronauts. Studies on Earth have demonstrated that melatonin regulates various physiological functions including bone metabolism. These data suggest that the abnormal regulation of melatonin in outer space may contribute to pathophysiological conditions of astronauts. In addition, experiments with high-linear energy transfer radiation, a ground-based model of space radiation, showed that melatonin may serve as a protectant against space radiation. Gene expression profiling using an in vitro culture model exposed to space flight during the STS-132 mission, showed that space radiation alters the expression of DNA repair and oxidative stress response genes, indicating that melatonin counteracts the expression of these genes responsive to space radiation to promote cell survival. These findings implicate the use of exogenous melatonin and the regulation of endogenous melatonin as countermeasures for the physiological consequences of space flight.
Collapse
Affiliation(s)
- Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences & Division of Health Sciences, Graduate School of Sustainable Systems Science, Komatsu University, Komatsu, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | | | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Masahiro Shibata
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | | | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Noto-cho, Ishikawa, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Japan
| |
Collapse
|
3
|
Oliveira EA, Dalla-Costa KL, França FM, Kantovitz KR, Peruzzo DC. Influence of melatonin associated with the Bio-Gide® membrane on osteoblast activity: an in vitro Study. ACTA ODONTOLOGICA LATINOAMERICANA : AOL 2022; 35:90-97. [PMID: 36260939 DOI: 10.54589/aol.35/2/90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/01/2022] [Indexed: 06/16/2023]
Abstract
Melatonin (MLT) is a hormone responsible for regulating several physiological processes. It has been shown that MLT can be an important mediator in bone formation and stimulation, promoting osteoblast differentiation. In clinical practice, in tissue regeneration procedures, it is necessary to use membranes or barriers, associated with biomaterials, or not. The aim of this in vitro study was to assess the effect of melatonin on the activity of osteoblastic cells, associated, or not, with a resorbable collagen membrane (Bio-Gideä). For this, mice-derived pre-osteoblastic cells MC3T3 obtained from the ATCC (American Type Culture Collection) were used. Cultured cells were subject to the following treatments: MLT with a concentration of 1mM, a Bio-Gideä membrane and a membrane associated with MLT (Bio-Gideä + MLT). Proliferation and cell viability assays and protein lysate (ELISA test) quantification for the BMP-2 protein were carried out, in periods of 72 hours, 7 days and 10 days. After analyzing the data (one-way ANOVA, alpha=5%) it was observed that when MLT was used in isolation, there was an increase in cell proliferation and viability in osteoblastic cells (p<0.05). But, when MLT was associated with resorbable membranes, there was an inverse behavior, both in terms of proliferation and viability (p<0.05). In the case of the ELISA test, no secretion of BMP-2 was detected in any of the analyzed groups. It is concluded that MLT has a stimulatory effect on osteoblasts, but, when associated with Bio-Gideä resorbable membranes, it does not show any viable action in osteoblastic cell stimulation.
Collapse
Affiliation(s)
- Eliene A Oliveira
- Faculdade de Odontologia São Leopoldo Mandic, Departamento de Pesquisa em Odontologia, Campinas, São Paulo, Brasil
| | - Karen L Dalla-Costa
- Faculdade de Odontologia São Leopoldo Mandic, Departamento de Pesquisa em Odontologia, Campinas, São Paulo, Brasil.
| | - Fabiana Mg França
- Faculdade de Odontologia São Leopoldo Mandic, Departamento de Pesquisa em Odontologia, Campinas, São Paulo, Brasil
| | - Kamila R Kantovitz
- Faculdade de Odontologia São Leopoldo Mandic, Departamento de Pesquisa em Odontologia, Campinas, São Paulo, Brasil
| | - Daiane C Peruzzo
- Faculdade de Odontologia São Leopoldo Mandic, Departamento de Pesquisa em Odontologia, Campinas, São Paulo, Brasil
| |
Collapse
|
4
|
Hart DA, Zernicke RF, Shrive NG. Homo sapiens May Incorporate Daily Acute Cycles of “Conditioning–Deconditioning” to Maintain Musculoskeletal Integrity: Need to Integrate with Biological Clocks and Circadian Rhythm Mediators. Int J Mol Sci 2022; 23:ijms23179949. [PMID: 36077345 PMCID: PMC9456265 DOI: 10.3390/ijms23179949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Human evolution required adaptation to the boundary conditions of Earth, including 1 g gravity. The bipedal mobility of Homo sapiens in that gravitational field causes ground reaction force (GRF) loading of their lower extremities, influencing the integrity of the tissues of those extremities. However, humans usually experience such loading during the day and then a period of relative unloading at night. Many studies have indicated that loading of tissues and cells of the musculoskeletal (MSK) system can inhibit their responses to biological mediators such as cytokines and growth factors. Such findings raise the possibility that humans use such cycles of acute conditioning and deconditioning of the cells and tissues of the MSK system to elaborate critical mediators and responsiveness in parallel with these cycles, particularly involving GRF loading. However, humans also experience circadian rhythms with the levels of a number of mediators influenced by day/night cycles, as well as various levels of biological clocks. Thus, if responsiveness to MSK-generated mediators also occurs during the unloaded part of the daily cycle, that response must be integrated with circadian variations as well. Furthermore, it is also possible that responsiveness to circadian rhythm mediators may be regulated by MSK tissue loading. This review will examine evidence for the above scenario and postulate how interactions could be both regulated and studied, and how extension of the acute cycles biased towards deconditioning could lead to loss of tissue integrity.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
- Correspondence:
| | - Ronald F. Zernicke
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109-5328, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48108-1048, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099, USA
| | - Nigel G. Shrive
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 4V8, Canada
| |
Collapse
|
5
|
Poza JJ, Pujol M, Ortega-Albás JJ, Romero O. Melatonin in sleep disorders. Neurologia 2022; 37:575-585. [PMID: 30466801 DOI: 10.1016/j.nrl.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Melatonin is the main hormone involved in the control of the sleep-wake cycle. It is easily synthesisable and can be administered orally, which has led to interest in its use as a treatment for insomnia. Moreover, as production of the hormone decreases with age, in inverse correlation with the frequency of poor sleep quality, it has been suggested that melatonin deficit is at least partly responsible for sleep disorders. Treating this age-related deficit would therefore appear to be a natural way of restoring sleep quality, which is lost as patients age. However, despite the undeniable theoretical appeal of this approach to insomnia, little scientific evidence is available that supports any benefit of this substitutive therapy. Furthermore, the most suitable dose ranges and pharmaceutical preparations for melatonin administration are yet to be clearly defined. This review addresses the physiology of melatonin, the different pharmaceutical preparations, and data on its clinical usefulness.
Collapse
Affiliation(s)
- J J Poza
- Servicio de Neurología, Hospital Universitario Donostia, San Sebastián, España.
| | - M Pujol
- Unidad Multidisciplinar de Sueño, Hospital Universitario de Santa María, Lleida, España
| | - J J Ortega-Albás
- Unidad de Sueño, Hospital General Universitario de Castellón, Castellón, España
| | - O Romero
- Unidad Multidisciplinar de Sueño, Hospital Universitario Vall d́Hebron, Barcelona, España
| |
Collapse
|
6
|
Suzuki N, Honda M, Sato M, Yoshitake S, Kawabe K, Tabuchi Y, Omote T, Sekiguchi T, Furusawa Y, Toriba A, Tang N, Shimasaki Y, Nagato EG, Zhang L, Srivastav AK, Amornsakun T, Kitani Y, Matsubara H, Yazawa T, Hirayama J, Hattori A, Oshima Y, Hayakawa K. Hydroxylated benzo[c]phenanthrene metabolites cause osteoblast apoptosis and skeletal abnormalities in fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113401. [PMID: 35298967 DOI: 10.1016/j.ecoenv.2022.113401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/19/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
To study the toxicity of 3-hydroxybenzo[c]phenanthrene (3-OHBcP), a metabolite of benzo[c]phenanthrene (BcP), first we compared it with its parent compound, BcP, using an in ovo-nanoinjection method in Japanese medaka. Second, we examined the influence of 3-OHBcP on bone metabolism using goldfish. Third, the detailed mechanism of 3-OHBcP on bone metabolism was investigated using zebrafish and goldfish. The LC50s of BcP and 3-OHBcP in Japanese medaka were 5.7 nM and 0.003 nM, respectively, indicating that the metabolite was more than 1900 times as toxic as the parent compound. In addition, nanoinjected 3-OHBcP (0.001 nM) induced skeletal abnormalities. Therefore, fish scales with both osteoblasts and osteoclasts on the calcified bone matrix were examined to investigate the mechanisms of 3-OHBcP toxicity on bone metabolism. We found that scale regeneration in the BcP-injected goldfish was significantly inhibited as compared with that in control goldfish. Furthermore, 3-OHBcP was detected in the bile of BcP-injected goldfish, indicating that 3-OHBcP metabolized from BcP inhibited scale regeneration. Subsequently, the toxicity of BcP and 3-OHBcP to osteoblasts was examined using an in vitro assay with regenerating scales. The osteoblastic activity in the 3-OHBcP (10-10 to 10-7 M)-treated scales was significantly suppressed, while BcP (10-11 to 10-7 M)-treated scales did not affect osteoblastic activity. Osteoclastic activity was unchanged by either BcP or 3-OHBcP treatment at each concentration (10-11 to 10-7 M). The detailed toxicity of 3-OHBcP (10-9 M) in osteoblasts was then examined using gene expression analysis on a global scale with fish scales. Eight genes, including APAF1, CHEK2, and FOS, which are associated with apoptosis, were identified from the upregulated genes. This indicated that 3-OHBcP treatment induced apoptosis in fish scales. In situ detection of cell death by TUNEL methods was supported by gene expression analysis. This study is the first to demonstrate that 3-OHBcP, a metabolite of BcP, has greater toxicity than the parent compound, BcP.
Collapse
Affiliation(s)
- Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan.
| | - Masato Honda
- Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan
| | - Masayuki Sato
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Shuhei Yoshitake
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kimi Kawabe
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Ishikawa 920-1192, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Toshiki Omote
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama 939-0398, Japan
| | - Akira Toriba
- Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Edward G Nagato
- Graduate School of Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Lulu Zhang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan
| | - Ajai K Srivastav
- Department of Zoology, D.D.U. Gorakhpur University, Gorakhpur 273-009, India
| | - Thumronk Amornsakun
- Fisheries Technology Program, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Yoichiro Kitani
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Osaka, Noto-cho, Ishikawa 927-0552, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Hokkaido 078-8510, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa 923-0961, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kazuichi Hayakawa
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Nomi city, Ishikawa 923-1224, Japan
| |
Collapse
|
7
|
Yamamoto T, Ikegame M, Hirayama J, Kitamura KI, Tabuchi Y, Furusawa Y, Sekiguchi T, Endo M, Mishima H, Seki A, Yano S, Matsubara H, Hattori A, Suzuki N. Expression of sclerostin in the regenerating scales of goldfish and its increase under microgravity during space flight. Biomed Res 2021; 41:279-288. [PMID: 33268672 DOI: 10.2220/biomedres.41.279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Osteocytes, osteoblasts (bone-forming cells), and osteoclasts (bone-resorbing cells) are the primary types of cells that regulate bone metabolism in mammals. Sclerostin produced in bone cells activates osteoclasts, inhibiting bone formation; excess production of sclerostin, therefore, leads to the loss of bone mass. Fish scales have been reported to have morphological and functional similarities to mammalian bones, making them a useful experimental system for analyzing vertebrate bone metabolism in vitro. However, whether fish scales contain cells producing sclerostin and/or osteocytes has not been determined. The current study demonstrated, for the first time, that sclerostin-containing cells exist in goldfish scales. Analysis of the distribution and shape of sclerostin-expressing cells provided evidence that osteoblasts produce sclerostin in goldfish scales. Furthermore, our results found that osteocyte-like cells exist in goldfish scales, which also produce sclerostin. Finally, we demonstrated that microgravity in outer space increased the level of sclerostin in the scales of goldfish, a finding suggesting that the induction of sclerostin is the mechanism underlying the activation of osteoclasts under microgravity.
Collapse
Affiliation(s)
- Tatsuki Yamamoto
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University
| | - Mika Ikegame
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University
| | - Kei-Ichiro Kitamura
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University
| | | | - Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University
| | - Masato Endo
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology
| | - Hiroyuki Mishima
- Department of Dental Engineering, Tsurumi University School of Dental Medicine
| | | | | | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University
| | - Nobuo Suzuki
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University
| |
Collapse
|
8
|
Kitamura K, Hirayama J, Tabuchi Y, Minami T, Matsubara H, Hattori A, Suzuki N. Glyoxal-induced formation of advanced glycation end-products in type 1 collagen decreases both its strength and flexibility in vitro. J Diabetes Investig 2021; 12:1555-1559. [PMID: 33605082 PMCID: PMC8409810 DOI: 10.1111/jdi.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 11/30/2022] Open
Abstract
The high plasma glucose induced in glucose metabolism disorders leads to the non-enzymatic glucose-dependent modification (glycation) of type 1 collagen, which is an essential component of bone tissue. The glycation of proteins induces the formation of advanced glycation end-products, such as carboxymethyl arginine, which is preferentially generated in glycated collagen. However, the effect of advanced glycation end-product formation on the characteristics of type 1 collagen remains unclear due to the lack of suitable in vitro experimental systems analyzing type 1 collagen. Here, we show that the glycation of type 1 collagen can be analyzed in vitro using a goldfish-scale bone model. Our study using these scales provides evidence that the advanced glycation end-product formation in type 1 collagen induced by glyoxal, the carboxymethyl arginine inducer, facilitates the crosslinking of type 1 collagen, decreasing both its strength and flexibility.
Collapse
Affiliation(s)
- Kei‐ichiro Kitamura
- Department of Clinical Laboratory ScienceGraduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Jun Hirayama
- Department of Clinical EngineeringFaculty of Health SciencesKomatsu UniversityKomatsuJapan
| | | | - Takao Minami
- Department of Clinical Laboratory ScienceGraduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and TechnologyKanazawa UniversityKanazawaJapan
| | - Atsuhiko Hattori
- Department of BiologyCollege of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Nobuo Suzuki
- Noto Marine LaboratoryInstitute of Nature and Environmental TechnologyKanazawa UniversityKanazawaJapan
| |
Collapse
|
9
|
Wu X, Liu Y, Du J, Li X, Lin J, Ni L, Zhu P, Zhou H, Kong F, Yang H, Geng D, Mao H. Melatonin Attenuates Intervertebral Disk Degeneration via Maintaining Cartilaginous Endplate Integrity in Rats. Front Physiol 2021; 12:672572. [PMID: 34220535 PMCID: PMC8248798 DOI: 10.3389/fphys.2021.672572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Objective The aim of this study is to verify whether melatonin (Mel) could mitigate intervertebral disk degeneration (IVDD) in rats and to investigate the potential mechanism of it. Method A rat acupuncture model of IVDD was established with intraperitoneal injection of Mel. The effect of Mel on IVDD was analyzed via radiologic and histological evaluations. The specific Mel receptors were investigated in both the nucleus pulposus (NP) and cartilaginous endplates (EPs). In vitro, EP cartilaginous cells (EPCs) were treated by different concentrations of Mel under lipopolysaccharide (LPS) and Luzindole conditions. In addition, LPS-induced inflammatory response and matrix degradation following nuclear factor kappa-B (NF-κB) pathway activation were investigated to confirm the potential mechanism of Mel on EPCs. Results The percent disk height index (%DHI) and MRI signal decreased after initial puncture in the degeneration group compared with the control group, while Mel treatment protected disk height from decline and prevented the loss of water during the degeneration process. In the meantime, the histological staining of the Mel groups showed more integrity and well-ordered construction of the NP and EPs in both low and high concentration than that of the degeneration group. In addition, more deep-brown staining of type II collagen (Coll-II) was shown in the Mel groups compared with the degeneration group. Furthermore, in rat samples, immunohistochemical staining showed more positive cells of Mel receptors 1a and 1b in the EPs, instead of in the NP. Moreover, evident osteochondral lacuna formation was observed in rat EPs in the degeneration group; after Mel treatment, the osteochondral destruction alleviated accompanying fewer receptor activator for nuclear factor-κB ligand (RANKL) and tartrate-resistant acid phosphatase (TRAP)-stained positive cells expressed in the EPs. In vitro, Mel could promote the proliferation of EPCs, which protected EPCs from degeneration under LPS treatment. What is more, Mel downregulated the inflammatory response and matrix degradation of EPCs activated by NF-κB pathway through binding to its specific receptors. Conclusion These results indicate that Mel protects the integrity of the EPs and attenuates IVDD by binding to the Mel receptors in the EPs. It may alleviate the inflammatory response and matrix degradation of EPCs activated by NF-κB pathway.
Collapse
Affiliation(s)
- Xiexing Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yijie Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiacheng Du
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoping Li
- Department of Clinical Education, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayi Lin
- Department of Orthopedics Center, Ningbo No. 2 Hospital, Ningbo, China
| | - Li Ni
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fanchen Kong
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiqing Mao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Carnovali M, Pasqualetti S, Banfi G, Mariotti M. A New Analytical Method for Calcium Quantification in Danio rerio Scales. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Igarashi-Migitaka J, Seki A, Ikegame M, Honda M, Sekiguchi T, Mishima H, Shimizu N, Matsubara H, Srivastav AK, Hirayama J, Maruyama Y, Kamijo-Ikemori A, Hirata K, Hattori A, Suzuki N. Oral administration of melatonin contained in drinking water increased bone strength in naturally aged mice. Acta Histochem 2020; 122:151596. [PMID: 32778234 DOI: 10.1016/j.acthis.2020.151596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Melatonin has recently been found to be a possible new regulator of bone metabolism. However, the influence of melatonin in natural age-related osteoporosis has not been fully elucidated yet, although there have been some reports regarding postmenopausal osteoporosis with melatonin treatments. The present study investigated the effects of long-term melatonin administration during the aging process on bone metabolism. Using quantitative computed tomography methods, we found that the total bone density of both the femur metaphysis and diaphysis decreased significantly in 20-month-old male mice. In the metaphysis, both trabecular bone mass and Polar-Strength Strain Index (SSI), which is an index of bone strength, decreased significantly. Judging from bone histomorphometry analysis, trabecular bone in 20-month-old male mice decreases significantly with age and is small and sparse, as compared to that of 4-month-old male mice. Loss of trabecular bone is one possible cause of loss of bone strength in the femoral bone. In the metaphysis, the melatonin administration group had significantly higher trabecular bone density than the non-administration group. The Polar-SSI, cortical area, and periosteal circumference in the diaphysis was also significantly higher with melatonin treatments. Since the melatonin receptor, MT2, was detected in both osteoblasts and osteoclasts of the femoral bone of male mice, we expect that melatonin acts on osteoblasts and osteoclasts to maintain the bone strength of the diaphysis and metaphysis. Thus, melatonin is a potential drug for natural age-related osteoporosis.
Collapse
|
12
|
Poza J, Pujol M, Ortega-Albás J, Romero O. Melatonin in sleep disorders. NEUROLOGÍA (ENGLISH EDITION) 2020; 37:575-585. [DOI: 10.1016/j.nrleng.2018.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/18/2018] [Indexed: 12/18/2022] Open
|
13
|
Experimental Study on the Influence of Apigenin K and Melatonin in Socket Preservation as Bone Stimulators: An Experimental Study in Beagle Dogs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim is to evaluate whether apigenin K and melatonin M5250 were able to stimulate bone formation after tooth extraction at one, two, and three months follow-up. Six male beagle dogs were used. Apigenin K and melatonin M5250 immersed in hemostatic collagen sponges were placed in the third and fourth premolar and the first molar extracted sockets; the second premolar was used as control. At one, two, and three months, bone core biopsies were performed, and picrosirius–hematoxylin was used for the staining process. In the first month, a higher amount of calcified bone tissue was observed in the melatonin (77.87% ± 1.2%) and apigenin K (69.81% ± 1.8%) groups than the control group (57.27% ± 0.54%), with apparent discrepancies in values between the three groups (p < 0.04). In the second month, there was a considerable improvement in the results in the areas with melatonin (79.81% ± 0.11%) than in those of apigenin K (71.65% ± 0.52%) and control (64.77% ± 0.44%) (p < 0.04). In the third month, the number of mature bone was similar to all the groups. The creation of new bone was significant in the melatonin group (82.78% ± 0.87%), followed by the apigenin K group (78.76% ± 0.43%) and the control group (57.27% ± 0.11%). From this experimental study in dogs, it can be concluded that melatonin and apigenin K can accelerate the process of mineralization of the bone matrix, and thus the creation of laminae in the early stages of healing (1 month). Less reabsorption of the post-extraction sockets can be expected with the topical application of melatonin and apigenin K. It seems that the stimulatory effects of bone healing induced by the topical application of melatonin and apigenin K are defect-size-dependent, being more evident in small defects compared to larger defects.
Collapse
|
14
|
Zhang J, Yan X, Tian Y, Li W, Wang H, Li Q, Li Y, Li Z, Wu T. Synthesis of a New Water-Soluble Melatonin Derivative with Low Toxicity and a Strong Effect on Sleep Aid. ACS OMEGA 2020; 5:6494-6499. [PMID: 32258885 PMCID: PMC7114735 DOI: 10.1021/acsomega.9b04120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/06/2020] [Indexed: 05/10/2023]
Abstract
A new melatonin sulfonate derivative sodium 4-(3-(2-acetamidoethyl)-5-methoxy-1H-indol-1-yl) butane-1-sulfonate (MLTBS) with higher water solubility (695 times) and lower cytotoxicity than natural melatonin (MLT) was synthesized, yet with the same sleep aid function. The poor solubility of MLT in water has been improved with a simple chemical reaction, which solves the poor solubility of melatonin in water, overcoming the safety problem caused by adding organic reagents such as dimethyl sulfoxide (DMSO) and ethanol to increase the solubility. Moreover, the modified MLT still has the same sleep aid effect as the natural MLT and higher biological safety. As a novel potential drug for sleep aid, the new MLT derivative could also flourish the application and research of this molecule in medicine and biology.
Collapse
Affiliation(s)
- Jianghong Zhang
- Xiamen Nuokangde
Biological Technology Co., Ltd., Xiamen 361006, China
| | - Xu Yan
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yunpeng Tian
- Xiamen Nuokangde
Biological Technology Co., Ltd., Xiamen 361006, China
| | - Wanyun Li
- Cancer Research Center, Medical School, Xiamen University, Xiamen 361005, China
| | - Haiyang Wang
- Mingguang People’s Hospital, Mingguang City 239400, China
| | - Qinbin Li
- Xiamen Nuokangde
Biological Technology Co., Ltd., Xiamen 361006, China
| | - Yufei Li
- University Affiliated Keji High School, Xiamen 361005, China
| | - Zhu Li
- Xiamen Nuokangde
Biological Technology Co., Ltd., Xiamen 361006, China
| | - Ting Wu
- Cancer Research Center, Medical School, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Influence of Benz[ a]anthracene on Bone Metabolism and on Liver Metabolism in Nibbler Fish, Girella punctata. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041391. [PMID: 32098178 PMCID: PMC7068328 DOI: 10.3390/ijerph17041391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/08/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022]
Abstract
It has been reported that spinal deformity was induced in developing fish by the addition of polycyclic aromatic hydrocarbons (PAHs). To examine the mechanism of the disruption of fish bone metabolism, the effect of benz[a]anthracene (BaA), a kind of PAH, on plasma calcium, inorganic phosphorus, osteoblasts, and osteoclasts was investigated in this study. We also measured several plasma components to analyze the toxicity of BaA on other metabolisms. BaA (1 or 10 ng/g body weight) was intraperitoneally injected (four times) into nibbler fish during breeding, for 10 days, and it was indicated, for the first time, that injecting high doses of BaA to nibbler fish induced both hypocalcemia and hypophosphatemia. Furthermore, in the scales of nibbler fish treated with high doses of BaA, both osteoclastic and osteoblastic marker messengerRNA (mRNA) expressions decreased. These results are a cause of disruption of bone metabolism and, perhaps, the induction of spinal deformities. In addition, we found that total protein, metabolic enzymes in the liver, total cholesterol, free cholesterol, and high-density lipoprotein cholesterol levels significantly decreased in BaA-injected fish. These results indicate that BaA may affect liver diseases and emphasize the importance of prevention of aquatic PAH pollution.
Collapse
|
16
|
Shirinzadeh H, Ghalia M, Tascioglu A, Adjali FI, Gunesacar G, Gurer-Orhan H, Suzen S. Bioisosteric modification on melatonin: synthesis of new naphthalene derivatives, in vitro antioxidant activity and cytotoxicity studies. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000418124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
17
|
Ikegame M, Hattori A, Tabata MJ, Kitamura K, Tabuchi Y, Furusawa Y, Maruyama Y, Yamamoto T, Sekiguchi T, Matsuoka R, Hanmoto T, Ikari T, Endo M, Omori K, Nakano M, Yashima S, Ejiri S, Taya T, Nakashima H, Shimizu N, Nakamura M, Kondo T, Hayakawa K, Takasaki I, Kaminishi A, Akatsuka R, Sasayama Y, Nishiuchi T, Nara M, Iseki H, Chowdhury VS, Wada S, Ijiri K, Takeuchi T, Suzuki T, Ando H, Matsuda K, Somei M, Mishima H, Mikuni‐Takagaki Y, Funahashi H, Takahashi A, Watanabe Y, Maeda M, Uchida H, Hayashi A, Kambegawa A, Seki A, Yano S, Shimazu T, Suzuki H, Hirayama J, Suzuki N. Melatonin is a potential drug for the prevention of bone loss during space flight. J Pineal Res 2019; 67:e12594. [PMID: 31286565 PMCID: PMC6771646 DOI: 10.1111/jpi.12594] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022]
Abstract
Astronauts experience osteoporosis-like loss of bone mass because of microgravity conditions during space flight. To prevent bone loss, they need a riskless and antiresorptive drug. Melatonin is reported to suppress osteoclast function. However, no studies have examined the effects of melatonin on bone metabolism under microgravity conditions. We used goldfish scales as a bone model of coexisting osteoclasts and osteoblasts and demonstrated that mRNA expression level of acetylserotonin O-methyltransferase, an enzyme essential for melatonin synthesis, decreased significantly under microgravity. During space flight, microgravity stimulated osteoclastic activity and significantly increased gene expression for osteoclast differentiation and activation. Melatonin treatment significantly stimulated Calcitonin (an osteoclast-inhibiting hormone) mRNA expression and decreased the mRNA expression of receptor activator of nuclear factor κB ligand (a promoter of osteoclastogenesis), which coincided with suppressed gene expression levels for osteoclast functions. This is the first study to report the inhibitory effect of melatonin on osteoclastic activation by microgravity. We also observed a novel action pathway of melatonin on osteoclasts via an increase in CALCITONIN secretion. Melatonin could be the source of a potential novel drug to prevent bone loss during space flight.
Collapse
Affiliation(s)
- Mika Ikegame
- Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Atsuhiko Hattori
- College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Makoto J. Tabata
- Graduate School of Tokyo Medical and Dental UniversityBunkyo‐kuJapan
| | - Kei‐ichiro Kitamura
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKodatsunoJapan
| | | | - Yukihiro Furusawa
- Department of Liberal Arts and SciencesToyama Prefectural UniversityToyamaJapan
| | - Yusuke Maruyama
- College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Tatsuki Yamamoto
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Toshio Sekiguchi
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Risa Matsuoka
- College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Taizo Hanmoto
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Takahiro Ikari
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Masato Endo
- Department of Marine BiosciencesTokyo University of Marine Science and TechnologyMinato‐kuJapan
| | | | - Masaki Nakano
- College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Sayaka Yashima
- College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Sadakazu Ejiri
- Division of Oral Structure, Function and DevelopmentAsahi University School of DentistryMizuhoJapan
| | | | - Hiroshi Nakashima
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKodatsunoJapan
| | - Nobuaki Shimizu
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Masahisa Nakamura
- Faculty of Education and Integrated Arts and SciencesWaseda UniversityShinjuku‐kuJapan
| | - Takashi Kondo
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Kazuichi Hayakawa
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNomiJapan
| | - Ichiro Takasaki
- Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
| | - Atsushi Kaminishi
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Ryosuke Akatsuka
- College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Yuichi Sasayama
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Takumi Nishiuchi
- Institute for Gene Research, Advanced Science Research CenterKanazawa UniversityKanazawaJapan
| | - Masayuki Nara
- College of Liberal Arts and SciencesTokyo Medical and Dental UniversityIchikawaJapan
| | - Hachiro Iseki
- Graduate School of Tokyo Medical and Dental UniversityBunkyo‐kuJapan
| | | | | | - Kenichi Ijiri
- Radioisotope CenterUniversity of TokyoBunkyo‐kuJapan
| | - Toshio Takeuchi
- Department of Marine BiosciencesTokyo University of Marine Science and TechnologyMinato‐kuJapan
| | - Tohru Suzuki
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Hironori Ando
- Marine Biological Station, Sado Center for Ecological SustainabilityNiigata UniversitySadoJapan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
| | - Masanori Somei
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| | - Hiroyuki Mishima
- Department of Dental EngineeringTsurumi University School of Dental MedicineYokohamaJapan
| | | | - Hisayuki Funahashi
- Department of Physical Therapy, Faculty of Makuhari Human CareTohto UniversityMihama‐kuJapan
| | | | - Yoshinari Watanabe
- Organization of Frontier Science and InnovationKanazawa UniversityKanazawaJapan
| | | | | | | | | | | | | | | | | | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health SciencesKomatsu UniversityKomatsuJapan
| | - Nobuo Suzuki
- Division of Marine Environmental Studies, Noto Marine Laboratory, Institute of Nature and Environmental TechnologyKanazawa UniversityNoto‐choJapan
| |
Collapse
|
18
|
Nakano M, Ikegame M, Igarashi-Migitaka J, Maruyama Y, Suzuki N, Hattori A. Suppressive effect of melatonin on osteoclast function via osteocyte calcitonin. J Endocrinol 2019; 242:13-23. [PMID: 31042672 DOI: 10.1530/joe-18-0707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 01/13/2023]
Abstract
Many studies have investigated the actions of melatonin on osteoblasts and osteoclasts. However, the underlying mechanisms, especially regarding osteocyte function, remain largely unknown. Therefore, this study aimed to clarify the underlying mechanisms of melatonin action on bone tissue via osteocyte function. Chick calvariae were employed as a model. In ovo injection of melatonin (5, 50 and 500 µg) dose-dependently decreased the mRNA expression levels of cathepsin K and matrix metalloproteinase 9 (MMP9) in chick calvariae without affecting the expression levels of receptor activator of NF-κB ligand or osteoprotegerin. Surprisingly enough, the expression of calcitonin mRNA in chick calvariae was significantly raised. After 3 days of in vitro treatment of melatonin (10-7 and 10-5 M) on newly hatched chick calvariae, both calcitonin mRNA expression in calvariae and the concentration of calcitonin in cultured medium were augmented in a dose-dependent manner, coincident with the decreased mRNA expression levels of cathepsin K and MMP9. Immunohistochemical analyses revealed expression of melatonin receptors and calcitonin by osteocytes buried in bone matrix. Moreover, the mRNA expression levels of melatonin receptors, calcitonin and sclerostin (a marker of osteocyte), were strongly and positively correlated. In conclusion, we demonstrated the expression of melatonin receptors and calcitonin expression in osteocytes for the first time and suggest a new mechanism underlying the suppressive effect of melatonin on osteoclasts via upregulation of calcitonin secretion by osteocytes.
Collapse
Affiliation(s)
- Masaki Nakano
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Junko Igarashi-Migitaka
- Department of Anatomy and Cell Biology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan
| |
Collapse
|
19
|
The effect of exogenous melatonin on reducing scoliotic curvature and improving bone quality in melatonin-deficient C57BL/6J mice. Sci Rep 2019; 9:6202. [PMID: 30996275 PMCID: PMC6470154 DOI: 10.1038/s41598-019-42467-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
It is well-documented that melatonin deficiency has been linked to the etiopathogenesis of adolescent idiopathic scoliosis. In this study, we intended to apply melatonin in melatonin-deficient mice to ascertain whether melatonin could reduce the incidence/severity of scoliosis, and investigate the role of melatonin on bone mineral density in scoliosis. A total of 80 mice were divided into 4 groups: 20 quadrupedal mice and 20 bipedal mice served as controls; 20 quadrupedal and 20 bipedal mice received oral melatonin (8 mg/kg BW) daily. After 5th, 10th, 15th and 20th weeks of treatment, radiographs and in vivo micro-CT were used to determine the incidence of scoliosis and bone qualities, respectively. Upon sacrifice, the levels of melatonin were measured in each group. At 20th week, the occurrence of scoliosis was 80%, 30%, 22% and 5% in bipedal, quadrupedal, bipedal + melatonin and quadrupedal + melatonin group, respectively. The trabecular bone quality of the vertebral body was significantly ameliorated in the melatonin-treated bipedal models. Likewise, the number of osteoclasts was significantly less in those treated with melatonin. Our results indicated that melatonin deficiency may be crucial for scoliotic development, and restoration of melatonin levels can prevent scoliotic development with the improvement in bone density.
Collapse
|
20
|
Li T, Jiang S, Lu C, Yang W, Yang Z, Hu W, Xin Z, Yang Y. Melatonin: Another avenue for treating osteoporosis? J Pineal Res 2019; 66:e12548. [PMID: 30597617 DOI: 10.1111/jpi.12548] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 12/28/2022]
Abstract
Melatonin is a signal molecule that modulates the biological circadian rhythms of vertebrates. Melatonin deficiency is thought to be associated with several disorders, including insomnia, cancer, and cardiovascular and neurodegenerative diseases. Accumulating evidence has also indicated that melatonin may be involved in the homeostasis of bone metabolism. Age-related reductions in melatonin are considered to be critical factors in bone loss and osteoporosis with aging. Thus, serum melatonin levels might serve as a biomarker for the early detection and prevention of osteoporosis. Compared to conventional antiosteoporosis medicines, which primarily inhibit bone loss, melatonin both suppresses bone loss and promotes new bone formation. Mechanistically, by activating melatonin receptor 2 (MT2), melatonin upregulates the gene expression of alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2), BMP6, osteocalcin, and osteoprotegerin to promote osteogenesis while inhibiting the receptor activator of NF-kB ligand (RANKL) pathway to suppress osteolysis. In view of the distinct actions of melatonin on bone metabolism, we hypothesize that melatonin may be a novel remedy for the prevention and clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhi Yang
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zhenlong Xin
- Graduate School, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
21
|
Hirayama J, Alifu Y, Hamabe R, Yamaguchi S, Tomita J, Maruyama Y, Asaoka Y, Nakahama KI, Tamaru T, Takamatsu K, Takamatsu N, Hattori A, Nishina S, Azuma N, Kawahara A, Kume K, Nishina H. The clock components Period2, Cryptochrome1a, and Cryptochrome2a function in establishing light-dependent behavioral rhythms and/or total activity levels in zebrafish. Sci Rep 2019; 9:196. [PMID: 30655599 PMCID: PMC6336812 DOI: 10.1038/s41598-018-37879-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/03/2018] [Indexed: 11/09/2022] Open
Abstract
The circadian clock generates behavioral rhythms to maximize an organism’s physiological efficiency. Light induces the formation of these rhythms by synchronizing cellular clocks. In zebrafish, the circadian clock components Period2 (zPER2) and Cryptochrome1a (zCRY1a) are light-inducible, however their physiological functions are unclear. Here, we investigated the roles of zPER2 and zCRY1a in regulating locomotor activity and behavioral rhythms. zPer2/zCry1a double knockout (DKO) zebrafish displayed defects in total locomotor activity and in forming behavioral rhythms when briefly exposed to light for 3-h. Exposing DKO zebrafish to 12-h light improved behavioral rhythm formation, but not total activity. Our data suggest that the light-inducible circadian clock regulator zCRY2a supports rhythmicity in DKO animals exposed to 12-h light. Single cell imaging analysis revealed that zPER2, zCRY1a, and zCRY2a function in synchronizing cellular clocks. Furthermore, microarray analysis of DKO zebrafish showed aberrant expression of genes involved regulating cellular metabolism, including ATP production. Overall, our results suggest that zPER2, zCRY1a and zCRY2a help to synchronize cellular clocks in a light-dependent manner, thus contributing to behavioral rhythm formation in zebrafish. Further, zPER2 and zCRY1a regulate total physical activity, likely via regulating cellular energy metabolism. Therefore, these circadian clock components regulate the rhythmicity and amount of locomotor behavior.
Collapse
Affiliation(s)
- Jun Hirayama
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Ishikawa, Japan.
| | - Yikelamu Alifu
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Rin Hamabe
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sho Yamaguchi
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Jun Tomita
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University (TMDU), Ichikawa, Japan
| | - Yoichi Asaoka
- Department of Microbiology and Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Teruya Tamaru
- Department of Physiology and Advanced Research Center for Medical Science, Toho University School of Medicine, Tokyo, Japan
| | - Ken Takamatsu
- Department of Physiology and Advanced Research Center for Medical Science, Toho University School of Medicine, Tokyo, Japan
| | - Nobuhiko Takamatsu
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University (TMDU), Ichikawa, Japan
| | - Sachiko Nishina
- Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, Tokyo, Japan
| | - Noriyuki Azuma
- Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, Tokyo, Japan
| | - Atsuo Kawahara
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, Yamanashi, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
22
|
Calvo-Guirado JL, López-López PJ, Domínguez MF, Gosálvez MM, Prados-Frutos JC, Gehrke SA. Retracted: Histologic evaluation of new bone in post-extraction sockets induced by melatonin and apigenin: an experimental study in American fox hound dogs. Clin Oral Implants Res 2018; 29:1176. [PMID: 27191920 DOI: 10.1111/clr.12866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of topical applications of melatonin and apigenin (4',5,7-trihydroxyflavone) on new bone formation in post-extraction sockets after 30, 60 and 90 days. MATERIALS AND METHODS Six American fox hounds were used in the study, extracting mandibular premolars (P2, P3 and P4) and first molar (M1). Melatonin or apigenin impregnated in collagen sponges were applied at P3, P4 and M1 sites in both hemimandibles; P2 sites were used as control sites. Bone biopsies were taken at 30, 60 and 90 days and stained with hematoxylin-eosin. RESULTS At 30 days, a higher percentage of immature bone was observed in the control group (58.11 ± 1.76%) than in the apigenin (34.11 ± 1.02%) and melatonin groups (24.9 ± 0.14%) with significant differences between the three groups (P < 0.05). At 60 days, results were significantly better at melatonin sites (10.34 ± 1.09%) than apigenin (19.22 ± 0.35%) and control sites (36.7 ± 1.11%) (P < 0.05). At 90 days, immature bone percentages were similar for all groups. New bone formation was higher in melatonin group (79.56 ± 1.9%) than apigenin (68.89 ± 1.5%) and control group (58.87 ± 0.12%). CONCLUSIONS Topical applications of either melatonin or apigenin have a potential to accelerate bone tissue in early healing stages; melatonin was seen to have stimulated bone maturation to a greater extent at the 60 days of follow-up.
Collapse
Affiliation(s)
- José Luis Calvo-Guirado
- Dentistry, International Dentistry Research Cathedra, Faculty of Medicine and Dentistry, Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Patricia J López-López
- International Dentistry Research Cathedra, Faculty of Medicine and Dentistry, Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | | | - Manuel Maiquez Gosálvez
- International Dentistry Research Cathedra, Faculty of Medicine and Dentistry, Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | | | - Sergio Alexandre Gehrke
- Biotecnos, Santa Maria, Brazil
- Catholic University of Uruguay, Montevideo, Uruguay
- Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| |
Collapse
|
23
|
Cirmanova V, Zofkova I, Kasalicky P, Lanska V, Bayer M, Starka L, Kanceva R. Hormonal and bone parameters in pubertal girls. Physiol Res 2018; 66:S419-S424. [PMID: 28948826 DOI: 10.33549/physiolres.933733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Here we analyzed associations between muscles mass, total bone mineral content (BMC), lumbar spine bone density (BMD L1-L4) and serum or urine hormones in healthy peripubertal girls. Total BMC and areal BMD L1-L4, muscle mass and fat were measured by dual-energy X-ray absorptiometry (DXA). Muscle force (N) was estimated by a dynamometer. Circulating estradiol, follicle-stimulating hormone (FSH), luteinizing hormone (LH), 25-hydroxy vitamin D, parathyroid hormone (PTH), insulin-like growth factor 1 (IGF-1), leptin, osteocalcin, bone isoenzyme of alkaline phosphatase (bALP) and total calcium and phosphorus were quantified as the nocturnal melatonin and serotonin urinary excretion. Partial correlations adjusted for height, Tanner score and physical activity confirmed positive relationships between BMC or BMD L1-L4 (Z-score) and lean mass or fat. Furthermore, positive relationship was observed between BMC or BMD L1-L4 (Z-score) and serum leptin. After adjustment for Tanner score and physical activity, positive associations were observed between lean mass and IGF-1, leptin levels or muscle force. We proved positive relationships between bone mass and serum leptin in peripubertal girls.
Collapse
Affiliation(s)
- V Cirmanova
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
24
|
Ishizu H, Sekiguchi T, Ikari T, Kitamura KI, Kitani Y, Endo M, Urata M, Kinoshita Y, Hattori A, Srivastav AK, Mishima H, Mizusawa K, Takahashi A, Suzuki N. α-Melanocyte-stimulating hormone promotes bone resorption resulting from increased osteoblastic and osteoclastic activities in goldfish. Gen Comp Endocrinol 2018; 262:99-105. [PMID: 29574148 DOI: 10.1016/j.ygcen.2018.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/29/2023]
Abstract
We examined the effects of α-melanocyte-stimulating hormone (α-MSH) on bone metabolism using regenerating goldfish scales. Normally developed scales on the bodies of goldfish were removed to allow the regeneration of scales under anesthesia. Thereafter, the influence of α-MSH on the regeneration of goldfish scales was investigated in vivo. In brief, α-MSH was injected at a low dose (0.1 μg/g body weight) or a high dose (1 μg/g body weight) into goldfish every other day. Ten days after removing the scales, we collected regenerating scales and analyzed osteoblastic and osteoclastic activities as respective marker enzyme (alkaline phosphatase for osteoblasts, tartrate-resistant acid phosphatase for osteoclasts) activity in the regenerating scales as well as plasma calcium levels. At both doses, osteoblastic and osteoclastic activities in the regenerating scales increased significantly. Plasma calcium concentrations in the α-MSH-treated group (high doses) were significantly higher than those in the control group. Next, in vitro experiments were performed to confirm the results of in vivo experiments. In the cultured regenerating scales, osteoblastic and osteoclastic activities significantly increased with α-MSH (10-7 and 10-6 M) treatment. In addition, real-time PCR analysis indicated that osteoclastogenesis in α-MSH-treated scales was induced by the receptor activator of the NF-κB/receptor activator of the NF-κB ligand/osteoprotegerin pathway. Furthermore, we found that α-MSH receptors (melanocortin receptors 4 and 5) were detected in the regenerating scales. Thus, in teleosts, we are the first to demonstrate that α-MSH functions in bone metabolism and promotes bone resorption via melatonin receptors 4 and/or 5.
Collapse
Affiliation(s)
- Hidenori Ishizu
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Takahiro Ikari
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Kei-Ichiro Kitamura
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kodatsuno, Ishikawa 920-0942, Japan
| | - Yoichiro Kitani
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Masato Endo
- Department of Marine Biosciences, Division of Marine Science, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8477, Japan
| | - Makoto Urata
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan; Institute of Noto SATOUMI Education Research, Noto-cho, Ishikawa 927-0553, Japan
| | - Yasuko Kinoshita
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan; Institute of Noto SATOUMI Education Research, Noto-cho, Ishikawa 927-0553, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Ajai K Srivastav
- Department of Zoology, D.D.U. Gorakhpur University, Gorakhpur 273-009, India
| | - Hiroyuki Mishima
- Department of Dental Engineering, Tsurumi University School of Dental Medicine, Yokohama, Kanagawa 230-8501, Japan
| | - Kanta Mizusawa
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Akiyoshi Takahashi
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan.
| |
Collapse
|
25
|
Zhang WL, Meng HZ, Yang RF, Yang MW, Sun GH, Liu JH, Shi PX, Liu F, Yang B. Melatonin suppresses autophagy in type 2 diabetic osteoporosis. Oncotarget 2018; 7:52179-52194. [PMID: 27438148 PMCID: PMC5239543 DOI: 10.18632/oncotarget.10538] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes mellitus is often complicated by osteoporosis, a process which may involve osteoblast autophagy. As melatonin suppresses autophagy under certain conditions, we its investigated the effects on bone autophagy during diabetes. We first assessed different body parameters in a diabetic rat model treated with various concentrations of melatonin. Dynamic biomechanicalmeasurements, bone organization hard slice dyeing and micro-CT were used to observe the rat bone microstructure, and immunohistochemistry was used to determine levels of autophagy biomarkers. We also performed in vitro experiments on human fetal osteoblastic (hFOB1.19) cells cultured with high glucose, different concentrations of melatonin, and ERK pathway inhibitors. And we used Western blotting and immunofluorescence to measure the extent of osteogenesis and autophagy. We found that melatonin improved the bone microstructure in our rat diabetes model and reduced the level of autophagy(50 mg/kg was better than 100 mg/kg). Melatonin also enhanced osteogenesis and suppressed autophagy in osteoblasts cultured at high glucose levels (10 μM was better than 1 mM). This suggests melatonin may reduce the level of autophagy in osteoblasts and delay diabetes-induced osteoporosis by inhibiting the ERK signaling pathway.
Collapse
Affiliation(s)
- Wei-Lin Zhang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong-Zheng Meng
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rui-Fei Yang
- School of Medical Applied Technology, Shenyang Medical College, Shenyang, Liaoning, China
| | - Mao-Wei Yang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang-Hong Sun
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jun-Hua Liu
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peng-Xu Shi
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fei Liu
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Yang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
26
|
Isola M, Lilliu MA, Loy F, Isola R. Diabetic Status Influences the Storage of Melatonin in Human Salivary Glands. Anat Rec (Hoboken) 2017; 301:711-716. [PMID: 29236363 DOI: 10.1002/ar.23750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 01/29/2023]
Abstract
Recently we reported on the detailed localization of melatonin (and its receptors) in human salivary glands, revealing that serous cells are able to store and secrete melatonin into saliva. Since we found that type 2 diabetic patients display reduced melatonin content in saliva, our next step was to examine the presence of melatonin in salivary glands removed from type 2 diabetic subjects. The resulting data were compared with those previously obtained by identical procedures in non-diabetics, to establish if the diabetic status may affect melatonin distribution. Bioptic samples of diabetic parotid and submandibular glands were fixed, dehydrated, embedded in Epon Resin and processed to demonstrate melatonin reactivity by the immunogold staining method. The labeling density (expressed as the number of gold particles per μm2 /granule) and the percentage of melatonin-positive granules were assessed in diabetic samples. These values were compared with those in non-diabetic samples and differences were evaluated. In parotid and submandibular diabetic glands the reactivity for melatonin was specifically associated with secretory granules and small vesicles in serous cells. Melatonin reactivity was higher in parotid than in submandibular glands. Our data were in line with those obtained in our previous study on non-diabetic glands. Diabetic salivary glands showed a higher labeling density and a lower number of melatonin-positive granules compared to non-diabetic glands. Taken together, these data might explain the decreased salivary melatonin content and the associated oral problems observed in diabetics. Anat Rec, 301:711-716, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michela Isola
- Department of Biomedical Sciences, University of Cagliari, Italy
| | | | - Francesco Loy
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Raffaella Isola
- Department of Biomedical Sciences, University of Cagliari, Italy
| |
Collapse
|
27
|
Kase Y, Ikari T, Sekiguchi T, Sato M, Ogiso S, Kawada T, Matsubara S, Satake H, Sasayama Y, Endo M, Kitamura KI, Hattori A, Watanabe TX, Maruyama Y, Watanabe Y, Funahashi H, Kambegawa A, Suzuki N. Sardine procalcitonin amino-terminal cleavage peptide has a different action from calcitonin and promotes osteoblastic activity in the scales of goldfish. Comp Biochem Physiol A Mol Integr Physiol 2017; 211:77-83. [PMID: 28614698 DOI: 10.1016/j.cbpa.2017.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 11/17/2022]
Abstract
The nucleotide sequence of a sardine preprocalcitonin precursor has been determined from their ultimobranchial glands in the present study. From our analysis of this sequence, we found that sardine procalcitonin was composed of procalcitonin amino-terminal cleavage peptide (N-proCT) (53 amino acids), CT (32 amino acids), and procalcitonin carboxyl-terminal cleavage peptide (C-proCT) (18 amino acids). As compared with C-proCT, N-proCT has been highly conserved among teleosts, reptiles, and birds, which suggests that N-proCT has some bioactivities. Therefore, both sardine N-proCT and sardine CT were synthesized, and their bioactivities for osteoblasts and osteoclasts were examined using our assay system with goldfish scales that consisted of osteoblasts and osteoclasts. As a result, sardine N-proCT (10-7M) activated osteoblastic marker enzyme activity, while sardine CT did not change. On the other hand, sardine CT (10-9 to 10-7M) suppressed osteoclastic marker enzyme activity, although sardine N-proCT did not influence enzyme activity. Furthermore, the mRNA expressions of osteoblastic markers such as type 1 collagen and osteocalcin were also promoted by sardine N-proCT (10-7M) treatment; however, sardine CT did not influence their expressions. The osteoblastic effects of N-proCT lack agreement. In the present study, we can evaluate exactly the action for osteoblasts because our scale assay system is very sensitive and it is a co-culture system for osteoblasts and osteoclasts with calcified bone matrix. Both CT and N-proCT seem to influence osteoblasts and osteoclasts and promote bone formation by different actions in teleosts.
Collapse
Affiliation(s)
- Yoichi Kase
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Takahiro Ikari
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Masayuki Sato
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Shouzo Ogiso
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1, Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1, Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1, Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Yuichi Sasayama
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Masato Endo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8477, Japan
| | - Kei-Ichiro Kitamura
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-0942, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | | | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Yoshinari Watanabe
- Organization of Frontier Science and Innovation, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hisayuki Funahashi
- Department of Anatomy, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan.
| |
Collapse
|
28
|
Melatonin: A Review of Its Potential Functions and Effects on Dental Diseases. Int J Mol Sci 2017; 18:ijms18040865. [PMID: 28422058 PMCID: PMC5412446 DOI: 10.3390/ijms18040865] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a hormone synthesised and secreted by the pineal gland and other organs. Its secretion, controlled by an endogenous circadian cycle, has been proven to exert immunological, anti-oxidant, and anti-inflammatory effects that can be beneficial in the treatment of certain dental diseases. This article is aimed at carrying out a review of the literature published about the use of melatonin in the dental field and summarising its potential effects. In this review article, an extensive search in different databases of scientific journals was performed with the objective of summarising all of the information published on melatonin use in dental diseases, focussing on periodontal diseases and dental implantology. Melatonin released in a natural way into the saliva, or added as an external treatment, may have important implications for dental disorders, such as periodontal disease, as well as in the osseointegration of dental implants, due to its anti-inflammatory and osseoconductive effects. Melatonin has demonstrated to have beneficial effects on dental pathologies, although further research is needed to understand the exact mechanisms of this molecule.
Collapse
|
29
|
Behavior of Human Osteoblast Cells Cultured on Titanium Discs in Relation to Surface Roughness and Presence of Melatonin. Int J Mol Sci 2017; 18:ijms18040823. [PMID: 28406458 PMCID: PMC5412407 DOI: 10.3390/ijms18040823] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/04/2017] [Accepted: 04/08/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to observe the behavior of osteoblast cells cultured in vitro on titanium discs in relation to disc surface roughness and the addition of melatonin to the culture medium. MG63 osteoblast cells were cultivated on 120 Grade 5 Ti divided into three groups: Group E, treated with dual acid etch; Group EP, treated with dual acid etch and calcium phosphate; and Group M, machined. Surface roughness was examined under a laser scanning confocal microscope (CLSM) and scanning electron microscopy (SEM). The proliferation and morphology of cells were determined under fluorescence microscopy and SEM. Messenger ribonucleic acid (mRNA) of different genes related to osteoblastic differentiation was quantified by means of real-time quantitative polymerase chain reaction (RT-PCR) assay. The greatest surface roughness was found in Group EP (Ra 0.354 µm), followed by Group E (Ra 0.266 µm), and Group M (Ra 0.131 µm), with statistically significant differences between the groups (p < 0.001). In the presence of melatonin a trend to a higher cell proliferation was observed in all groups although significant differences were only found in Group M (p = 0.0079). Among the genes studied, a significant increase in phosphate-regulating neutral endopeptidase, X-linked (PHEX) expression was observed in cells cultured on EP discs. The addition of melatonin increased osteoblast cell proliferation and differentiation, and may favor the osseointegration of dental implants.
Collapse
|
30
|
Hajam YA, Rai S, Roy A, Basheer M, Ghosh H. Repossession of Brain Complications in a Streptozotocin Induced Diabetic Rat by Exogenous Melatonin Administration. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ijzr.2017.64.73] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
HANMOTO T, TABUCHI Y, IKEGAME M, KONDO T, KITAMURA KI, ENDO M, KOBAYASHI I, MISHIMA H, SEKIGUCHI T, URATA M, SEKI A, YANO S, HATTORI A, SUZUKI N. Effects of low-intensity pulsed ultrasound on osteoclasts: Analysis with goldfish scales as a model of bone . Biomed Res 2017; 38:71-77. [DOI: 10.2220/biomedres.38.71] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Taizo HANMOTO
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University
| | - Yoshiaki TABUCHI
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama
| | - Mika IKEGAME
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
- ARCOCS, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Takashi KONDO
- Department of Radiological Sciences, Gradu-ate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Kei-ichiro KITAMURA
- Department of Clini-cal Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University
| | - Masato ENDO
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology
| | - Isao KOBAYASHI
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University
| | | | - Toshio SEKIGUCHI
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University
| | - Makoto URATA
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University
- Institute of Noto SATOUMI Education and Studies
| | | | | | - Atsuhiko HATTORI
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University
| | - Nobuo SUZUKI
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University
| |
Collapse
|
32
|
Abstract
BACKGROUND Due to its antioxidant properties and its ability to detoxify free radicals, melatonin may interfere in the function of osteoclasts and thereby inhibit bone resorption. This inhibition of bone resorption may be enhanced by a reaction of indolamine in osteoclastogenesis and this may contribute to certain benefits in implantology. OBJECTIVE This systematic literature review on the use of melatonin in implant dentistry aims to provide guidelines for clinicians. MATERIALS AND METHODS PubMed, Science Direct, ISI Web of Knowledge, and the Cochrane base databases were used to identify articles published between 1999 and 2013 on melatonin use in implant dentistry. Ten articles were selected consisting of 9 animal research studies and 1 review article, involving 60 Beagle dogs, 57 rats, and 30 rabbits and a total of 352 implants. RESULTS Melatonin, which is released into the saliva, has important implications in the oral cavity. To achieve dental implant stability, osseointegration involves a cascade of protein and cell apposition, vascular invasion, bone formation, and maturation. This process may be accelerated by local delivery of growth-promoting factors, as occurs with the topical application of melatonin over the implant surface. CONCLUSIONS The experimental evidence suggests that topical applications of melatonin may be useful in oral surgery and implant dentistry, increasing bone-to-implant contact values and new bone formation, and so improving the success and long-term survival of implant treatments.
Collapse
|
33
|
Suzuki N, Kitamura KI, Hattori A. Fish scale is a suitable model for analyzing determinants of skeletal fragility in type 2 diabetes. Endocrine 2016; 54:575-577. [PMID: 27796812 DOI: 10.1007/s12020-016-1153-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa, 927-0553, Japan.
| | - Kei-Ichiro Kitamura
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-0942, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, 272-0827, Japan
| |
Collapse
|
34
|
Çakir ZÜ, Demirel C, Kilciksiz SC, Gürgül S, Zincircioğlu SB, Erdal N. Melatonin can Ameliorate Radiation-Induced Oxidative Stress and Inflammation-Related Deterioration of Bone Quality in Rat Femur. Inflammation 2016; 39:1134-40. [PMID: 27052631 DOI: 10.1007/s10753-016-0347-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to evaluate the radioprotective effects of melatonin on the biomechanical properties of bone in comparison to amifostine (WR-2721). Forty Sprague Dawley rats were divided equally into 5 groups namely; control (C), irradiation (R; single dose of 50 Gy), irradiation + WR-2721 (R + WR-2721; irradiation + 200 mg/kg WR-2721) radiation + melatonin 25 mg/kg (R + M25; irradiation + 25 mg/kg melatonin), and radiation + melatonin 50 mg/kg (R + M50; irradiation + 50 mg/kg melatonin). In order to measure extrinsic (organ-level mechanical properties of bone; the ultimate strength, deformation, stiffness, energy absorption capacity) and intrinsic (tissue-level mechanical properties of bone; ultimate stress, ultimate strain, elastic modulus, toughness) features of the bone, a three-point bending (TPB) test was performed for biomechanical evaluation. In addition, a bone mineral density (BMD) test was carried out. The BMD and extrinsic properties of the diaphyseal femur were found to be significantly higher in the R + M25 group than in group R (p < 0.05). A significant increase was observed in R + M50 (p < 0.05) in comparison to group R in the cross-sectional area of the femoral shaft and elastic modulus parameter. The protective effect of melatonin was similar to that of WR-2721. Thus, biomechanical quality of irradiated bone can be ameliorated by free radical scavenger melatonin.
Collapse
Affiliation(s)
- Zelal Ünlü Çakir
- Department of Biophysics, Faculty of Medicine, Gaziantep University, Gaziantep, TR-27310, Turkey
| | - Can Demirel
- Department of Biophysics, Faculty of Medicine, Gaziantep University, Gaziantep, TR-27310, Turkey.
| | | | - Serkan Gürgül
- Department of Biophysics, Faculty of Medicine, Gaziosmanpaşa University, Tokat, TR-60000, Turkey
| | | | - Nurten Erdal
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, TR-33169, Turkey
| |
Collapse
|
35
|
Suzuki N, Hanmoto T, Yano S, Furusawa Y, Ikegame M, Tabuchi Y, Kondo T, Kitamura KI, Endo M, Yamamoto T, Sekiguchi T, Urata M, Mikuni-Takagaki Y, Hattori A. Low-intensity pulsed ultrasound induces apoptosis in osteoclasts: Fish scales are a suitable model for the analysis of bone metabolism by ultrasound. Comp Biochem Physiol A Mol Integr Physiol 2016; 195:26-31. [DOI: 10.1016/j.cbpa.2016.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 11/24/2022]
|
36
|
Somei M, Iwaki T, Fukui Y, Okigawa M, Yamada F, Nagahama Y, Ogasawara S, Tanaka S, Funaki S. Simple Synthetic Method for 1,2,3,3a,8,8a-Hehahydropyrrolo[2,3-b]indoles Having a Halogen or an Oxygen Functional Group at the 3a-Position. HETEROCYCLES 2016. [DOI: 10.3987/com-15-s(t)40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
|
38
|
Sharma S, Singh H, Ahmad N, Mishra P, Tiwari A. The role of melatonin in diabetes: therapeutic implications. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2015; 59:391-9. [PMID: 26331226 DOI: 10.1590/2359-3997000000098] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/06/2015] [Indexed: 01/27/2023]
Abstract
Melatonin referred as the hormone of darkness is mainly secreted by pineal gland, its levels being elevated during night and low during the day. The effects of melatonin on insulin secretion are mediated through the melatonin receptors (MT1 and MT2). It decreases insulin secretion by inhibiting cAMP and cGMP pathways but activates the phospholipaseC/IP3 pathway, which mobilizes Ca2+from organelles and, consequently increases insulin secretion. Both in vivo and in vitro, insulin secretion by the pancreatic islets in a circadian manner, is due to the melatonin action on the melatonin receptors inducing a phase shift in the cells. Melatonin may be involved in the genesis of diabetes as a reduction in melatonin levels and a functional interrelationship between melatonin and insulin was observed in diabetic patients. Evidences from experimental studies proved that melatonin induces production of insulin growth factor and promotes insulin receptor tyrosine phosphorylation. The disturbance of internal circadian system induces glucose intolerance and insulin resistance, which could be restored by melatonin supplementation. Therefore, the presence of melatonin receptors on human pancreatic islets may have an impact on pharmacotherapy of type 2 diabetes.
Collapse
Affiliation(s)
- Shweta Sharma
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Hemant Singh
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Nabeel Ahmad
- School of Biotechnology, IFTM University, Uttar Pradesh, India
| | - Priyanka Mishra
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| |
Collapse
|
39
|
Pasqualetti S, Congiu T, Banfi G, Mariotti M. Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale. Int J Exp Pathol 2015; 96:11-20. [PMID: 25603732 DOI: 10.1111/iep.12106] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/18/2014] [Indexed: 12/22/2022] Open
Abstract
Long-term effects of glucocorticoid treatment in humans induce bone loss and increase the risk of fracture in the skeleton. The pathogenic mechanisms of glucocorticoid-induced osteoporosis (GIOP) are still unclear. The GIOP and its effects have been reproduced in several animal models including Danio rerio (zebrafish) embryo. The treatment of adult fish with prednisolone (PN) has shown a dose-dependent decrease of mineralized matrix in the scales. Large resorption lacunae are characterized by single TRAP-positive cells which migrate to the margin of the scale merging into a multinucleated structures. The treatment with PN of cultured scales did not increase TRAP activity suggesting that the massive presence of osteoclasts in the resorption sites could be likely the result of a systemic recruitment of monocyte-macrophage precursors. We observed that treatment with PN induced a significant decrease of the alkaline phosphatase (ALP) activity in scale scleroblasts if compared with untreated controls. Then, we investigated the total mineral balance under prednisolone treatment using a time-dependent double live staining. The untreated fish fully repaired the resorption lacuna induced by prednisolone, whereas treated fish failed. The presence of osteoclast resorption fingerprints on new matrix suggested that the osteoclast activity counterbalances the osteodepositive activity exerted by scleroblasts. The treatment with PN in association with alendronate (AL) has surprisingly resulted in a significant decrease of TRAP activity and increase of ALP compared to PN-treated fish in biochemical and histological assays confirming the action of alendronate against GIOP in fish as well in humans.
Collapse
|
40
|
Calvo-Guirado JL, Aguilar Salvatierra A, Gargallo-Albiol J, Delgado-Ruiz RA, Maté Sanchez JE, Satorres-Nieto M. Zirconia with laser-modified microgrooved surface vs. titanium implants covered with melatonin stimulates bone formation. Experimental study in tibia rabbits. Clin Oral Implants Res 2014; 26:1421-9. [DOI: 10.1111/clr.12472] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 11/30/2022]
Affiliation(s)
- José Luis Calvo-Guirado
- Department of General Dentistry & Implantology; Faculty of Medicine and Dentistry; University of Murcia; Murcia Spain
| | - Antonio Aguilar Salvatierra
- Department of General Dentistry & Implantology; Faculty of Medicine and Dentistry; University of Murcia; Murcia Spain
| | | | - Rafael Arcesio Delgado-Ruiz
- Department of Prosthodontics and Digital Technology; School of Dental Medicine; Stony Brook University; Stony Brook NY USA
| | - Jose Eduardo Maté Sanchez
- Department of Restorative Dentistry; Faculty of Medicine and Dentistry; University of Murcia; Murcia Spain
| | - Marta Satorres-Nieto
- Department of Implantology; Faculty of Medicine and Dentistry; International University of Catalunya; Barcelona Spain
| |
Collapse
|
41
|
Yachiguchi K, Sekiguchi T, Nakano M, Hattori A, Yamamoto M, Kitamura KI, Maeda M, Tabuchi Y, Kondo T, Kamauchi H, Nakabayashi H, Srivastav AK, Hayakawa K, Sakamoto T, Suzuki N. Effects of inorganic mercury and methylmercury on osteoclasts and osteoblasts in the scales of the marine teleost as a model system of bone. Zoolog Sci 2014; 31:330-7. [PMID: 24832906 DOI: 10.2108/zs130265] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To evaluate the effects of inorganic mercury (InHg) and methylmercury (MeHg) on bone metabolism in a marine teleost, the activity of tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) as indicators of such activity in osteoclasts and osteoblasts, respectively, were examined in scales of nibbler fish (Girella punctata). We found several lines of scales with nearly the same TRAP and ALP activity levels. Using these scales, we evaluated the influence of InHg and MeHg. TRAP activity in the scales treated with InHg (10(-5) and 10(-4) M) and MeHg (10(-6) to 10(-4) M) during 6 hrs of incubation decreased significantly. In contrast, ALP activity decreased after exposure to InHg (10(-5) and 10(-4) M) and MeHg (10(-6) to 10(-4) M) for 18 and 36 hrs, although its activity did not change after 6 hrs of incubation. As in enzyme activity 6 hrs after incubation, mRNA expression of TRAP (osteoclastic marker) decreased significantly with InHg and MeHg treatment, while that of collagen (osteoblastic marker) did not change significantly. At 6 hrs after incubation, the mRNA expression of metallothionein, which is a metal-binding protein in osteoblasts, was significantly increased following treatment with InHg or MeHg, suggesting that it may be involved in the protection of osteoblasts against mercury exposure up to 6 hrs after incubation. To our knowledge, this is the first report of the effects of mercury on osteoclasts and osteoblasts using marine teleost scale as a model system of bone.
Collapse
Affiliation(s)
- Koji Yachiguchi
- 1 Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Somei M, Nakagawa K, Aoki N, Mukaiyama H. Synthesis of 4-Amino-, 4-Hydroxy-, and 4-Nitro-1,3,4,5-tetrahydrobenz[cd]indols and Its Bromination. HETEROCYCLES 2014. [DOI: 10.3987/com-13-s(s)74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Lu L, Dai Z, Lv G, Kang Y, Jiang Y. A novel therapeutic strategy for adolescent idiopathic scoliosis based on osteoporotic concept. Med Hypotheses 2013; 80:773-5. [PMID: 23562283 DOI: 10.1016/j.mehy.2013.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a complex three dimensional spinal deformity which occurs mostly in prepubertal and pubertal girls. Although bracing and surgery have been the mainstays of treatment for AIS, because of the complications and poor compliance, many patients with this disorder continue to experience significant residual symptoms. The etiology and pathogenesis of AIS is unclear, but recent studies show the association between osteopenia and AIS and imply that osteopenia play a causative role in the development of AIS. Anti-osteoporosis treatment can improve bone strength, prevent osteoporosis and rebalance the OPG-RANK-RANKL system, which may help to prevent curve progression in AIS. This report proposes that anti-osteoporosis treatment may be an effective treatment for AIS.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha 410011, China
| | | | | | | | | |
Collapse
|
44
|
Thamamongood TA, Furuya R, Fukuba S, Nakamura M, Suzuki N, Hattori A. Expression of osteoblastic and osteoclastic genes during spontaneous regeneration and autotransplantation of goldfish scale: a new tool to study intramembranous bone regeneration. Bone 2012; 50:1240-9. [PMID: 22484181 DOI: 10.1016/j.bone.2012.03.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/06/2012] [Accepted: 03/18/2012] [Indexed: 10/28/2022]
Abstract
Complementary DNA of osteoblast-specific genes (dlx5, runx2a, runx2b, osterix, RANKL, type I collagen, ALP, and osteocalcin) was cloned from goldfish (Carassius auratus) scale. Messenger RNA expressions were analyzed during spontaneous scale regeneration. Dlx5 had an early peak of expression on day 7, whereas osterix was constantly expressed during days 7-21. Runx2, a major osteoblastic transcription factor in mammalian bone, did not show any significant expression. The expressions of two functional genes, type I collagen and ALP, continually increased after day 7, while that of osteocalcin increased on day 14. As for osteoclastic markers, in addition to the cloning of two functional genes, TRAP and cathepsin K, in our previous study, we here cloned the transcription factor NFATc1 to use as an early osteoclastic marker. Using these bone markers, we investigate the signal key that controls the onset of scale resorption and regeneration by performing intra-scale-pocket autotransplantation of five groups of modified scales, namely, 1) methanol-fixed scale, 2) proteinase K-treated cell-free scale, 3) polarity reversal (upside-down) scale, 4) U-shape trimmed scale, and 5) circular-hole perforated scale. In this autotransplantation, each ontogenic scale was pulled out, modified, and then re-inserted into the same scale pocket. At post-transplant, inside the pockets of all modified transplant groups, new regenerating scales formed, attaching to the ongoing resorbed transplants. Autotransplantation of methanol-fixed scale, proteinase K-treated cell-free scale, and polarity reversal (upside-down) scale triggered scale resorption and scale regeneration. These two processes of scale resorption and regeneration occurred in accordance with osteoclastic and osteoblastic marker gene expressions. These results were microscopically confirmed using TRAP and ALP staining. Regarding the autotransplantation of U-shape trimmed and circular-hole perforated scales, new scales regenerated and grew at the trimmed/perforated part of each transplant, while scale resorption occurred apparently only around the trimmed/perforated area. In contrast, no scale resorption or regeneration was detected in sham transplantations. Our finding suggests that loss of correct cell-to-cell contact between the scale-pocket lining cells and the scale cortex cells is the key to switch on the onset of scale resorption and regeneration. Overall, the present study shows that goldfish scale regeneration shares similarities in gene expression with intramembranous bone regeneration. Improved understanding of goldfish scale regeneration will help elucidate the process of intramembranous bone regeneration and make goldfish scale a possible new tool to study bone regeneration.
Collapse
|
45
|
Melatonin promotes angiogenesis during repair of bone defects: a radiological and histomorphometric study in rabbit tibiae. Clin Oral Investig 2012; 17:147-58. [DOI: 10.1007/s00784-012-0684-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
|
46
|
Lombardi G, Akoume MY, Colombini A, Moreau A, Banfi G. Biochemistry of adolescent idiopathic scoliosis. Adv Clin Chem 2011; 54:165-82. [PMID: 21874761 DOI: 10.1016/b978-0-12-387025-4.00007-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter reviews the biochemical, hormonal, and hematological factors in the onset and development of adolescent idiopathic scoliosis (AIS), an orthopedic entity of unknown etiology. Briefly, AIS is defined as a lateral curvature of the spine combined with vertebral rotation that occurs in patients of 10 years of age or older until bone maturity (18-20 years of age). AIS is predominant in females. If untreated, the curvature could evolve with negative long-term prognosis including psychosocial impact, back pain, pulmonary compromise, cor pulmonale, and even death due to respiratory failure. Causes of the disease have been postulated to involve genetics, abnormal muscle, connective tissue and bone structures, and neuroendocrine disorders. Psychological pathways have also been studied. Little data, however, have been collected on bone turnover in these patients. Some studies demonstrated decreased bone mineral density which may be suggestive of increased osteoblast activity. Other studies suggested a correlation to abnormal platelet morphology. Alterations in the spinal muscle contractile function may be responsible for spinal curvature. Measurement of trace elements in serum revealed impaired zinc and selenium metabolism, probably secondary to hormonal deregulation. Subsequent endocrine studies suggested a role for leptin and growth hormone in AIS. Recently, a neuroendocrine hypothesis has been proposed. This theory involves a unique melatonin-signaling dysfunction and opens new frontiers in the elucidation of the pathologic mechanisms for onset and progression of this disease.
Collapse
|
47
|
Banach M, Gurdziel E, Jędrych M, Borowicz KK. Melatonin in experimental seizures and epilepsy. Pharmacol Rep 2011; 63:1-11. [PMID: 21441606 DOI: 10.1016/s1734-1140(11)70393-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 06/09/2010] [Indexed: 02/07/2023]
Abstract
Although melatonin is approved only for the treatment of jet-lag syndrome and some types of insomnia, clinical data suggest that it is effective in the adjunctive therapy of osteoporosis, cataract, sepsis, neurodegenerative diseases, hypertension, and even cancer. Melatonin also modulates the electrical activity of neurons by reducing glutamatergic and enhancing GABA-ergic neurotransmission. The indoleamine may also be metabolized to kynurenic acid, an endogenous anticonvulsant. Finally, the hormone and its metabolites act as free radical scavengers and antioxidants. The vast majority of experimental data indicates anticonvulsant properties of the hormone. Melatonin inhibited audiogenic and electrical seizures, as well as reduced convulsions induced by pentetrazole, pilocarpine, L-cysteine and kainate. Only a few studies have shown direct or indirect proconvulsant effects of melatonin. For instance, melatonin enhanced low Mg2+-induced epileptiform activity in the hippocampus, whereas melatonin antagonists delayed the onset of pilocarpine-induced seizures. However, the relatively high doses of melatonin required to inhibit experimental seizures can induce some undesired effects (e.g., cognitive and motor impairment and decreased body temperature). In humans, melatonin may attenuate seizures, and it is most effective in the treatment of juvenile intractable epilepsy. Its additional benefits include improved physical, emotional, cognitive, and social functions. On the other hand, melatonin has been shown to induce electroencephalographic abnormalities in patients with temporal lobe epilepsy and increase seizure activity in neurologically disabled children. The hormone showed very low toxicity in clinical practice. The reported adverse effects (nightmares, hypotension, and sleep disorders) were rare and mild. However, more placebo-controlled, double-blind randomized clinical trials are needed to establish the usefulness of melatonin in the adjunctive treatment of epilepsy.
Collapse
Affiliation(s)
- Monika Banach
- Experimental Neuropathophysiology Unit, Department of Pathophysiology, Medical University, PL 20-090 Lublin, Jaczewskiego 8, Poland
| | | | | | | |
Collapse
|
48
|
Somei M, Teranishi S, Miyashita A, Ishikura M, Yamada K. A Novel Synthesis of 3,4,5,6-Tetrahydro-7-hydroxy-1H-azepino[5,4,3-cd]indole Derivatives from Serotonin. HETEROCYCLES 2011. [DOI: 10.3987/com-11-12345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Calvo-Guirado JL, Ramírez-Fernández MP, Gómez-Moreno G, Maté-Sánchez JE, Delgado-Ruiz R, Guardia J, López-Marí L, Barone A, Ortiz-Ruiz AJ, Martínez-González JM, Bravo LA. Melatonin stimulates the growth of new bone around implants in the tibia of rabbits. J Pineal Res 2010; 49:356-63. [PMID: 20666975 DOI: 10.1111/j.1600-079x.2010.00801.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study evaluated the effect of the topical application of melatonin in accelerating bone formation associated with implants 2 months after their application to the tibiae of rabbits. Twenty New Zealand rabbits were used. Twenty implants treated with melatonin and 20 control implants without melatonin were placed in the proximal metaphyseal area of each tibia. Studies of new bone formation were subsequently made at 15, 30, 45 and 60 days. Cortical width and cortical length of new bone formation were measured. Following implantation, an anteroposterior and lateral radiologic study was carried out. Collected samples were sectioned at 5 μm and stained using hematoxylin-eosin, Masson's trichromic and Gordon-Switt reticulin stains. After a 60 day treatment period, melatonin increased the length of cortical bone (95.13±0.42%) versus that around control implants (62.91±1.45%). Related to the perimeter of cortical bone of the tibiae, melatonin induced new bone 88.35±1.56% versus 60.20±1.67% in the control implants. Melatonin regenerated the width and length of cortical bone around implants in tibiae of rabbits more quickly than around control implants without the addition of melatonin.
Collapse
Affiliation(s)
- José L Calvo-Guirado
- Department of General Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sethi S, Radio NM, Kotlarczyk MP, Chen CT, Wei YH, Jockers R, Witt-Enderby PA. Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res 2010; 49:222-38. [PMID: 20626586 DOI: 10.1111/j.1600-079x.2010.00784.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to determine the critical time periods of melatonin treatment required to induce human mesenchymal stem cells (hAMSCs) into osteoblasts and to determine which osteogenic genes are involved in the process. The study design consisted of adding melatonin for different times (2, 5, 10, 14 or 21 days) toward the end of a 21-day treatment containing osteogenic (OS+) medium or at the beginning of the 21-day treatment and then withdrawn. The results show that a 21-day continuous melatonin treatment was required to induce both alkaline phosphatase (ALP) activity and calcium deposition and these effects were mediated through MT₂Rs. Functional analysis revealed that peak ALP levels induced by melatonin were accompanied by attenuation of melatonin-mediated inhibition of forskolin-induced cAMP accumulation. Immunoprecipitation and western blot analyses, respectively, showed that MT₂R/β-arrestin scaffolds complexed to Gi, MEK1/2 and ERK1/2 formed in these differentiated hAMSCs (i.e., when ALP levels were highest) where ERK1/2 resided primarily in the cytosol. It is hypothesized that these complexes form to modulate the subcellular localization of ERK1/2 to affect osteogenic gene expression. Using real-time RT-PCR, chronic melatonin exposure induced the expression of osteogenic genes RUNX-2, osteocalcin and BMP-2, through MT₂Rs. No melatonin-mediated changes in the mRNA expression of ALP, BMP-6 or in the oxidative enzymes MtTFA, PGC-1α, Polγ, NRF-1, PDH, PDK and LDH occurred. These data show that a continuous 21-day melatonin exposure is required to induce osteoblast differentiation from hAMSCs through the formation of MT₂R/Gi/β-arrestin/MEK/ERK1/2 complexes to induce osteogenesis.
Collapse
Affiliation(s)
- Shalini Sethi
- Duquesne University School of Pharmacy, Division of Pharmaceutical Sciences, Pittsburgh, PA 15282, USA
| | | | | | | | | | | | | |
Collapse
|