1
|
Chouhan S, Muhammad N, Usmani D, Khan TH, Kumar A. Molecular Sentinels: Unveiling the Role of Sirtuins in Prostate Cancer Progression. Int J Mol Sci 2024; 26:183. [PMID: 39796040 PMCID: PMC11720558 DOI: 10.3390/ijms26010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate cancer (PCa) remains a critical global health challenge, with high mortality rates and significant heterogeneity, particularly in advanced stages. While early-stage PCa is often manageable with conventional treatments, metastatic PCa is notoriously resistant, highlighting an urgent need for precise biomarkers and innovative therapeutic strategies. This review focuses on the dualistic roles of sirtuins, a family of NAD+-dependent histone deacetylases, dissecting their unique contributions to tumor suppression or progression in PCa depending on the cellular context. It reveals their multifaceted impact on hallmark cancer processes, including sustaining proliferative signaling, evading growth suppressors, activating invasion and metastasis, resisting cell death, inducing angiogenesis, and enabling replicative immortality. SIRT1, for example, fosters chemoresistance and castration-resistant prostate cancer through metabolic reprogramming, immune modulation, androgen receptor signaling, and enhanced DNA repair. SIRT3 and SIRT4 suppress oncogenic pathways by regulating cancer metabolism, while SIRT2 and SIRT6 influence tumor aggressiveness and androgen receptor sensitivity, with SIRT6 promoting metastatic potential. Notably, SIRT5 oscillates between oncogenic and tumor-suppressive roles by regulating key metabolic enzymes; whereas, SIRT7 drives PCa proliferation and metabolic stress adaptation through its chromatin and nucleolar regulatory functions. Furthermore, we provide a comprehensive summary of the roles of individual sirtuins, highlighting their potential as biomarkers in PCa and exploring their therapeutic implications. By examining each of these specific mechanisms through which sirtuins impact PCa, this review underscores the potential of sirtuin modulation to address gaps in managing advanced PCa. Understanding sirtuins' regulatory effects could redefine therapeutic approaches, promoting precision strategies that enhance treatment efficacy and improve outcomes for patients with aggressive disease.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Cecil H and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, MO 63130, USA
| | - Darksha Usmani
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Tabish H. Khan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| |
Collapse
|
2
|
Su Z, Hu Q, Li X, Wang Z, Xie Y. The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging. Int J Mol Sci 2024; 25:10926. [PMID: 39456709 PMCID: PMC11507642 DOI: 10.3390/ijms252010926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Circadian rhythms, the internal timekeeping systems governing physiological processes, significantly influence skin health, particularly in response to ultraviolet radiation (UVR). Disruptions in circadian rhythms can exacerbate UVR-induced skin damage and increase the risk of skin aging and cancer. This review explores how circadian rhythms affect various aspects of skin physiology and pathology, with a special focus on DNA repair. Circadian regulation ensures optimal DNA repair following UVR-induced damage, reducing mutation accumulation, and enhancing genomic stability. The circadian control over cell proliferation and apoptosis further contributes to skin regeneration and response to UVR. Oxidative stress management is another critical area where circadian rhythms exert influence. Key circadian genes like brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) modulate the activity of antioxidant enzymes and signaling pathways to protect cells from oxidative stress. Circadian rhythms also affect inflammatory and immune responses by modulating the inflammatory response and the activity of Langerhans cells and other immune cells in the skin. In summary, circadian rhythms form a complex defense network that manages UVR-induced damage through the precise regulation of DNA damage repair, cell proliferation, apoptosis, inflammatory response, oxidative stress, and hormonal signaling. Understanding these mechanisms provides insights into developing targeted skin protection and improving skin cancer prevention.
Collapse
Affiliation(s)
- Zhi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Qianhua Hu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Xiang Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Zirun Wang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
3
|
Wang Z, Ma L, Meng Y, Fang J, Xu D, Lu Z. The interplay of the circadian clock and metabolic tumorigenesis. Trends Cell Biol 2024; 34:742-755. [PMID: 38061936 DOI: 10.1016/j.tcb.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 09/08/2024]
Abstract
The circadian clock and cell metabolism are both dysregulated in cancer cells through intrinsic cell-autonomous mechanisms and external influences from the tumor microenvironment. The intricate interplay between the circadian clock and cancer cell metabolism exerts control over various metabolic processes, including aerobic glycolysis, de novo nucleotide synthesis, glutamine and protein metabolism, lipid metabolism, mitochondrial metabolism, and redox homeostasis in cancer cells. Importantly, oncogenic signaling can confer a moonlighting function on core clock genes, effectively reshaping cellular metabolism to fuel cancer cell proliferation and drive tumor growth. These interwoven regulatory mechanisms constitute a distinctive feature of cancer cell metabolism.
Collapse
Affiliation(s)
- Zheng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Leina Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China.
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
4
|
Chen M, Tan J, Jin Z, Jiang T, Wu J, Yu X. Research progress on Sirtuins (SIRTs) family modulators. Biomed Pharmacother 2024; 174:116481. [PMID: 38522239 DOI: 10.1016/j.biopha.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Sirtuins (SIRTs) represent a class of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that exert a crucial role in cellular signal transduction and various biological processes. The mammalian sirtuins family encompasses SIRT1 to SIRT7, exhibiting therapeutic potential in counteracting cellular aging, modulating metabolism, responding to oxidative stress, inhibiting tumors, and improving cellular microenvironment. These enzymes are intricately linked to the occurrence and treatment of diverse pathological conditions, including cancer, autoimmune diseases, and cardiovascular disorders. Given the significance of histone modification in gene expression and chromatin structure, maintaining the equilibrium of the sirtuins family is imperative for disease prevention and health restoration. Mounting evidence suggests that modulators of SIRTs play a crucial role in treating various diseases and maintaining physiological balance. This review delves into the molecular structure and regulatory functions of the sirtuins family, reviews the classification and historical evolution of SIRTs modulators, offers a systematic overview of existing SIRTs modulation strategies, and elucidates the regulatory mechanisms of SIRTs modulators (agonists and inhibitors) and their clinical applications. The article concludes by summarizing the challenges encountered in SIRTs modulator research and offering insights into future research directions.
Collapse
Affiliation(s)
- Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junfei Tan
- School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zihan Jin
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, China
| | - Tingting Jiang
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
5
|
Freeman JR, Saint-Maurice PF, Watts EL, Moore SC, Shams-White MM, Wolff-Hughes DL, Russ DE, Almeida JS, Caporaso NE, Hong HG, Loftfield E, Matthews CE. Actigraphy-derived measures of sleep and risk of prostate cancer in the UK Biobank. J Natl Cancer Inst 2024; 116:434-444. [PMID: 38013591 PMCID: PMC10919343 DOI: 10.1093/jnci/djad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/02/2023] [Accepted: 10/08/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Studies of sleep and prostate cancer are almost entirely based on self-report, with limited research using actigraphy. Our goal was to evaluate actigraphy-measured sleep and prostate cancer and to expand on findings from prior studies of self-reported sleep. METHODS We prospectively examined 34 260 men without a history of prostate cancer in the UK Biobank. Sleep characteristics were measured over 7 days using actigraphy. We calculated sleep duration, onset, midpoint, wake-up time, social jetlag (difference in weekend-weekday sleep midpoints), sleep efficiency (percentage of time spent asleep between onset and wake-up time), and wakefulness after sleep onset. Cox proportional hazards models were used to estimate covariate-adjusted hazards ratios (HRs) and 95% confidence intervals (CIs). RESULTS Over 7.6 years, 1152 men were diagnosed with prostate cancer. Sleep duration was not associated with prostate cancer risk. Sleep midpoint earlier than 4:00 am was not associated with prostate cancer risk, though sleep midpoint of 5:00 am or later was suggestively associated with lower prostate cancer risk but had limited precision (earlier than 4:00 am vs 4:00-4:59 am HR = 1.00, 95% CI = 0.87 to 1.16; 5:00 am or later vs 4:00-4:59 am HR = 0.79, 95% CI = 0.57 to 1.10). Social jetlag was not associated with greater prostate cancer risk (1 to <2 hours vs <1 hour HR = 1.06, 95% CI = 0.89 to 1.25; ≥2 hours vs <1 hour HR = 0.90, 95% CI = 0.65 to 1.26). Compared with men who averaged less than 30 minutes of wakefulness after sleep onset per day, men with 60 minutes or more had a higher risk of prostate cancer (HR = 1.20, 95% CI = 1.00 to 1.43). CONCLUSIONS Of the sleep characteristics studied, higher wakefulness after sleep onset-a measure of poor sleep quality-was associated with greater prostate cancer risk. Replication of our findings between wakefulness after sleep onset and prostate cancer are warranted.
Collapse
Affiliation(s)
- Joshua R Freeman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pedro F Saint-Maurice
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eleanor L Watts
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven C Moore
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marissa M Shams-White
- Risk Factor Assessment Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dana L Wolff-Hughes
- Risk Factor Assessment Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel E Russ
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonas S Almeida
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyokyoung G Hong
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erikka Loftfield
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles E Matthews
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Manful EE, Dofuor AK, Gwira TM. The role of tryptophan derivatives as anti-kinetoplastid agents. Heliyon 2024; 10:e23895. [PMID: 38187297 PMCID: PMC10770616 DOI: 10.1016/j.heliyon.2023.e23895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Kinetoplastids are the causative agents for a spectrum of vector-borne diseases including Leishmaniasis, Chagas disease and Trypanosomiasis that affect millions of people worldwide. In the absence of safe and effective vaccines, chemotherapy, in conjunction with vector control, remain the most significant control approach for kinetoplastid diseases. However, commercially available treatment for these neglected tropical diseases frequently ends up with toxic side effects and increasing resistance. To meet the rising need for innovative medications, alternative chemotherapeutic agents are required. Moreover, insights into target-based mode of action of chemotherapeutic agents are required if novel drugs that may outwit resistance to commercially available drugs are to be developed. Tryptophan has been implicated in a variety of diseases and disorders due to its fundamental role as a precursor to several bioactive metabolites, as well as its importance in the improvement of health and nutrition, diagnostics, and therapeutics. The regulation of tryptophan metabolism plays a fundamental role in the growth of kinetoplastids. Moreover, the levels of tryptophan may serve as a biomarker to distinguish between the stages of kinetoplastids making it an important amino acid to explore for drug targets. The main aim of this review is thus to provide a comprehensive literature synthesis of tryptophan derivatives to explore as potential anti-kinetoplastids. Here we highlight the role of tryptophan derivatives as chemotherapeutic agents against kinetoplastids. The reviewed compounds provide insights into potential new drug interventions that may combat the increasing problem of anti-kinetoplastid resistance.
Collapse
Affiliation(s)
- Ewura-Esi Manful
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa
| | - Aboagye Kwarteng Dofuor
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Theresa Manful Gwira
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| |
Collapse
|
7
|
Abbasi M, Yazdanirad S, Dehdarirad H, Hughes D. Noise exposure and the risk of cancer: a comprehensive systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:713-726. [PMID: 36064622 DOI: 10.1515/reveh-2022-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The association between noise exposure and increased risk of cancer has received little attention in the field of research. Therefore, the goal of this study was to conduct a systematic review on the relationship between noise exposure and the incidence of cancer in humans. In this study, four electronic bibliographic databases including Scopus, PubMed, Web of Science, and Embase were systematically searched up to 21 April 2022. All types of noise exposure were considered, including environmental noise, occupational noise, and leisure or recreational noise. Furthermore, all types of cancers were studied, regardless of the organs involved. In total, 1836 articles were excluded on the basis of containing exclusion criteria or lacking inclusion criteria, leaving 19 articles retained for this study. Five of nine case-control studies showed a significant relationship between occupational or leisure noise exposure and acoustic neuroma. Moreover, four of five case-control and cohort studies indicated statistically significant relationships between environmental noise exposure and breast cancer. Of other cancer types, two case-control studies highlighted the risk of Hodgkin and non-Hodgkin lymphoma and two cohort studies identified an increased risk of colon cancer associated with environmental noise exposure. No relationship between road traffic and railway noise and the risk of prostate cancer was observed. In total, results showed that noise exposure, particularly prolonged and continuous exposure to loud noise, can lead to the incidence of some cancers. However, confirmation of this requires further epidemiological studies and exploration of the exact biological mechanism and pathway for these effects.
Collapse
Affiliation(s)
- Milad Abbasi
- Occupational Health Engineering, Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Saeid Yazdanirad
- School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Social Determinants of Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Dehdarirad
- Medical Library & Information Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Debra Hughes
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
POLLARD CL, GIBB Z, SWEGEN A, GRUPEN CG. NAD +, Sirtuins and PARPs: enhancing oocyte developmental competence. J Reprod Dev 2022; 68:345-354. [PMID: 36171094 PMCID: PMC9792654 DOI: 10.1262/jrd.2022-052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oocyte quality is the limiting factor in female fertility. It is well known that maternal nutrition plays a role in reproductive function, and manipulating nutrition to improve fertility in livestock has been common practice in the past, particularly with respect to negative energy balance in cattle. A deficiency in nicotinamide adenine dinucleotide (NAD+) production has been associated with increased incidences of miscarriage and congenital defects in humans and mice, while elevating NAD+ through dietary supplements in aged subjects improved oocyte quality and embryo development. NAD+ is consumed by Sirtuins and poly-ADP-ribose polymerases (PARPs) within the cell and thus need constant replenishment in order to maintain various cellular functions. Sirtuins and PARPs play important roles in oocyte maturation and embryo development, and their activation may prove beneficial to in vitro embryo production and livestock breeding programs. This review examines the roles of NAD+, Sirtuins and PARPs in aspects of fertility, providing insights into the potential use of NAD+-elevating treatments in livestock breeding and embryo production programs.
Collapse
Affiliation(s)
- Charley-Lea POLLARD
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, 2570, Australia
| | - Zamira GIBB
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Aleona SWEGEN
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Christopher G. GRUPEN
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, 2570, Australia
| |
Collapse
|
9
|
Understanding the Mechanism of Action of Melatonin, Which Induces ROS Production in Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11081621. [PMID: 36009340 PMCID: PMC9404709 DOI: 10.3390/antiox11081621] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) constitute a group of highly reactive molecules that have evolved as regulators of important signaling pathways. In this context, tumor cells have an altered redox balance compared to normal cells, which can be targeted as an antitumoral therapy by ROS levels and by decreasing the capacity of the antioxidant system, leading to programmed cell death. Melatonin is of particular importance in the development of innovative cancer treatments due to its oncostatic impact and lack of adverse effects. Despite being widely recognized as a pro-oxidant molecule in tumor cells, the mechanism of action of melatonin remains unclear, which has hindered its use in clinical treatments. The current review aims to describe and clarify the proposed mechanism of action of melatonin inducing ROS production in cancer cells in order to propose future anti-neoplastic clinical applications.
Collapse
|
10
|
Li H, Sun P. Insight of Melatonin: The Potential of Melatonin to Treat Bacteria-Induced Mastitis. Antioxidants (Basel) 2022; 11:antiox11061107. [PMID: 35740004 PMCID: PMC9219804 DOI: 10.3390/antiox11061107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Bovine mastitis is a common inflammatory disease, mainly induced by bacterial pathogens, such as Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae. Mastitis has negative effects on the production and quality of milk, resulting in huge economic losses. Melatonin, which is synthesized and secreted by the pineal gland and other organs, is ubiquitous throughout nature and has different effects on different tissues. Melatonin is crucial in modulating oxidative stress, immune responses, and cell autophagy and apoptosis, via receptor-mediated or receptor-independent signaling pathways. The potent antioxidative and anti-inflammatory activities of melatonin and its metabolites suggest that melatonin can be used to treat various infections. This article reviews the potential for melatonin to alleviate bovine mastitis through its pleiotropic effect on reducing oxidative stress, inhibiting pro-inflammatory cytokines, and regulating the activation of NF-κB, STATs, and their cascade reactions. Therefore, it is promising that melatonin supplementation may be an alternative to antibiotics for the treatment of bovine mastitis.
Collapse
|
11
|
Lv X, Li Y, Li R, Guan X, Li L, Li J, Si S, Ji X, Cao Y, Xue F. Relationships of sleep traits with prostate cancer risk: A prospective study of 213,999 UK Biobank participants. Prostate 2022; 82:984-992. [PMID: 35403721 DOI: 10.1002/pros.24345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND The effect of sleep on the occurrence of prostate cancer (PCa) remains unclear. This study explored the influence of sleep traits on the incidence of PCa using a UK Biobank cohort study. METHODS In this prospective cohort study, 213,999 individuals free of PCa at recruitment from UK Biobank were included. Missing data were imputed using multiple imputation by chained equations. Cox proportional hazards models were used to calculate the adjusted hazard ratios and 95% confidence intervals for PCa (6747 incident cases) across seven sleep traits (sleep duration, chronotype, insomnia, snoring, nap, difficulty to get up in the morning, and daytime sleepiness). In addition, we newly created a healthy sleep quality score according to sleep traits to assess the impact of the overall status of night and daytime sleep on PCa development. E values were used to assess unmeasured confounding. RESULTS We identified 6747 incident cases, of which 344 died from PCa. Participants who usually suffered from insomnia had a higher risk of PCa (hazard ratio [HR]: 1.11; 95% confidence interval [CI]: 1.04-1.19, E value: 1.46). Finding it fairly easy to get up in the morning was also positively associated with PCa (HR: 1.09; 95% CI: 1.04-1.15, E value: 1.40). Usually having a nap was associated with a lower risk of PCa (HR: 0.91; 95% CI: 0.83-0.99, E value: 1.42). CONCLUSIONS Fairly easy to get up in the morning and usually experiencing insomnia were associated with an increased incidence of PCa. Moreover, usually having a nap was associated with a lower risk of PCa. Therefore, sleep behaviors are modifiable risk factors that may have a potential impact on PCa risk.
Collapse
Affiliation(s)
- Xiaoyan Lv
- Department of Nursing, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Nursing Theory & Practice Innovation Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Yuxin Li
- Nursing Theory & Practice Innovation Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Rong Li
- Department of Nursing, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Nursing Theory & Practice Innovation Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xiangyun Guan
- Department of Nursing, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Nursing Theory & Practice Innovation Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Li Li
- Department of Nursing, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Nursing Theory & Practice Innovation Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Junli Li
- Department of Nursing, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Nursing Theory & Practice Innovation Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Shucheng Si
- Institute for Medical Dataology, Shandong University, Jinan, Shandong, P. R. China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xiaokang Ji
- Institute for Medical Dataology, Shandong University, Jinan, Shandong, P. R. China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Yingjuan Cao
- Department of Nursing, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Nursing Theory & Practice Innovation Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Fuzhong Xue
- Institute for Medical Dataology, Shandong University, Jinan, Shandong, P. R. China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
12
|
Calcium acts as a central player in melatonin antitumor activity in sarcoma cells. Cell Oncol (Dordr) 2022; 45:415-428. [PMID: 35499815 PMCID: PMC9187547 DOI: 10.1007/s13402-022-00674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Chondrosarcoma and osteosarcoma are the most frequently occurring bone cancers. Although surgery and chemotherapy are currently clinically applied, improved treatment options are urgently needed. Melatonin is known to inhibit cell proliferation in both tumor types. Although the underlying mechanisms are not clear yet, calcium homeostasis has been reported to be a key factor in cancer biology. Here, we set out to investigate whether regulation of calcium by this indolamine may be involved in its antitumor effect. METHODS Cell viability was measured using a MTT assay and flow cytometry was used to measure levels of cytosolic calcium, intracellular oxidants, mitochondrial membrane potential and cell cycle progression. Mitochondrial calcium was analyzed by fluorimetry. Cell migration was determined using a scratch wound-healing assay. Western blot analysis was used to assess the expression of proteins related to cell cycle progression, epithelial to mesenchymal transition (EMT), Ac-CoA synthesis and intracellular signaling pathways. RESULTS We found that melatonin decreases cytosolic and mitochondrial Ca2+ levels, intracellular oxidant levels, mitochondrial function and the expression of the E1 subunit of the pyruvate dehydrogenase complex. These changes were found to be accompanied by decreases in cell proliferation, cell migration and EMT marker expression. The addition of CaCl2 prevented the changes mentioned above, while co-treatment with the calcium chelator BAPTA enhanced the effects. CONCLUSIONS Our data indicate that regulation of calcium homeostasis is a key factor in the inhibition of cell proliferation and migration by melatonin. This effect should be taken into consideration in combined therapies with traditional or new antitumor compounds, since it may circumvent therapy resistance.
Collapse
|
13
|
Megerian MF, Kim JS, Badreddine J, Hong SH, Ponsky LE, Shin JI, Ghayda RA. Melatonin and Prostate Cancer: Anti-tumor Roles and Therapeutic Application. Aging Dis 2022; 14:840-857. [PMID: 37191417 DOI: 10.14336/ad.2022.1010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Melatonin is an endogenous indoleamine that has been shown to inhibit tumor growth in laboratory models of prostate cancer. Prostate cancer risk has additionally been associated with exogenous factors that interfere with normal pineal secretory activity, including aging, poor sleep, and artificial light at night. Therefore, we aim to expand on the important epidemiological evidence, and to review how melatonin can impede prostate cancer. More specifically, we describe the currently known mechanisms of melatonin-mediated oncostasis in prostate cancer, including those that relate to the indolamine's ability to modulate metabolic activity, cell cycle progression and proliferation, androgen signaling, angiogenesis, metastasis, immunity and oxidative cell status, apoptosis, genomic stability, neuroendocrine differentiation, and the circadian rhythm. The outlined evidence underscores the need for clinical trials to determine the efficacy of supplemental, adjunct, and adjuvant melatonin therapy for the prevention and treatment of prostate cancer.
Collapse
|
14
|
Nikolaev G, Robeva R, Konakchieva R. Membrane Melatonin Receptors Activated Cell Signaling in Physiology and Disease. Int J Mol Sci 2021; 23:ijms23010471. [PMID: 35008896 PMCID: PMC8745360 DOI: 10.3390/ijms23010471] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The pineal hormone melatonin has attracted great scientific interest since its discovery in 1958. Despite the enormous number of basic and clinical studies the exact role of melatonin in respect to human physiology remains elusive. In humans, two high-affinity receptors for melatonin, MT1 and MT2, belonging to the family of G protein-coupled receptors (GPCRs) have been cloned and identified. The two receptor types activate Gi proteins and MT2 couples additionally to Gq proteins to modulate intracellular events. The individual effects of MT1 and MT2 receptor activation in a variety of cells are complemented by their ability to form homo- and heterodimers, the functional relevance of which is yet to be confirmed. Recently, several melatonin receptor genetic polymorphisms were discovered and implicated in pathology-for instance in type 2 diabetes, autoimmune disease, and cancer. The circadian patterns of melatonin secretion, its pleiotropic effects depending on cell type and condition, and the already demonstrated cross-talks of melatonin receptors with other signal transduction pathways further contribute to the perplexity of research on the role of the pineal hormone in humans. In this review we try to summarize the current knowledge on the membrane melatonin receptor activated cell signaling in physiology and pathology and their relevance to certain disease conditions including cancer.
Collapse
Affiliation(s)
- Georgi Nikolaev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
- Correspondence:
| | - Ralitsa Robeva
- Department of Endocrinology, Faculty of Medicine, Medical University, 1431 Sofia, Bulgaria;
| | - Rossitza Konakchieva
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
| |
Collapse
|
15
|
Yousafzai NA, Jin H, Ullah M, Wang X. Recent advances of SIRT1 and implications in chemotherapeutics resistance in cancer. Am J Cancer Res 2021; 11:5233-5248. [PMID: 34873458 PMCID: PMC8640807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023] Open
Abstract
Cancer is a big group of diseases and one of the leading causes of mortality worldwide. Despite enormous studies and efforts are being carried out in understanding the cancer and developing drugs against tumorigenesis, drug resistance is the main obstacle in cancer treatments. Chemotherapeutic treatment is an important part of cancer treatment and drug resistance is getting gradually multidimensional with the advancement of studies in cancer. The underlying mechanisms of drug resistance are largely unknown. Sirtuin1 (SIRT1) is a type of the Class III histone deacetylase family that is distinctively dependent on nicotinamide adenine dinucleotide (NAD+) for catalysis reaction. SIRT1 is a molecule which upon upregulation directly influences tumor progression, metastasis, tumor cell apoptosis, autophagy, DNA repair, as well as other interlinked tumorigenesis mechanism. It is involved in drug metabolism, apoptosis, DNA damage, DNA repair, and autophagy, which are key hallmarks of drug resistance and may contribute to multidrug resistance. Thus, understanding the role of SIRT1 in drug resistance could be important. This study focuses on the SIRT1 based mechanisms that might be a potential underlying approach in the development of cancer drug resistance and could be a potential target for drug development.
Collapse
Affiliation(s)
- Neelum Aziz Yousafzai
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou 310020, Zhejiang, China
- Department of Medical and Health Sciences, University of Poonch RawalakotAJK 12350, Pakistan
| | - Hongchuan Jin
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou 310020, Zhejiang, China
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford UniversityPalo Alto, CA 94304, United States
| | - Xian Wang
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou 310020, Zhejiang, China
| |
Collapse
|
16
|
Melatonin, Its Metabolites and Their Interference with Reactive Nitrogen Compounds. Molecules 2021; 26:molecules26134105. [PMID: 34279445 PMCID: PMC8271479 DOI: 10.3390/molecules26134105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melatonin and several of its metabolites are interfering with reactive nitrogen. With the notion of prevailing melatonin formation in tissues that exceeds by far the quantities in blood, metabolites come into focus that are poorly found in the circulation. Apart from their antioxidant actions, both melatonin and N1-acetyl-5-methoxykynuramine (AMK) downregulate inducible and inhibit neuronal NO synthases, and additionally scavenge NO. However, the NO adduct of melatonin redonates NO, whereas AMK forms with NO a stable product. Many other melatonin metabolites formed in oxidative processes also contain nitrosylatable sites. Moreover, AMK readily scavenges products of the CO2-adduct of peroxynitrite such as carbonate radicals and NO2. Protein AMKylation seems to be involved in protective actions.
Collapse
|
17
|
Gao XY, Deng BH, Li XR, Wang Y, Zhang JX, Hao XY, Zhao JX. Melatonin Regulates Differentiation of Sheep Brown Adipocyte Precursor Cells Via AMP-Activated Protein Kinase. Front Vet Sci 2021; 8:661773. [PMID: 34235199 PMCID: PMC8255384 DOI: 10.3389/fvets.2021.661773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 01/10/2023] Open
Abstract
In sheep industry, hypothermia caused by insufficient brown adipose tissue (BAT) deposits is one of the major causes of lamb deaths. Enhancing the formation and function of BAT in neonatal lamb increases thermogenesis and hence reduces economic losses. The aim of the present study was to explore the effect and mechanism of melatonin on sheep brown adipocyte formation and function. Sheep brown adipocyte precursor cells (SBACs) isolated from perirenal BAT were treated with melatonin (1 and 10 nM). The SBACs subjected to melatonin exhibited a decreased proliferation ability, accompanied by down-regulated proliferating cell nuclear antigen, cyclin D1, and CDK4 protein contents in a melatonin dose-dependent manner. Melatonin promoted brown adipocyte formation and induced the expression of brown adipogenic markers, including uncoupling protein 1 and PR domain-containing 16 during differentiation of SBAC. Moreover, the AMP-activated protein kinase α1 (AMPKα1) activity was positively correlated with brown adipocyte formation potential. Importantly, melatonin effectively activated AMPKα1. Furthermore, promotional effects of melatonin were abolished by AMPKα1 knockout, suggesting the involvement of AMPKα1 in this process. Collectively, these results suggested that melatonin enhanced brown adipocyte formation in SBACs in vitro through activation of AMPKα1.
Collapse
Affiliation(s)
- Xu-Yang Gao
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Bu-Hao Deng
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Xin-Rui Li
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Yu Wang
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Jian-Xin Zhang
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Xiao-Yan Hao
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Jun-Xing Zhao
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| |
Collapse
|
18
|
Gurunathan S, Qasim M, Kang MH, Kim JH. Role and Therapeutic Potential of Melatonin in Various Type of Cancers. Onco Targets Ther 2021; 14:2019-2052. [PMID: 33776451 PMCID: PMC7987311 DOI: 10.2147/ott.s298512] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a large group of diseases and the second leading cause of death worldwide. Lung, prostate, colorectal, stomach, and liver cancers are the most common types of cancer in men, whereas breast, colorectal, lung, cervical, and thyroid cancers are the most common among women. Presently, various treatment strategies, including surgical resection combined with chemotherapy, radiotherapy, nanotherapy, and immunotherapy, have been used as conventional treatments for patients with cancer. However, the clinical outcomes of advanced-stage disease remain relatively unfavorable owing to the emergence of chemoresistance, toxicity, and other undesired detrimental side effects. Therefore, new therapies to overcome these limitations are indispensable. Recently, there has been considerable evidence from experimental and clinical studies suggesting that melatonin can be used to prevent and treat cancer. Studies have confirmed that melatonin mitigates the pathogenesis of cancer by directly affecting carcinogenesis and indirectly disrupting the circadian cycle. Melatonin (MLT) is nontoxic and exhibits a range of beneficial effects against cancer via apoptotic, antiangiogenic, antiproliferative, and metastasis-inhibitory pathways. The combination of melatonin with conventional drugs improves the drug sensitivity of cancers, including solid and liquid tumors. In this manuscript, we will comprehensively review some of the cellular, animal, and human studies from the literature that provide evidence that melatonin has oncostatic and anticancer properties. Further, this comprehensive review compiles the available experimental and clinical data analyzing the history, epidemiology, risk factors, therapeutic effect, clinical significance, of melatonin alone or in combination with chemotherapeutic agents or radiotherapy, as well as the underlying molecular mechanisms of its anticancer effect against lung, breast, prostate, colorectal, skin, liver, cervical, and ovarian cancers. Nonetheless, in the interest of readership clarity and ease of reading, we have discussed the overall mechanism of the anticancer activity of melatonin against different types of cancer. We have ended this report with general conclusions and future perspectives.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Muhammad Qasim
- Center of Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
19
|
Recent Advancements on Immunomodulatory Mechanisms of Resveratrol in Tumor Microenvironment. Molecules 2021; 26:molecules26051343. [PMID: 33802331 PMCID: PMC7959117 DOI: 10.3390/molecules26051343] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Immunomodulation of the tumor microenvironment is emerging as an important area of research for the treatment of cancer patients. Several synthetic and natural agents are being investigated for their ability to enhance the immunogenic responses of immune cells present in the tumor microenvironment to impede tumor cell growth and dissemination. Among them, resveratrol, a stilbenoid found in red grapes and many other natural sources, has been studied extensively. Importantly, resveratrol has been shown to possess activity against various human diseases, including cancer. Mechanistically, resveratrol has been shown to regulate an array of signaling pathways and processes involving oxidative stress, inflammation, apoptosis, and several anticancer effects. Furthermore, recent research suggests that resveratrol can regulate various cellular signaling events including immune cell regulation, cytokines/chemokines secretion, and the expression of several other immune-related genes. In this review, we have summarized recent findings on resveratrol’s effects on immune regulatory cells and associated signaling in various cancer types. Numerous immunomodulatory effects of resveratrol suggest it may be useful in combination with other cancer therapies including immunotherapy for effective cancer management.
Collapse
|
20
|
Soni SK, Basu P, Singaravel M, Sharma R, Pandi-Perumal SR, Cardinali DP, Reiter RJ. Sirtuins and the circadian clock interplay in cardioprotection: focus on sirtuin 1. Cell Mol Life Sci 2021; 78:2503-2515. [PMID: 33388853 PMCID: PMC11073088 DOI: 10.1007/s00018-020-03713-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Chronic disruption of circadian rhythms which include intricate molecular transcription-translation feedback loops of evolutionarily conserved clock genes has serious health consequences and negatively affects cardiovascular physiology. Sirtuins (SIRTs) are nuclear, cytoplasmic and mitochondrial histone deacetylases that influence the circadian clock with clock-controlled oscillatory protein, NAMPT, and its metabolite NAD+. Sirtuins are linked to the multi-organ protective role of melatonin, particularly in acute kidney injury and in cardiovascular diseases, where melatonin, via upregulation of SIRT1 expression, inhibits the apoptotic pathway. This review focuses on SIRT1, an NAD+-dependent class III histone deacetylase which counterbalances the intrinsic histone acetyltransferase activity of one of the clock genes, CLOCK. SIRT1 is involved in the development of cardiomyocytes, regulation of voltage-gated cardiac sodium ion channels via deacetylation, prevention of atherosclerotic plaque formation in the cardiovascular system, protection against oxidative damage and anti-thrombotic actions. Overall, SIRT1 has a see-saw effect on cardioprotection, with low levels being cardioprotective and higher levels leading to cardiac hypertrophy.
Collapse
Affiliation(s)
- Sanjeev Kumar Soni
- Chronobiology Laboratory, Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Priyoneel Basu
- Chronobiology Laboratory, Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Muniyandi Singaravel
- Chronobiology Laboratory, Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | | | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
21
|
Owczarek A, Gieczewska KB, Polanska M, Paterczyk B, Gruza A, Winiarska K. Melatonin Lowers HIF-1α Content in Human Proximal Tubular Cells (HK-2) Due to Preventing Its Deacetylation by Sirtuin 1. Front Physiol 2021; 11:572911. [PMID: 33519498 PMCID: PMC7841413 DOI: 10.3389/fphys.2020.572911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Although melatonin is widely known for its nephroprotective properties, there are no reports clearly pointing at its impact on the activity of hypoxia-inducible factor-1 (HIF-1), the main mediator of metabolic responses to hypoxia, in kidneys. The aim of the present study was to elucidate how melatonin affects the expression of the regulatory subunit HIF-1α in renal proximal tubules. HK-2 cells, immortalized human proximal tubular cells, were cultured under hypoxic conditions (1% O2). Melatonin was applied at 100 μM concentration. Protein and mRNA contents were determined by Western blot and RT-qPCR, respectively. HIF-1α acetylation level was established by means of immunoprecipitation followed by Western blot. Melatonin receptors MT1 and MT2 localization in HK-2 cells was visualized using immunofluorescence confocal analysis. It was found that melatonin in HK-2 cells (1) lowered HIF-1α protein, but not mRNA, content; (2) attenuated expression of HIF-1 target genes; (3) increased HIF-1α acetylation level; and (4) diminished sirtuin 1 expression (both protein and mRNA). Sirtuin 1 involvement in the regulation of HIF-1α level was confirmed applying cells with silenced Sirt1 gene. Moreover, the presence of membrane MT1 and MT2 receptors was identified in HK-2 cells and their ligand, ramelteon, turned out to mimic melatonin action on both HIF-1α and sirtuin 1 levels. Thus, it is concluded that the mechanism of melatonin-evoked decline in HIF-1α content in renal proximal tubular cells involves increased acetylation of this subunit which results from the attenuated expression of sirtuin 1, an enzyme reported to deacetylate HIF-1α. This observation provides a new insight to the understanding of melatonin action in kidneys.
Collapse
Affiliation(s)
- Aleksandra Owczarek
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
| | - Katarzyna B Gieczewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Marta Polanska
- Department of Animal Physiology, Faculty of Biology, Institute of Functional Biology and Ecology, University of Warsaw, Warsaw, Poland
| | - Bohdan Paterczyk
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Andrzej Gruza
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Bonmati-Carrion MA, Tomas-Loba A. Melatonin and Cancer: A Polyhedral Network Where the Source Matters. Antioxidants (Basel) 2021; 10:antiox10020210. [PMID: 33535472 PMCID: PMC7912767 DOI: 10.3390/antiox10020210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Melatonin is one of the most phylogenetically conserved signals in biology. Although its original function was probably related to its antioxidant capacity, this indoleamine has been “adopted” by multicellular organisms as the “darkness signal” when secreted in a circadian manner and is acutely suppressed by light at night by the pineal gland. However, melatonin is also produced by other tissues, which constitute its extrapineal sources. Apart from its undisputed chronobiotic function, melatonin exerts antioxidant, immunomodulatory, pro-apoptotic, antiproliferative, and anti-angiogenic effects, with all these properties making it a powerful antitumor agent. Indeed, this activity has been demonstrated to be mediated by interfering with various cancer hallmarks, and different epidemiological studies have also linked light at night (melatonin suppression) with a higher incidence of different types of cancer. In 2007, the World Health Organization classified night shift work as a probable carcinogen due to circadian disruption, where melatonin plays a central role. Our aim is to review, from a global perspective, the role of melatonin both from pineal and extrapineal origin, as well as their possible interplay, as an intrinsic factor in the incidence, development, and progression of cancer. Particular emphasis will be placed not only on those mechanisms related to melatonin’s antioxidant nature but also on the recently described novel roles of melatonin in microbiota and epigenetic regulation.
Collapse
Affiliation(s)
- Maria-Angeles Bonmati-Carrion
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable, 28090 Madrid, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| | - Antonia Tomas-Loba
- Circadian Rhythm and Cancer Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| |
Collapse
|
23
|
Marhuenda J, Villaño D, Arcusa R, Zafrilla P. Melatonin in Wine and Beer: Beneficial Effects. Molecules 2021; 26:molecules26020343. [PMID: 33440795 PMCID: PMC7827953 DOI: 10.3390/molecules26020343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a hormone secreted in the pineal gland with several functions, especially regulation of circadian sleep cycle and the biological processes related to it. This review evaluates the bioavailability of melatonin and resulting metabolites, the presence of melatonin in wine and beer and factors that influence it, and finally the different benefits related to treatment with melatonin. When administered orally, melatonin is mainly absorbed in the rectum and the ileum; it has a half-life of about 0.45–1 h and is extensively inactivated in the liver by phase 2 enzymes. Melatonin (MEL) concentration varies from picograms to ng/mL in fermented beverages such as wine and beer, depending on the fermentation process. These low quantities, within a dietary intake, are enough to reach significant plasma concentrations of melatonin, and are thus able to exert beneficial effects. Melatonin has demonstrated antioxidant, anticarcinogenic, immunomodulatory and neuroprotective actions. These benefits are related to its free radical scavenging properties as well and the direct interaction with melatonin receptors, which are involved in complex intracellular signaling pathways, including inhibition of angiogenesis and cell proliferation, among others. In the present review, the current evidence on the effects of melatonin on different pathophysiological conditions is also discussed.
Collapse
|
24
|
Hardeland R. Sirtuins, melatonin, and the relevance of circadian oscillators. SIRTUIN BIOLOGY IN MEDICINE 2021:137-151. [DOI: 10.1016/b978-0-12-814118-2.00011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
26
|
Costanzi E, Simioni C, Conti I, Laface I, Varano G, Brenna C, Neri LM. Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives. J Cell Physiol 2020; 236:2505-2518. [PMID: 32989768 DOI: 10.1002/jcp.30062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Recent studies have shown that G protein-coupled receptors (GPCRs), the largest signal-conveying receptor family, are targets for mutations occurring frequently in different cancer types. GPCR alterations associated with cancer development represent significant challenges for the discovery and the advancement of targeted therapeutics. Among the different molecules that can activate GPCRs, we focused on two molecules that exert their biological actions regulating many typical features of tumorigenesis such as cellular proliferation, survival, and invasion: somatostatin and melatonin. The modulation of signaling pathways, that involves these two molecules, opens an interesting scenario for cancer therapy, with the opportunity to act at different molecular levels. Therefore, the aim of this review is the analysis of the biological activity and the therapeutic potential of somatostatin and melatonin, displaying a high affinity for GPCRs, that interfere with cancer development and maintenance.
Collapse
Affiliation(s)
- Eva Costanzi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carolina Simioni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Ilaria Conti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Laface
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Gabriele Varano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Cinzia Brenna
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
27
|
Mehrzadi MH, Hosseinzadeh A, Juybari KB, Mehrzadi S. Melatonin and urological cancers: a new therapeutic approach. Cancer Cell Int 2020; 20:444. [PMID: 32943992 PMCID: PMC7488244 DOI: 10.1186/s12935-020-01531-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Urological cancers are responsible for thousands of cancer-related deaths around the world. Despite all developments in therapeutic approaches for cancer therapy, the absence of efficient treatments is a critical and vital problematic issue for physicians and researchers. Furthermore, routine medical therapies contribute to several undesirable adverse events for patients, reducing life quality and survival time. Therefore, many attempts are needed to explore potent alternative or complementary treatments for great outcomes. Melatonin has multiple beneficial potential effects, including anticancer properties. Melatonin in combination with chemoradiation therapy or even alone could suppress urological cancers through affecting essential cellular pathways. This review discusses current evidence reporting the beneficial effect of melatonin in urological malignancies, including prostate cancer, bladder cancer, and renal cancer.
Collapse
Affiliation(s)
- Mohammad Hossein Mehrzadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kobra Bahrampour Juybari
- Department of Pharmacology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Mantle D, Smits M, Boss M, Miedema I, van Geijlswijk I. Efficacy and safety of supplemental melatonin for delayed sleep-wake phase disorder in children: an overview. Sleep Med X 2020; 2:100022. [PMID: 33870175 PMCID: PMC8041131 DOI: 10.1016/j.sleepx.2020.100022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/03/2023] Open
Abstract
Delayed sleep–wake phase disorder (DSPD) is the most frequently occurring intrinsic circadian rhythm sleep–wake disorder, with the highest prevalence in adolescence. Melatonin is the first-choice drug treatment. However, to date melatonin (in a controlled-release formulation) is only authorised for the treatment of insomnia in children with autism or Smiths-Magenis syndrome. Concerns have been raised with respect to the safety and efficacy of melatonin for more general use in children, as melatonin has not undergone the formal safety testing required for a new drug, especially long-term safety in children. Melatonin is known to have profound effects on the reproductive systems of rodents, sheep and primates, as well as effects on the cardiovascular, immune and metabolic systems. The objective of the present article was therefore to establish the efficacy and safety of exogenous melatonin for use in children with DSPD, based on in vitro, animal model and clinical studies by reviewing the relevant literature in the Medline database using PubMed. Acute toxicity studies in rats and mice showed toxic effects only at extremely high melatonin doses (>400 mg/kg), some tens of thousands of times more than the recommended dose of 3–6 mg in a person weighing 70 kg. Longer-term administration of melatonin improved the general health and survival of ageing rats or mice. A full range of in vitro/in vivo genotoxicity tests consistently found no evidence that melatonin is genotoxic. Similarly long term administration of melatonin in rats or mice did not have carcinogenic effects, or negative effects on cardiovascular, endocrine and reproductive systems. With regard to clinical studies, in 19 randomised controlled trials comprising 841 children and adolescents with DSPD, melatonin treatment (usually of 4 weeks duration) consistently improved sleep latency by 22–60 min, without any serious adverse effects. Similarly, 17 randomised controlled trials, comprising 1374 children and adolescents, supplementing melatonin for indications other than DSPD, reported no relevant adverse effects. In addition, 4 long-term safety studies (1.0–10.8 yr) supplementing exogenous melatonin found no substantial deviation of the development of children with respect to sleep quality, puberty development and mental health scores. Finally, post-marketing data for an immediate-release melatonin formulation (Bio-melatonin), used in the UK since 2008 as an unlicensed medicine for sleep disturbance in children, recorded no adverse events to date on sales of approximately 600,000 packs, equivalent to some 35 million individual 3 mg tablet doses (MHRA yellow card adverse event recording scheme). In conclusion, evidence has been provided that melatonin is an efficacious and safe chronobiotic drug for the treatment of DSPD in children, provided that it is administered at the correct time (3–5 h before endogenous melatonin starts to rise in dim light (DLMO)), and in the correct (minimal effective) dose. As the status of circadian rhythmicity may change during long-time treatment, it is recommended to stop melatonin treatment at least once a year (preferably during the summer holidays). Melatonin improves sleep onset without serious adverse effects in youths with DSPD. Change th text after the fourth bullet into: Melatonin is an efficacious and safe chronobiotic drug for the treatment of DSPD in youths. Melatonin for indications other than DSPD, dose not cause relevant adverse effects. Long term melatonin treatment does not impair sleep, puberty, and mental health. Melatonin is an efficacious and safe chronobiotic drug for the treatment of DSPD in youths. Melatonin should be administered at the correct time and in the minimal effective dose.
Collapse
Affiliation(s)
| | - Marcel Smits
- Multidisciplinary Expertise Centre for Sleep-Wake Disorders and Chronobiology, Gelderse Valley Hospital Ede, The Netherlands
| | - Myrthe Boss
- Multidisciplinary Expertise Centre for Sleep-Wake Disorders and Chronobiology, Gelderse Valley Hospital Ede, The Netherlands
| | - Irene Miedema
- Multidisciplinary Expertise Centre for Sleep-Wake Disorders and Chronobiology, Gelderse Valley Hospital Ede, The Netherlands
| | - Inge van Geijlswijk
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, and Faculty of Veterinary Medicine, Pharmacy Department Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
29
|
Samanta S. Melatonin: an endogenous miraculous indolamine, fights against cancer progression. J Cancer Res Clin Oncol 2020; 146:1893-1922. [PMID: 32583237 DOI: 10.1007/s00432-020-03292-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Melatonin is an amphipathic indolamine molecule ubiquitously present in all organisms ranging from cyanobacteria to humans. The pineal gland is the site of melatonin synthesis and secretion under the influence of the retinohypothalamic tract. Some extrapineal tissues (skin, lens, gastrointestinal tract, testis, ovary, lymphocytes, and astrocytes) also enable to produce melatonin. Physiologically, melatonin regulates various functions like circadian rhythm, sleep-wake cycle, gonadal activity, redox homeostasis, neuroprotection, immune-modulation, and anticancer effects in the body. Inappropriate melatonin secretion advances the aging process, tumorigenesis, visceral adiposity, etc. METHODS: For the preparation of this review, I had reviewed the literature on the multidimensional activities of melatonin from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Wiley Online ResearchGate, and Google Scholar databases to search relevant articles. Specifically, I focused on the roles and mechanisms of action of melatonin in cancer prevention. RESULTS The actions of melatonin are primarily mediated by G-protein coupled MT1 and MT2 receptors; however, several intracellular protein and nuclear receptors can modulate the activity. Normal levels of the melatonin protect the cells from adverse effects including carcinogenesis. Therapeutically, melatonin has chronomedicinal value; it also shows a remarkable anticancer property. The oncostatic action of melatonin is multidimensional, associated with the advancement of apoptosis, the arrest of the cell cycle, inhibition of metastasis, and antioxidant activity. CONCLUSION The present review has emphasized the mechanism of the anti-neoplastic activity of melatonin that increases the possibilities of the new approaches in cancer therapy.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department Physiology, Midnapore College, Paschim Medinipur, Midnapore, West Bengal, 721101, India.
| |
Collapse
|
30
|
Utilizing Melatonin to Alleviate Side Effects of Chemotherapy: A Potentially Good Partner for Treating Cancer with Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6841581. [PMID: 32566095 PMCID: PMC7260648 DOI: 10.1155/2020/6841581] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Persistent senescence seems to exert detrimental effects fostering ageing and age-related disorders, such as cancer. Chemotherapy is one of the most valuable treatments for cancer, but its clinical application is limited due to adverse side effects. Melatonin is a potent antioxidant and antiageing molecule, is nontoxic, and enhances the efficacy and reduces the side effects of chemotherapy. In this review, we first summarize the mitochondrial protective role of melatonin in the context of chemotherapeutic drug-induced toxicity. Thereafter, we tabulate the protective actions of melatonin against ageing and the harmful roles induced by chemotherapy and chemotherapeutic agents, including anthracyclines, alkylating agents, platinum, antimetabolites, mitotic inhibitors, and molecular-targeted agents. Finally, we discuss several novel directions for future research in this area. The information compiled in this review will provide a comprehensive reference for the protective activities of melatonin in the context of chemotherapy drug-induced toxicity and will contribute to the design of future studies and increase the potential of melatonin as a therapeutic agent.
Collapse
|
31
|
Bjørklund G, Rajib SA, Saffoon N, Pen JJ, Chirumbolo S. Insights on Melatonin as an Active Pharmacological Molecule in Cancer Prevention: What's New? Curr Med Chem 2019; 26:6304-6320. [PMID: 29714136 DOI: 10.2174/0929867325666180501094850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022]
Abstract
Along with playing an important role in circadian rhythm, melatonin is thought to play a significant role in preventing cells from damage, as well as in the inhibition of growth and in triggering apoptosis in malignant cells. Its relationship with circadian rhythms, energetic homeostasis, diet, and metabolism, is fundamental to achieve a better comprehension of how melatonin has been considered a chemopreventive molecule, though very few papers dealing with this issue. In this article, we tried to review the most recent evidence regarding the protective as well as the antitumoral mechanisms of melatonin, as related to diet and metabolic balance. From different studies, it was evident that an intracellular antioxidant defense mechanism is activated by upregulating an antioxidant gene battery in the presence of high-dose melatonin in malignant cells. Like other broad-spectrum antioxidant molecules, melatonin plays a vital role in killing tumor cells, preventing metastasis, and simultaneously keeping normal cells protected from oxidative stress and other types of tissue damage.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | | | - Nadia Saffoon
- Department of Pharmacy and Forensic Science, Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
32
|
Fathizadeh H, Mirzaei H, Asemi Z. Melatonin: an anti-tumor agent for osteosarcoma. Cancer Cell Int 2019; 19:319. [PMID: 31798348 PMCID: PMC6884844 DOI: 10.1186/s12935-019-1044-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma is the most common bone tumors which consisted of malignant mesenchymal cells generating osteoid and immature bone. It has been showed that osteosarcoma is common in children and adolescents and shows high mortality rate. A variety of therapeutic approaches (i.e., resection surgery, combined with chemotherapy and radiotherapy) have been used as conventional treatments in patients with osteosarcoma. Despite several attempts to improve therapeutic response, the rate of survival for osteosarcoma has not changed during the past 3 decades. Therefore, the discovery and developing new effective therapeutic platforms are required. Along to the established anti-cancer agents, some physiological regulators such melatonin, have been emerged as new anti-cancer agents. Melatonin is an indolamine hormone which is secreted from the pineal glands during the night and acts as physiological regulator. Given that melatonin shows a wide spectrum anti-tumor impacts. Besides different biologic activities of melatonin (e.g., immunomodulation and antioxidant properties), melatonin has a crucial role in the formation of bones, and its deficiency could be directly related to bone cancers. Several in vitro and in vivo experiments evaluated the effects of melatonin on osteosarcoma and other types of bone cancer. Taken together, the results of these studies indicated that melatonin could be introduced as new therapeutic candidate or as adjuvant in combination with other anti-tumor agents in the treatment of osteosarcoma. Herein, we summarized the anti-tumor effects of melatonin for osteosarcoma cancer as well as its mechanism of action.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- 1Department of Microbiology, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Hamed Mirzaei
- 2Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- 2Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
33
|
Shi T, Min M, Sun C, Zhang Y, Liang M, Sun Y. Does insomnia predict a high risk of cancer? A systematic review and meta‐analysis of cohort studies. J Sleep Res 2019; 29:e12876. [DOI: 10.1111/jsr.12876] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/01/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tingting Shi
- Department of Epidemiology and Health Statistics School of Public Health Anhui Medical University Hefei China
| | - Min Min
- Department of Epidemiology and Health Statistics School of Public Health Anhui Medical University Hefei China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago Chicago Illinois
| | - Yun Zhang
- Department of Epidemiology and Health Statistics School of Public Health Anhui Medical University Hefei China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics School of Public Health Anhui Medical University Hefei China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics School of Public Health Anhui Medical University Hefei China
- Center for Evidence‐Based Practice Anhui Medical University Hefei China
| |
Collapse
|
34
|
Gil-Martín E, Egea J, Reiter RJ, Romero A. The emergence of melatonin in oncology: Focus on colorectal cancer. Med Res Rev 2019; 39:2239-2285. [PMID: 30950095 DOI: 10.1002/med.21582] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2019] [Accepted: 03/16/2019] [Indexed: 12/17/2022]
Abstract
Within the last few decades, melatonin has increasingly emerged in clinical oncology as a naturally occurring bioactive molecule with substantial anticancer properties and a pharmacological profile optimal for joining the currently available pharmacopeia. In addition, extensive experimental data shows that this chronobiotic agent exerts oncostatic effects throughout all stages of tumor growth, from initial cell transformation to mitigation of malignant progression and metastasis; additionally, melatonin alleviates the side effects and improves the welfare of radio/chemotherapy-treated patients. Thus, the support of clinicians and oncologists for the use of melatonin in both the treatment and proactive prevention of cancer is gaining strength. Because of its epidemiological importance and symptomatic debut in advanced stages of difficult clinical management, colorectal cancer (CRC) is a preferential target for testing new therapies. In this regard, the development of effective forms of clinical intervention for the improvement of CRC outcome, specifically metastatic CRC, is urgent. At the same time, the need to reduce the costs of conventional anti-CRC therapy results is also imperative. In light of this status quo, the therapeutic potential of melatonin, and the direct and indirect critical processes of CRC malignancy it modulates, have aroused much interest. To illuminate the imminent future on CRC research, we focused our attention on the molecular mechanisms underlying the multiple oncostatic actions displayed by melatonin in the onset and evolution of CRC and summarized epidemiological evidence, as well as in vitro, in vivo and clinical findings that support the broadly protective potential demonstrated by melatonin.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Biomedical Research Center (CINBIO, 'Centro Singular de Investigación de Galicia'), University of Vigo, Vigo, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Laboratory, Research Unit, Hospital Universitario Santa Cristina, Madrid, Spain.,Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
35
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
36
|
Hinojosa-Godinez A, Jave-Suarez LF, Flores-Soto M, Gálvez-Contreras AY, Luquín S, Oregon-Romero E, González-Pérez O, González-Castañeda RE. Melatonin modifies SOX2 + cell proliferation in dentate gyrus and modulates SIRT1 and MECP2 in long-term sleep deprivation. Neural Regen Res 2019; 14:1787-1795. [PMID: 31169197 PMCID: PMC6585545 DOI: 10.4103/1673-5374.257537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Melatonin is a pleiotropic molecule that, after a short-term sleep deprivation, promotes the proliferation of neural stem cells in the adult hippocampus. However, this effect has not been observed in long-term sleep deprivation. The precise mechanism exerted by melatonin on the modulation of neural stem cells is not entirely elucidated, but evidence indicates that epigenetic regulators may be involved in this process. In this study, we investigated the effect of melatonin treatment during a 96-hour sleep deprivation and analyzed the expression of epigenetic modulators predicted by computational text mining and keyword clusterization. Our results showed that the administration of melatonin under sleep-deprived conditions increased the MECP2 expression and reduced the SIRT1 expression in the dentate gyrus. We observed that let-7b, mir-132, and mir-124 were highly expressed in the dentate gyrus after melatonin administration, but they were not modified by sleep deprivation. In addition, we found more Sox2+/5-bromo-2′-deoxyuridine (BrdU)+ cells in the subgranular zone of the sleep-deprived group treated with melatonin than in the untreated group. These findings may support the notion that melatonin modifies the expression of epigenetic mediators that, in turn, regulate the proliferation of neural progenitor cells in the adult dentate gyrus under long-term sleep-deprived conditions. All procedures performed in this study were approved by the Animal Ethics Committee of the University of Guadalajara, Mexico (approval No. CI-16610) on January 2, 2016.
Collapse
Affiliation(s)
- Alan Hinojosa-Godinez
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Luis F Jave-Suarez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Mario Flores-Soto
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Alma Y Gálvez-Contreras
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias; Unidad de Atención en Neurociencias, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Sonia Luquín
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Edith Oregon-Romero
- Instituto de Investigación en Ciencias Biomédicas (IICB), Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Oscar González-Pérez
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad de Colima, Colima, México
| | - Rocio E González-Castañeda
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias; Unidad de Atención en Neurociencias, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
37
|
Wang Q, Sun Z, Du L, Xu C, Wang Y, Yang B, He N, Wang J, Ji K, Liu Y, Liu Q. Melatonin Sensitizes Human Colorectal Cancer Cells to γ-ray Ionizing Radiation In Vitro and In Vivo. Int J Mol Sci 2018; 19:ijms19123974. [PMID: 30544713 PMCID: PMC6320774 DOI: 10.3390/ijms19123974] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is the most commonly reported gastrointestinal malignancy, with a recent, rapid increase of the annual incidence all over the world. Enhancing the radiosensitivity of cancer cells while preserving the health of normal cells is one of the most important tasks in clinical radiobiology. However, resistance to radiotherapy for colorectal cancer greatly decreases the therapeutic outcome. Melatonin (N-acetyl-5-methoxytryptamine), a natural secretory product that the pineal gland in the brain normally produces, has been reported to have anticancer properties. In the study, we investigated the combination of melatonin with radiotherapy as a treatment for colorectal cancer. We firstly explored the anti-tumor activity of melatonin combined with ionizing radiation (IR) against colorectal carcinoma in vitro. It was found that melatonin effectively inhibited human colorectal carcinoma cell line HCT 116 cellular proliferation, colony formation rate and cell migration counts following IR. Increasing the radiosensitivity of colorectal cancer cells by melatonin treatment was found to be associated with cell cycle arrest in the G2/M phase, downregulation of proteins involved in DNA double-strand break repair and activation of the caspase-dependent apoptotic pathway. Moreover, we also investigated the combined effect of IR and melatonin on colorectal tumor in vivo. Results from a tumor xenograft showed that melatonin plus IR treatment significantly suppressed tumor cell growth compared with melatonin or IR alone, resulting in a much higher tumor inhibition rate for the combined treatment. The data suggested that melatonin combined with IR could improve the radiosensitivity of colorectal cancer and thus enhance the therapeutic effect of the patients, implying melatonin could function as a potential sensitizer in tumor radiotherapy.
Collapse
Affiliation(s)
- Qin Wang
- Tianjin Key Lab of Radiation Medicine Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Zhijuan Sun
- Tianjin Key Lab of Radiation Medicine Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Liqing Du
- Tianjin Key Lab of Radiation Medicine Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Chang Xu
- Tianjin Key Lab of Radiation Medicine Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Yan Wang
- Tianjin Key Lab of Radiation Medicine Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Bing Yang
- Department of Cellular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Ningning He
- Tianjin Key Lab of Radiation Medicine Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Jinhan Wang
- Tianjin Key Lab of Radiation Medicine Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Kaihua Ji
- Tianjin Key Lab of Radiation Medicine Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Yang Liu
- Tianjin Key Lab of Radiation Medicine Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Qiang Liu
- Tianjin Key Lab of Radiation Medicine Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
38
|
Bojková B, Kubatka P, Qaradakhi T, Zulli A, Kajo K. Melatonin May Increase Anticancer Potential of Pleiotropic Drugs. Int J Mol Sci 2018; 19:E3910. [PMID: 30563247 PMCID: PMC6320927 DOI: 10.3390/ijms19123910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is not only a pineal hormone, but also an ubiquitary molecule present in plants and part of our diet. Numerous preclinical and some clinical reports pointed to its multiple beneficial effects including oncostatic properties, and as such, it has become one of the most aspiring goals in cancer prevention/therapy. A link between cancer and inflammation and/or metabolic disorders has been well established and the therapy of these conditions with so-called pleiotropic drugs, which include non-steroidal anti-inflammatory drugs, statins and peroral antidiabetics, modulates a cancer risk too. Adjuvant therapy with melatonin may improve the oncostatic potential of these drugs. Results from preclinical studies are limited though support this hypothesis, which, however, remains to be verified by further research.
Collapse
Affiliation(s)
- Bianka Bojková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárová 2, 041 54 Košice, Slovak Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic.
- Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4C, 036 01 Martin, Slovak Republic.
| | - Tawar Qaradakhi
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia.
| | - Anthony Zulli
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia.
| | - Karol Kajo
- St. Elisabeth Oncology Institute, Heydukova 10, 811 08 Bratislava, Slovak Republic.
- Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic.
| |
Collapse
|
39
|
Sex Differences in the Association between Night Shift Work and the Risk of Cancers: A Meta-Analysis of 57 Articles. DISEASE MARKERS 2018; 2018:7925219. [PMID: 30598709 PMCID: PMC6287141 DOI: 10.1155/2018/7925219] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/25/2018] [Indexed: 01/20/2023]
Abstract
Objectives To identify the association between night shift work and the risk of various cancers with a comprehensive perspective and to explore sex differences in this association. Methods We searched PubMed, Embase, and Web of Science for studies on the effect of night shift work on cancer, including case-control, cohort, and nested case-control studies. We computed risk estimates with 95% confidence intervals (CIs) in a random or fixed effects model and quantified heterogeneity using the I 2 statistic. Subgroup, metaregression, and sensitivity analyses were performed to explore potential sources of heterogeneity. Contour-enhanced funnel plots and the trim and fill method were used together to analyze bias. Linear dose-response analysis was used to quantitatively estimate the accumulative effect of night shift work on the risk of cancer. Results Fifty-eight studies were eligible for our meta-analysis, including 5,143,838 participants. In the random effects model, the pooled odds ratio (OR) of cancers was 1.15 (95% CI = 1.08-1.22, P < 0.001; I 2 = 76.2%). Night shift work increased the cancer risk in both men (OR = 1.14, 95% CI = 1.05-1.25, P = 0.003) and women (OR = 1.12, 95% CI = 1.04-1.20, P = 0.002). Subgroup analyses showed that night shift work positively increased the risk of breast (OR = 1.22, 95% CI = 1.08-1.38), prostate (OR = 1.26, 95% CI = 1.05-1.52), and digestive system (OR = 1.15, 95% CI = 1.01-1.32) cancers. For every 5 years of night shift work, the cancer risk increased by 3.2% (OR = 1.032, 95% CI = 1.013-1.051). Conclusion This is the first meta-analysis identifying the positive association between night shift work and the risk of cancer and verifying that there is no sex difference in the effect of night shift work on cancer risk. Cancer risk increases with cumulative years of night shift work.
Collapse
|
40
|
AG1031 induces apoptosis through suppressing SIRT1/p53 pathway in human neuroblastoma cells. Mol Cell Biochem 2018; 454:165-175. [DOI: 10.1007/s11010-018-3461-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
|
41
|
Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu DP, Li HB. Melatonin for the prevention and treatment of cancer. Oncotarget 2018; 8:39896-39921. [PMID: 28415828 PMCID: PMC5503661 DOI: 10.18632/oncotarget.16379] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/09/2017] [Indexed: 12/17/2022] Open
Abstract
The epidemiological studies have indicated a possible oncostatic property of melatonin on different types of tumors. Besides, experimental studies have documented that melatonin could exert growth inhibition on some human tumor cells in vitro and in animal models. The underlying mechanisms include antioxidant activity, modulation of melatonin receptors MT1 and MT2, stimulation of apoptosis, regulation of pro-survival signaling and tumor metabolism, inhibition on angiogenesis, metastasis, and induction of epigenetic alteration. Melatonin could also be utilized as adjuvant of cancer therapies, through reinforcing the therapeutic effects and reducing the side effects of chemotherapies or radiation. Melatonin could be an excellent candidate for the prevention and treatment of several cancers, such as breast cancer, prostate cancer, gastric cancer and colorectal cancer. This review summarized the anticancer efficacy of melatonin, based on the results of epidemiological,experimental and clinical studies, and special attention was paid to the mechanisms of action.
Collapse
Affiliation(s)
- Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
42
|
Menéndez-Menéndez J, Martínez-Campa C. Melatonin: An Anti-Tumor Agent in Hormone-Dependent Cancers. Int J Endocrinol 2018; 2018:3271948. [PMID: 30386380 PMCID: PMC6189685 DOI: 10.1155/2018/3271948] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 08/12/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a hormone synthesized and secreted by the pineal gland mainly during the night, since light exposure suppresses its production. Initially, an implication of this indoleamine in malignant disease was described in endocrine-responsive breast cancer. Data from several clinical trials and multiple experimental studies performed both in vivo and in vitro have documented that the pineal hormone inhibits endocrine-dependent mammary tumors by interfering with the estrogen signaling-mediated transcription, therefore behaving as a selective estrogen receptor modulator (SERM). Additionally, melatonin regulates the production of estradiol through the control of the enzymes involved in its synthesis, acting as a selective estrogen enzyme modulator (SEEM). Many more mechanisms have been proposed during the past few years, including signaling triggered after activation of the membrane melatonin receptors MT-1 and MT-2, or else intracellular actions targeting molecules such as calmodulin, or binding intranuclear receptors. Similar results have been obtained in prostate (regulation of enzymes involved in androgen synthesis and modulation of androgen receptor levels and activity) and ovary cancer. Thus, tumor metabolism, gene expression, or epigenetic modifications are modulated, cell growth is impaired and angiogenesis and metastasis are inhibited. In the last decade, many more reports have demonstrated that melatonin is a promising adjuvant molecule with many potential beneficial consequences when included in chemotherapy or radiotherapy protocols designed to treat endocrine-responsive tumors. Therefore, in this state-of-the-art review, we aim to compile the knowledge about the oncostatic actions of the indoleamine in hormone-dependent tumors, and the latest findings concerning melatonin actions when administered in combination with radio- or chemotherapy in breast, prostate, and ovary cancers. As melatonin has no toxicity, it may be well deserve to be considered as an endogenously generated agent helpful in cancer prevention and treatment.
Collapse
Affiliation(s)
- Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
43
|
Ma M, Chen XY, Li B, Li XT. Melatonin protects premature ovarian insufficiency induced by tripterygium glycosides: role of SIRT1. Am J Transl Res 2017; 9:1580-1602. [PMID: 28469767 PMCID: PMC5411910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Melatonin confers protective effects on premature ovarian insufficiency (POI) induced by tripterygium glycosides (TG) by reducing oxidative stress. Silent information regulator 1 (SIRT1) signaling is found to be associated with the physiology and pathology of ovary. We hypothesize that melatonin could protect POI via activating SIRT1 signaling. The aim of this study was to investigate the protective effect of melatonin on POI and elucidate its potential mechanisms. Mice were assigned to melatonin treatment with or without SIRT1 inhibitor Ex527 or melatonin receptor antagonist luzindole (Luz) and then subjected to POI. Melatonin conferred a protective effect by improving estrous phase, ovarian and uterus mass and index, increasing ovarian follicles, corpus luteum and anti-mullerian hormone (AMH), decreasing atresia follicles and follicle stimulating hormone (FSH). Melatonin treatment also could reduce malondialdehyde (MDA) level, MDA5, Gp91phox, Caspase3 and Bax expression, and increase total antioxidant activity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and Bcl-2 expression by up-regulating SIRT1 signaling. However, these protective effects were blocked by Ex527 and Luz, indicating that SIRT1 signaling and melatonin receptor might be specially involved in these effects. In summary, these findings suggest that melatonin protects POI by reducing oxidative stress and apoptotic damage via activation of SIRT1 signaling in a receptor-dependent manner.
Collapse
Affiliation(s)
- Min Ma
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, China
| | - Xiu-Ying Chen
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, China
| | - Bin Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, China
| | - Xiao-Tian Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, China
- Institute of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai 200032, China
| |
Collapse
|
44
|
Abstract
The ability to appropriately respond to proteotoxic stimuli is a major determinant of longevity and involves induction of various heat shock response (HSR) genes, which are essential to cope with cellular and organismal insults throughout lifespan. The activity of NAD+-dependent deacetylase Sir2, originally discovered in yeast, is known to be essential for effective HSR and longevity. Our previous work on HSR inDaphnia pulicaria indicated a drastic reduction of the HSR in older organisms. In this report we investigate the role of Sir2 in regulating HSR during the lifespan of D. pulicaria. We cloned Daphnia Sir2 open reading frame (ORF) to characterize the enzyme activity and confirmed that the overall function of Sir2 was conserved in Daphnia. The Sir2 mRNA levels increased while the enzyme activity declined with age and considering that Sir2 activity regulates HSR, this explains the previously observed age-dependent decline in HSR. Finally, we tested the effect of Sir2 knockdown throughout adult life by using our new RNA interference (RNAi) method by feeding. Sir2 knockdown severely reduced both the median lifespan as well as significantly increased mortality following heat shock. Our study provides the first characterization and functional study of Daphnia Sir2.
Collapse
|
45
|
Tai SY, Huang SP, Bao BY, Wu MT. Urinary melatonin-sulfate/cortisol ratio and the presence of prostate cancer: A case-control study. Sci Rep 2016; 6:29606. [PMID: 27387675 PMCID: PMC4937372 DOI: 10.1038/srep29606] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/22/2016] [Indexed: 12/29/2022] Open
Abstract
The circadian-related hormones, melatonin and cortisol, have oncostatic and immunosuppressive properties. This study examined the relationship between these two biomarkers and the presence of prostate cancer. We measured their major metabolites in urine collected from 120 newly diagnosed prostate cancer patients and 240 age-matched controls from January 2011 to April 2014. Compared with patients with lower urinary melatonin-sulfate or melatonin-sulfate/cortisol (MT/C) ratio levels, those with above-median levels were significantly less likely to have prostate cancer (adjusted OR (aOR) = 0.59, 95% CI = 0.35–0.99; aOR = 0.46, 95% CI: 0.27–0.77) or advanced stage prostate cancer (aOR = 0.49, 95% CI = 0.26–0.89; aOR = 0.33, 95% CI = 0.17–0.62). The combined effect of both low MT/C ratios and PSA levels exceeding 10 ng/ml was an 8.82-fold greater likelihood of prostate cancer and a 32.06-fold greater likelihood of advanced stage prostate cancer, compared to those with both high MT/C ratios and PSA levels less than 10 ng/ml. In conclusion, patients with high melatonin-sulfate levels or a high MT/C ratio were less likely to have prostate cancer or advanced stage prostate. Besides, a finding of a low MT/C ratio combined with a PSA level exceeding 10 ng/ml showed the greatest potential in detecting prostate cancer and advanced stage prostate cancer.
Collapse
Affiliation(s)
- Shu-Yu Tai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Family Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Family Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, Taiwan.,Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| | - Ming-Tsang Wu
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Public Health, Kaohsiung Medical University, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center of Environmental and Occupational Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
46
|
Cui Y, Li J, Zheng F, Ouyang Y, Chen X, Zhang L, Chen Y, Wang L, Mu S, Zhang H. Effect of SIRT1 Gene on Epithelial-Mesenchymal Transition of Human Prostate Cancer PC-3 Cells. Med Sci Monit 2016; 22:380-6. [PMID: 26847404 PMCID: PMC4747318 DOI: 10.12659/msm.895312] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background The epithelial-mesenchymal transition (EMT) has been shown to be involved in the process of invasion and metastasis of prostate cancer. SIRT1 is the mammalian homologue of the silent information regulator 2 (Sir2) gene, and is abnormally expressed in prostate cancer cells. Therefore, it is hypothesized that SIRT1 mediates the invasion/metastatic ability of prostate cancer via EMT regulation. This study thus investigated the effect of SIRT1 gene on the invasion and migration of prostate cancer cell line PC-3 via the small interference RNA (siRNA) against SIRT1. Material/Methods SiRNA construct was transfected into PC-3 cells, which were tested for the cell migration and invasion ability by scratch assay and Transwell migration assay, respectively. Expression levels of vimentin, E-cadherin, and N-cadherin were further quantified by Western blotting and RT-PCR. Results Both mRNA and protein levels of SIRT1 were depressed after siRNA transfection, along with weakened migration and invasion ability of PC-3 cells. Elevated E-cadherin and suppressed N-cadherin and vimentin were observed in those transfected cells. Conclusions The silencing of SIRT1 gene in PC-3 cells can suppress the movement, migration, and invasion functions of prostate cancer cells, possibly via the down-regulation of mesenchymal markers vimentin and N-cadherin accompanied with up-regulation of epithelial marker N-cadherin, thus reversing the EMT process.
Collapse
Affiliation(s)
- Ying Cui
- Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi, China (mainland)
| | - Jiang Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi, China (mainland)
| | - Fei Zheng
- Department of Hepatobiliary Surgery, General Hospital of Shenyang Military Command, Shenyang, Liaoning, China (mainland)
| | - Yongri Ouyang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi, China (mainland)
| | - Xi Chen
- Department of Medical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi, China (mainland)
| | - Lei Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi, China (mainland)
| | - Yang Chen
- Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi, China (mainland)
| | - Lin Wang
- Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi, China (mainland)
| | - Shijie Mu
- Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi, China (mainland)
| | - Huizhong Zhang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shanxi, China (mainland)
| |
Collapse
|
47
|
Dauchy RT, Hoffman AE, Wren-Dail MA, Hanifin JP, Warfield B, Brainard GC, Xiang S, Yuan L, Hill SM, Belancio VP, Dauchy EM, Smith K, Blask DE. Daytime Blue Light Enhances the Nighttime Circadian Melatonin Inhibition of Human Prostate Cancer Growth. Comp Med 2015; 65:473-85. [PMID: 26678364 PMCID: PMC4681241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/24/2015] [Accepted: 07/16/2015] [Indexed: 06/05/2023]
Abstract
Light controls pineal melatonin production and temporally coordinates circadian rhythms of metabolism and physiology in normal and neoplastic tissues. We previously showed that peak circulating nocturnal melatonin levels were 7-fold higher after daytime spectral transmittance of white light through blue-tinted (compared with clear) rodent cages. Here, we tested the hypothesis that daytime blue-light amplification of nocturnal melatonin enhances the inhibition of metabolism, signaling activity, and growth of prostate cancer xenografts. Compared with male nude rats housed in clear cages under a 12:12-h light:dark cycle, rats in blue-tinted cages (with increased transmittance of 462-484 nm and decreased red light greater than 640 nm) evinced over 6-fold higher peak plasma melatonin levels at middark phase (time, 2400), whereas midlight-phase levels (1200) were low (less than 3 pg/mL) in both groups. Circadian rhythms of arterial plasma levels of linoleic acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were disrupted in rats in blue cages as compared with the corresponding entrained rhythms in clear-caged rats. After implantation with tissue-isolated PC3 human prostate cancer xenografts, tumor latency-to-onset of growth and growth rates were markedly delayed, and tumor cAMP levels, uptake-metabolism of linoleic acid, aerobic glycolysis (Warburg effect), and growth signaling activities were reduced in rats in blue compared with clear cages. These data show that the amplification of nighttime melatonin levels by exposing nude rats to blue light during the daytime significantly reduces human prostate cancer metabolic, signaling, and proliferative activities.
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, USA.
| | - Aaron E Hoffman
- Department of Epidemiology, Tulane University School of Medicine, Tulane, Louisiana, USA
| | - Melissa A Wren-Dail
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, USA
| | - John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Benjamin Warfield
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shulin Xiang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, USA
| | - Lin Yuan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, USA
| | - Steven M Hill
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, USA
| | - Victoria P Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, USA
| | - Erin M Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, USA
| | - Kara Smith
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, USA
| | - David E Blask
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, USA
| |
Collapse
|
48
|
Fan C, Pan Y, Yang Y, Di S, Jiang S, Ma Z, Li T, Zhang Z, Li W, Li X, Reiter RJ, Yan X. HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways. J Pineal Res 2015; 59:321-33. [PMID: 26184924 DOI: 10.1111/jpi.12261] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/10/2015] [Indexed: 01/07/2023]
Abstract
Melatonin is an indoleamine synthesized in the pineal gland that shows a wide range of physiological and pharmacological functions, including anticancer effects. In this study, we investigated the effect of melatonin on drug-induced cellular apoptosis against the cultured human lung adenocarcinoma cells and explored the role of histone deacetylase (HDAC) signaling in this process. The results showed that melatonin treatment led to a dose- and time-dependent decrease in the viability of human A549 and PC9 lung adenocarcinoma cells. Additionally, melatonin exhibited potent anticancer activity in vitro, as evidenced by reductions of the cell adhesion, migration, and the intracellular glutathione (GSH) level and increases in the apoptotic index, caspase 3 activity, and reactive oxygen species (ROS) in A549 and PC9 cells. Melatonin treatment also influenced the expression of HDAC-related molecules (HDAC1 and Ac-histone H3), upregulated the apoptosis-related molecules (PUMA and Bax), and downregulated the proliferation-related molecule (PCNA) and the anti-apoptosis-related molecule (Bcl2). Furthermore, the inhibition of HDAC signaling using HDAC1 siRNA or SAHA (a potent pan-inhibitor of HDACs) sensitized A549 and PC9 cells to the melatonin treatment. In summary, these data indicate that in vitro-administered melatonin is a potential suppressor of lung adenocarcinoma cells by the targeting of HDAC signaling and suggest that melatonin in combination with HDAC inhibitors may be a novel therapeutic intervention for human lung adenocarcinoma.
Collapse
Affiliation(s)
- Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yunhu Pan
- Department of Respiratory Medicine, The 92nd Hospital of PLA, Nanping, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weimiao Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
49
|
Roswall N, Eriksen KT, Hjortebjerg D, Jensen SS, Overvad K, Tjønneland A, Raaschou-Nielsen O, Sørensen M. Residential Exposure to Road and Railway Noise and Risk of Prostate Cancer: A Prospective Cohort Study. PLoS One 2015; 10:e0135407. [PMID: 26305219 PMCID: PMC4549252 DOI: 10.1371/journal.pone.0135407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/21/2015] [Indexed: 01/13/2023] Open
Abstract
Background Few modifiable risk factors for prostate cancer are known. Recently, disruption of the circadian system has been proposed to affect risk, as it entails an inhibited melatonin production, and melatonin has demonstrated beneficial effects on cancer inhibition. This suggests a potential role of traffic noise in prostate cancer. Methods Road traffic and railway noise was calculated for all present and historical addresses from 1987–2010 for a cohort of 24,473 middle-aged, Danish men. During follow-up, 1,457 prostate cancer cases were identified. We used Cox Proportional Hazards Models to calculate the association between noise exposure and incident prostate cancer. Incidence Rate Ratios (IRR) were calculated as crude and adjusted for smoking status, education, socioeconomic position, BMI, waist circumference, physical activity, calendar year, and traffic noise from other sources than the one investigated. Results There was no association between residential road traffic noise and risk of prostate cancer for any of the three exposure windows: 1, 5 or 10-year mean noise exposure before prostate cancer diagnosis. This result persisted when stratifying cases by aggressiveness. For railway noise, there was no association with overall prostate cancer. There was no statistically significant effect modification by age, education, smoking status, waist circumference or railway noise, on the association between road traffic noise and prostate cancer, although there seemed to be a suggestion of an association among never smokers (IRR: 1.16; 95% CI: 1.00–1.36). Conclusion The present study does not support an overall association between either railway or road traffic noise and overall prostate cancer.
Collapse
Affiliation(s)
- Nina Roswall
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | | | - Steen S Jensen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
50
|
Melatonin inhibits embryonic salivary gland branching morphogenesis by regulating both epithelial cell adhesion and morphology. PLoS One 2015; 10:e0119960. [PMID: 25876057 PMCID: PMC4398443 DOI: 10.1371/journal.pone.0119960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/18/2015] [Indexed: 12/15/2022] Open
Abstract
Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or "brake" of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development.
Collapse
|