1
|
Zhu CZ, Li GZ, Lyu HF, Lu YY, Li Y, Zhang XN. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 2024:10.1038/s41401-024-01398-2. [PMID: 39448859 DOI: 10.1038/s41401-024-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin's ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Chen-Ze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Zhi Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hai-Feng Lyu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yang-Yang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
2
|
Wang Y, Gong J, Heng N, Hu Y, Wang R, Wang H, He W, Zhu N, Hu Z, Hao H, Zhu H, Zhao S. Melatonin alleviates palmitic acid-induced mitochondrial dysfunction by reducing oxidative stress and enhancing autophagy in bovine endometrial epithelial cells. J Anim Sci Biotechnol 2024; 15:108. [PMID: 39113148 PMCID: PMC11308371 DOI: 10.1186/s40104-024-01064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Negative energy balance (NEB) typically occurs in dairy cows after delivery. Cows with a high yield are more likely to experience significant NEB. This type of metabolic imbalance could cause ketosis, which is often accompanied by a decline in reproductive performance. However, the molecular mechanisms underlying NEB have yet to be fully elucidated. During excessive NEB, the body fat is extensively broken down, resulting in the abnormal accumulation of non-esterified fatty acids (NEFAs), represented by palmitic acid (PA), within the uterus. Such an abnormal accumulation has the potential to damage bovine endometrial epithelial cells (BEECs), while the molecular mechanisms underlying its involvement in the PA-induced injury of BEECs remains poorly understood. Melatonin (MT) is recognized for its regulatory role in maintaining the homeostasis of mitochondrial reactive oxygen species (mitoROS). However, little is known as to whether MT could ameliorate the damage incurred by BEECs in response to PA and the molecular mechanism involved. RESULTS Analysis showed that 0.2 mmol/L PA stress increased the level of cellular and mitochondrial oxidative stress, as indicated by increased reactive oxygen species (ROS) level. In addition, we observed mitochondrial dysfunction, including abnormal mitochondrial structure and respiratory function, along with a reduction in mitochondrial membrane potential and mitochondrial copy number, and the induction of apoptosis. Notably, we also observed the upregulation of autophagy proteins (PINK, Parkin, LC3B and Ubiquitin), however, the P62 protein was also increased. As we expected, 100 μmol/L of MT pre-treatment attenuated PA-induced mitochondrial ROS and restored mitochondrial respiratory function. Meanwhile, MT pretreatment reversed the upregulation of P62 induced by PA and activated the AMPK-mTOR-Beclin-1 pathway, contributing to an increase of autophagy and decline apoptosis. CONCLUSIONS Our findings indicate that PA can induce mitochondrial dysfunction and enhance autophagy in BEECs. In addition, MT is proved to not only reduce mitochondrial oxidative stress but also facilitate the clearance of damaged mitochondria by upregulating autophagy pathways, thereby safeguarding the mitochondrial pool and promoting cellular viability. Our study provides a better understanding of the molecular mechanisms underlying the effect of an excess of NEB on the fertility outcomes of high yielding dairy cows.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jianfei Gong
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Nuo Heng
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yingfan Hu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Rui Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huan Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Wei He
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ni Zhu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhihui Hu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Haisheng Hao
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huabin Zhu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shanjiang Zhao
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| |
Collapse
|
3
|
Zhao Y, Zhao X, Jiang T, Xi H, Jiang Y, Feng X. A Retrospective Review on Dysregulated Autophagy in Polycystic Ovary Syndrome: From Pathogenesis to Therapeutic Strategies. Horm Metab Res 2024. [PMID: 38565184 DOI: 10.1055/a-2280-7130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The main purpose of this article is to explore the relationship between autophagy and the pathological mechanism of PCOS, and to find potential therapeutic methods that can alleviate the pathological mechanism of PCOS by targeting autophagy. Relevant literatures were searched in the following databases, including: PubMed, MEDLINE, Web of Science, Scopus. The search terms were "autophagy", "PCOS", "polycystic ovary syndrome", "ovulation", "hyperandrogenemia", "insulin resistance", "inflammatory state", "circadian rhythm" and "treatment", which were combined according to the retrieval methods of different databases. Through analysis, we uncovered that abnormal levels of autophagy were closely related to abnormal ovulation, insulin resistance, hyperandrogenemia, and low-grade inflammation in patients with PCOS. Lifestyle intervention, melatonin, vitamin D, and probiotics, etc. were able to improve the pathological mechanism of PCOS via targeting autophagy. In conclusion, autophagy disorder is a key pathological mechanism in PCOS and is also a potential target for drug development and design.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianyue Jiang
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyan Xi
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuepeng Jiang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Bai K, Hao E, Huang CX, Yue QX, Wang DH, Shi L, Chen YF, Chen H, Huang RL. Melatonin alleviates ovarian function damage and oxidative stress induced by dexamethasone in the laying hens through FOXO1 signaling pathway. Poult Sci 2023; 102:102745. [PMID: 37302326 PMCID: PMC10276286 DOI: 10.1016/j.psj.2023.102745] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 06/13/2023] Open
Abstract
Oxidative stress can trigger follicular atresia, and decrease follicles quantity in each development stage, thereby alleviating reproductive activity. The induction of oxidative stress in chickens through intraperitoneal injection of dexamethasone is a reliable and stable method. Melatonin has been shown to mitigate oxidative stress in this model, but the underlying mechanism remains unclear. Therefore, this study aimed to investigate whether melatonin can recover aberrant antioxidant status induced by dexamethasone and the specific mechanism behind melatonin-dependent protection. A total of 150 healthy 40-wk-old Dawu Jinfeng laying hens with similar body weights and laying rates were randomly divided into three groups, with five replicates per group and 10 hens per replicate. The hens in the control group (NS) received intraperitoneal injections of normal saline for 30 d, the dexamethasone group (Dex+NS) received 20 mg/kg dose of dexamethasone for the first 15 d, followed by the 15 d of normal saline treatment. While in the melatonin group (Dex+Mel), dexamethasone (20 mg/kg dose) was injected intraperitoneally in the first 15 d, and melatonin (20 mg/kg/d) was injected in the last 15 d. The results showed that dexamethasone treatment significantly enhanced oxidative stress (P < 0.05), while melatonin not only inhibited the oxidative stress but also notably enhanced the antioxidant enzymes superoxide dismutase (SOD), catalase activity (CAT), glutathione peroxidase (GSH-Px), and antioxidant genes CAT, superoxide dismutase 1 (SOD1), glutathione peroxidase 3 (GPX3), and recombinant peroxiredoxin 3 (PRDX3) expression (P < 0.05). Melatonin treatment also markedly reduced 8-hydroxy deoxyguanosine (8-OHdG), malondialdehyde (MDA), and reactive oxygen species (ROS) levels (P < 0.05) and apoptotic genes Caspase-3, Bim, and Bax in the follicle. In the Dex+Mel group, the Bcl-2 and SOD1 protein levels were also increased (P < 0.05). Melatonin inhibited the forkhead Box Protein O1 (FOXO1) gene and its protein expression (P < 0.05). In general, this investigation revealed that melatonin might decrease oxidative stress and ROS by enhancing antioxidant enzymes and genes, activating the antiapoptotic genes, and inhibiting the FOXO1 pathway in laying hens.
Collapse
Affiliation(s)
- Kang Bai
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Erying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Chen-Xuan Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China; Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala 75007, Sweden
| | - Qiao-Xian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China; Department of Animal Breeding and Genetics, Swedish University of Agricultural Science, Uppsala 75007, Sweden
| | - De-He Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Yi-Fan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China.
| | - Ren-Lu Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| |
Collapse
|
5
|
Jiang M, Liu Z, Shao J, Zhou J, Wang H, Song C, Li X, Wang L, Xu Q, Liu X, Lin L, Zhang R. Estrogen receptor α regulates phenotypic switching and proliferation of vascular smooth muscle cells through the NRF1-OMI-mitophagy signaling pathway under simulated microgravity. Front Physiol 2022; 13:1039913. [DOI: 10.3389/fphys.2022.1039913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Vascular remodeling during microgravity exposure results in postflight cardiovascular deconditioning and orthostatic intolerance in astronauts. To clarify the underlying mechanism, we investigated whether estrogen receptor α (ERα)-NRF1-OMI-mitophagy signaling was involved in the dedifferentiation and proliferation of vascular smooth muscle cells (VSMCs) under simulated microgravity. Phenotypic markers, mtDNA copy number and mitochondrial biogenesis, mitochondrial dynamics and mitophagy in rat thoracic artery smooth muscle cells were examined. Four-week hindlimb unweighting (HU) was used to simulate microgravity in rats and 10% serum was used to induce VSMCs dedifferentiation in vitro. The effects of ERα-NRF1-OMI signaling on mitophagy, phenotypic switching and proliferation of VSMCs, and cerebrovascular remodeling in HU rats were studied by genetic manipulation and chronic drug intervention. We found that ERα is positively associated with contractile phenotype switching but inversely correlated with synthetic phenotype switching and proliferation of VSMCs both in vivo and in vitro. During the dedifferentiation process of VSMCs, reduced mtDNA copy number, disturbed mitochondrial biogenesis and respiration, and perturbed fission-fusion-mitophagy signaling were detected, which were reversed by ERα overexpression. Mechanistically, the ERα downstream protein OMI preserved the mitochondrial Parkin level by increasing its protein stability, thereby protecting mitophagy. In line with this, we found that activating ERα signaling by propyl pyrazole triol (PPT) could alleviate the synthetic phenotype switching and proliferation of HU rat cerebral VSMCs by reestablishing fission-fusion-mitophagy hemostasis. The current study clarified a novel mechanism by which inhibited ERα-NRF1-OMI-mitophagy signaling resulted in synthetic phenotype switching and proliferation of VSMCs and cerebrovascular remodeling under simulated microgravity.
Collapse
|
6
|
Wang Y, Hu LF, Cui PF, Qi LY, Xing L, Jiang HL. Pathologically Responsive Mitochondrial Gene Therapy in an Allotopic Expression-Independent Manner Cures Leber's Hereditary Optic Neuropathy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103307. [PMID: 34431574 DOI: 10.1002/adma.202103307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) is a rare inherited blindness caused by mutations in the mitochondrial DNA (mtDNA). The disorder is untreatable and tricky, as the existing chemotherapeutic agent Idebenone alleviates symptoms rather than overcoming the underlying cause. Although some studies have made progress on allotopic expression for LHON, in situ mitochondrial gene therapy remains challenging, which may simplify delivery procedures to be a promising therapeutic for LHON. LHON becomes more difficult to manage in the changed mitochondrial microenvironment, including increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP). Herein, a pathologically responsive mitochondrial gene delivery vector named [triphenylphosphine-terminated poly(sulfur-containing thioketal undecafluorohexylamine histamine) and Ide-terminated poly(sulfur-containing thioketal undecafluorohexylamine histamine)] (TISUH) is reported to facilitate commendable in situ mitochondrial gene therapy for LHON. TISUH directly targets diseased mitochondria via triphenylphosphine and fluorination addressing the decreasing MMP. In addition, TISUH can be disassembled by high mitochondrial ROS levels to release functional genes for enhancing gene transfection efficiency and fundamentally correcting genetic abnormalities. In both traditional and gene-mutation-induced LHON mouse models, TISUH-mediated gene therapy shows satisfactory curative effect through the sustained therapeutic protein expression in vivo. This work proposes a novel pathologically responsive in situ mitochondrial delivery platform and provides a promising approach for refractory LHON as well as other mtDNA mutated diseases treatments.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Fan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng-Fei Cui
- School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Lian-Yu Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
7
|
Lyu L, Hu Y, Yin S, Wang L, Ye F, Wang M, Zhou Y, Ma W, Chen C, Jiang Y, Wang Z, Jiang S, Zhou P, Wang X. Autophagy inhibition enhances anti-pituitary adenoma effect of tetrandrine. Phytother Res 2021; 35:4007-4021. [PMID: 34038010 DOI: 10.1002/ptr.7117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 02/05/2023]
Abstract
Pituitary adenoma (PA) is a benign intracranial neoplasm originated from pituitary gland. Surgery is the first-line therapy for most of PAs, but lead to unsatisfactory prognosis in some cases. Tetrandrine (Tet) has anticancer effect on some cancers. However, growth inhibition effect on PA is unknown. To elucidate the inhibitory effect of Tet on the growth of PA and its potential mechanisms, we validated the in vitro and in vivo anti-PA effect of Tet and illustrated the cellular and molecular alterations by confocal microscopy observation, flow cytometry, and RNA interference. Tet inhibited PA cell growth in vitro and tumor progression in vivo. Tet induced autophagy and apoptosis in a dose-dependent manner. Low dosage (1.25 μM) of Tet induced PA cell autophagy by down-regulation of MAPK/STAT3 signal. While, higher dosage (5.0 μM) of Tet partially induced PA cell death through caspase-dependent apoptosis. Autophagy inhibitors enhanced Tet-induced caspase activity and apoptotic cell death. These findings demonstrated that Tet has anti-PA effect by inducing autophagy and apoptosis through MAPK/STAT3 signaling pathway attenuation and autophagy inhibition might enhance its anti-PA effect, indicating that Tet (or combined with autophagy inhibitor) is a potential therapeutic regimen for PAs.
Collapse
Affiliation(s)
- Liang Lyu
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Hu
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Senlin Yin
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Li Wang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
- Laboratory of Lung Cancer, Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Feng Ye
- Department of Neurosurgery, People's Hospital of Deyang City, Deyang, China
| | - Mengmeng Wang
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yueling Zhou
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
| | - Weichao Ma
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Cheng Chen
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Jiang
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zeming Wang
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shu Jiang
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Peizhi Zhou
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiujie Wang
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Luo F, Sandhu AF, Rungratanawanich W, Williams GE, Akbar M, Zhou S, Song BJ, Wang X. Melatonin and Autophagy in Aging-Related Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197174. [PMID: 32998479 PMCID: PMC7584015 DOI: 10.3390/ijms21197174] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
With aging, the nervous system gradually undergoes degeneration. Increased oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and cell death are considered to be common pathophysiological mechanisms of various neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), organophosphate-induced delayed neuropathy (OPIDN), and amyotrophic lateral sclerosis (ALS). Autophagy is a cellular basic metabolic process that degrades the aggregated or misfolded proteins and abnormal organelles in cells. The abnormal regulation of neuronal autophagy is accompanied by the accumulation and deposition of irregular proteins, leading to changes in neuron homeostasis and neurodegeneration. Autophagy exhibits both a protective mechanism and a damage pathway related to programmed cell death. Because of its "double-edged sword", autophagy plays an important role in neurological damage and NDDs including AD, PD, HD, OPIDN, and ALS. Melatonin is a neuroendocrine hormone mainly synthesized in the pineal gland and exhibits a wide range of biological functions, such as sleep control, regulating circadian rhythm, immune enhancement, metabolism regulation, antioxidant, anti-aging, and anti-tumor effects. It can prevent cell death, reduce inflammation, block calcium channels, etc. In this review, we briefly discuss the neuroprotective role of melatonin against various NDDs via regulating autophagy, which could be a new field for future translational research and clinical studies to discover preventive or therapeutic agents for many NDDs.
Collapse
Affiliation(s)
- Fang Luo
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Aaron F. Sandhu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - George E. Williams
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Shuanhu Zhou
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
- Correspondence:
| |
Collapse
|
9
|
Bizzarri M. Advances in Characterizing Recently-Identified Molecular Actions of Melatonin: Clinical Implications. APPROACHING COMPLEX DISEASES 2020. [PMCID: PMC7164543 DOI: 10.1007/978-3-030-32857-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melatonin, N-acetyl-5-methoxy-tryptamine, was discovered to be a product of serotonin metabolism in the mammalian pineal gland where its synthesis is under control of the light:dark cycle. Besides its regulatory pathway involving ganglion cells in the retina, the neural connections between the eyes and the pineal gland include the master circadian clock, the suprachiasmatic nuclei, and the central and peripheral nervous systems. Since pineal melatonin is released into the blood and into the cerebrospinal fluid, it has access to every cell in an organism and it mediates system-wide effects. Subsequently, melatonin was found in several extrapineal organs and, more recently, perhaps in every cell of every organ. In contrast to the pinealocytes, non-pineal cells do not discharge melatonin into the blood; rather it is used locally in an intracrine, autocrine, or paracrine manner. Melatonin levels in non-pineal cells do not exhibit a circadian rhythm and do not depend on circulating melatonin concentrations although when animals are treated with exogenous melatonin it is taken up by presumably all cells. Mitochondria are the presumed site of melatonin synthesis in all cells; the enzymatic machinery for melatonin synthesis has been identified in mitochondria. The association of melatonin with mitochondria, because of its ability to inhibit oxidative stress, is very fortuitous since these organelles are a major site of damaging reactive oxygen species generation. In this review, some of the actions of non-pineal-derived melatonin are discussed in terms of cellular and subcellular physiology.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Villaseñor-Granados T, Díaz-Cervantes E, Soto-Arredondo KJ, Martínez-Alfaro M, Robles J, García-Revilla MA. Binding of Pb-Melatonin and Pb-(Melatonin-metabolites) complexes with DMT1 and ZIP8: implications for lead detoxification. Daru 2019; 27:137-148. [PMID: 30850959 PMCID: PMC6592991 DOI: 10.1007/s40199-019-00256-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/27/2019] [Indexed: 12/17/2022] Open
Abstract
We have applied the docking methodology to characterize the binding modes of the divalent metal transporter 1 (DMT1) and the zinc transporter 8 (ZIP8) protein channels with: melatonin, some melatonin metabolites, and a few lead complexes of melatonin and its metabolites, in three different coordination modes (mono-coordinated, bi-coordinated and tri-coordinated). Our results show that bi-coordinated and tri-coordinated lead complexes prefer to bind inside the central region of ZIP8. Moreover, the interaction strength is larger compared with that of the free melatonin and melatonin metabolites. On the other hand, the binding modes with DMT1 of such complexes display lower binding energies, compared with the free melatonin and melatonin metabolites. Our results suggest that ZIP8 plays a major role in the translocation of Pb, bi or tri coordinated, when melatonin metabolites are present. Finally, we have characterized the binding modes responsible for the ZIP8 large affinities, found in bi-coordinated and tri-coordinated lead complexes. Our results show that such interactions are greater, because of an increase of the number of hydrogen bonds, the number and intensity of electrostatic interactions, and the interaction overlay degree in each binding mode. Our results give insight into the importance of the ZIP8 channel on lead transport and a possible elimination mechanism in lead detoxification processes. Graphical abstract .
Collapse
Affiliation(s)
- Tayde Villaseñor-Granados
- Departamento de Química, Centro de Investigaciones y de Estudios Avanzados del Instituto Politécnico Nacional, Zacatenco, Ciudad de México, Mexico
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, C. P. 36050 Guanajuato, Gto., Mexico
| | - Erik Díaz-Cervantes
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, C. P. 36050 Guanajuato, Gto., Mexico
- Departamento de Alimentos, Centro Interdisciplinario del Noreste (CINUG), Universidad de Guanajuato, 37975 Tierra Blanca, Guanajuato, Mexico
| | - Karla J. Soto-Arredondo
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, C. P. 36050 Guanajuato, Gto., Mexico
| | - Minerva Martínez-Alfaro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, C. P. 36050 Guanajuato, Gto., Mexico
| | - Juvencio Robles
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, C. P. 36050 Guanajuato, Gto., Mexico
| | - Marco A. García-Revilla
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, C. P. 36050 Guanajuato, Guanajuato, Gto. Mexico
| |
Collapse
|
11
|
Mahmood D, Muhammad BY, Alghani M, Anwar J, el-Lebban N, Haider M. Advancing role of melatonin in the treatment of neuropsychiatric disorders. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2016.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Danish Mahmood
- Department of Pharmacology & Toxicology Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
12
|
Cheng J, Yang HL, Gu CJ, Liu YK, Shao J, Zhu R, He YY, Zhu XY, Li MQ. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int J Mol Med 2018; 43:945-955. [PMID: 30569127 PMCID: PMC6317691 DOI: 10.3892/ijmm.2018.4021] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is an essential process involved in various physiological, including placentation, and pathological, including cancer and endometriosis, processes. Melatonin (MLT), a well-known natural hormone secreted primarily in the pineal gland, is involved in regulating neoangiogenesis and inhibiting the development of a variety of cancer types, including lung and breast cancer. However, the specific mechanism of its anti-angiogenesis activity has not been systematically elucidated. In the present study, the effect of MLT on viability and angiogenesis of human umbilical vein endothelial cells (HUVECs), and the production of vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS), under normoxia or hypoxia was analyzed using Cell Counting kit 8, tube formation, flow cytometry, ELISA and western blot assays. It was determined that the secretion of VEGF by HUVECs was significantly increased under hypoxia, while MLT selectively obstructed VEGF release as well as the production of ROS under hypoxia. Furthermore, MLT inhibited the viability of HUVECs in a dose-dependent manner and reversed the increase in cell viability and tube formation that was induced by hypoxia/VEGF/H2O2. Additionally, treatment with an inhibitor of hypoxia inducible factor (HIF)-1α (KC7F2) and MLT synergistically reduced the release of ROS and VEGF, and inhibited cell viability and tube formation of HUVECs. These observations demonstrate that MLT may serve dual roles in the inhibition of angiogenesis, as an antioxidant and a free radical scavenging agent. MLT suppresses the viability and angiogenesis of HUVECs through the downregulation of HIF-1α/ROS/VEGF. In summary, the present data indicate that MLT may be a potential anticancer agent in solid tumors with abundant blood vessels, particularly combined with KC7F2.
Collapse
Affiliation(s)
- Jiao Cheng
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Chun-Jie Gu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Yu-Kai Liu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Jun Shao
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, Jiangsu 215008, P.R. China
| | - Yin-Yan He
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Xiao-Yong Zhu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, P.R. China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| |
Collapse
|
13
|
Xu J, Jiao K, Liu X, Sun Q, Wang K, Xu H, Zhang S, Wu Y, Wu L, Liu D, Wang W, Liu H. Omi/HtrA2 Participates in Age-Related Autophagic Deficiency in Rat Liver. Aging Dis 2018; 9:1031-1042. [PMID: 30574416 PMCID: PMC6284766 DOI: 10.14336/ad.2018.0221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/21/2018] [Indexed: 12/16/2022] Open
Abstract
Liver is a vital organ with many important functions, and the maintenance of normal hepatic function is necessary for health. As an essential mechanism for maintaining cellular homeostasis, autophagy plays an important role in ensuring normal organ function. Studies have indicated that the degeneration of hepatic function is associated with autophagic deficiency in aging liver. However, the underlying mechanisms still remain unclear. The serine protease Omi/HtrA2 belongs to the HtrA family and promotes apoptosis through either the caspase-dependent or caspase-independent pathway. Mice lacking Omi/HtrA2 exhibited progeria symptoms (premature aging), which were similar to the characteristics of autophagic insufficiency. In this study, we demonstrated that both the protein level of Omi/HtrA2 in liver and hepatic function were reduced as rats aged, and there was a positive correlation between them. Furthermore, several autophagy-related proteins (LC3II/I, Beclin-1 and LAMP2) in rat liver were decreased significantly with the increasing of age. Finally, inhibition of Omi/HtrA2 resulted in reduced autophagy and hepatic dysfunction. In conclusion, these results suggest that Omi/HtrA2 participates in age-related autophagic deficiency in rat liver. This study may offer a novel insight into the mechanism involved in liver aging.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Kun Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Xin Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Qi Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Ke Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Haibo Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Shangyue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Linguo Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Dan Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Shen M, Cao Y, Jiang Y, Wei Y, Liu H. Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: Implication of an antioxidation-independent mechanism. Redox Biol 2018; 18:138-157. [PMID: 30014903 PMCID: PMC6068202 DOI: 10.1016/j.redox.2018.07.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/24/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress has been described as a prime driver of granulosa cell (GCs) death during follicular atresia. Increasing evidence suggests potential roles of melatonin in protecting GCs from oxidative injury, though the underlying mechanisms remain largely undetermined. Here we first proposed that the inhibition of autophagy through some novel regulators contributes to melatonin-mediated GCs survival under conditions of oxidative stress. Oxidant-induced loss of GCs viability was significantly reduced after melatonin administration, which was correlated with attenuated autophagic signals upon oxidative stimulation both in vivo and in vitro. Compared with melatonin treatment, suppression of autophagy displayed similar preventive effect on GCs death during oxidative stress, but melatonin provided no additional protection in GCs pretreated with autophagy inhibitors. Notably, we found that melatonin-directed regulation of autophagic death was independent of its antioxidation/radical scavenging ability. Further investigations identified FOXO1 as a critical downstream effector of melatonin in promoting GCs survival from oxidative stress-induced autophagy. Specifically, suppression of FOXO1 via the melatonin-phosphatidylinositol 3-kinase (PI3K)-AKT axis not only improved GCs resistance to oxidative stress, but also abolished the autophagic response, from genes expression to the formation of autophagic vacuoles. Moreover, the activation of SIRT1 signaling was required for melatonin-mediated deacetylation of FOXO1 and its interaction with ATG proteins, as well as the inhibition of autophagic death in GCs suffering oxidative stress. These findings reveal a brand new mechanism of melatonin in defense against oxidative damage to GCs by repressing FOXO1, which may be a potential therapeutic target for anovulatory disorders. Melatonin inhibits oxidative damage in GC without scavenging oxidative stress itself. Melatonin protects GC from oxidative damage via inhibiting autophagic cell death. Inhibition of FOXO1-dependent autophagy by melatonin reduces oxidative damage in GC. Suppression of autophagy through melatonin-PI3K-AKT-FOXO1 axis improves GC survival. Melatonin reduces oxidative injury by inhibiting SIRT1-FOXO1-ATG7-dependent autophagy.
Collapse
Affiliation(s)
- Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yan Cao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yi Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yinghui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Roohbakhsh A, Shamsizadeh A, Hayes A, Reiter RJ, Karimi G. Melatonin as an endogenous regulator of diseases: The role of autophagy. Pharmacol Res 2018; 133:265-276. [DOI: 10.1016/j.phrs.2018.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/17/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
|
16
|
Zhou H, Cheang T, Su F, Zheng Y, Chen S, Feng J, Pei Z, Chen L. Melatonin inhibits rotenone-induced SH-SY5Y cell death via the downregulation of Dynamin-Related Protein 1 expression. Eur J Pharmacol 2017; 819:58-67. [PMID: 29183837 DOI: 10.1016/j.ejphar.2017.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/02/2017] [Accepted: 11/24/2017] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that melatonin can protect cells against rotenone-induced cell death. Yet, the mechanism involved in this protection requires further research. In this study, we aimed to further investigate the effects of melatonin on inhibiting rotenone-induced SH-SY5Y cells and the underlying molecular mechanisms. Human neuroblastoma SH-SY5Y cells were treated with 0.3 or 1μM rotenone for 6 or 12h. Cell viability was measured with an MTS assay, the mitochondrial membrane potential was determined with a Rhodamine 123 staining assay, and the protein expression levels of the markers of autophagy, including cytochrome C release (Cyt C), light chain 3B (LC3 B) and Dynamin-Related Protein 1 (Drp1) were analyzed by western blotting. The co-localization of Drp1 and TOM20 proteins in the mitochondria of SH-SY5Y cells was measured by immunofluorescence coupled with confocal microscopy and the overexpression of the Drp1 gene was then conducted. The viability and expression levels of Cyt C and LC3 B in rotenone and melatonin + rotenone-treated Drp1-overexpressed SH-SY5Y cells were analyzed with MTS and western blotting, respectively. We found that rotenone effectively induced SH-SY5Y cell death by causing mitochondrial dysfunction and increasing Cyt C expression. Drp1 expression and its regulation of mitochondrial translocation mediated the rotenone-induced cell death and melatonin inhibited this process. Overexpression of Drp1 protein attenuated melatonin's inhibition of rotenone-induced SH-SY5Y cell death. In conclusion, melatonin effectively inhibits rotenone-induced neuronal cell death via the regulation of Drp1 expression.
Collapse
Affiliation(s)
- Hongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Tuckyun Cheang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Fengjuan Su
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yifan Zheng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shaozhen Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiezhen Feng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
17
|
Wang Z, Liu N, Liu K, Zhou G, Gan J, Wang Z, Shi T, He W, Wang L, Guo T, Bao N, Wang R, Huang Z, Chen J, Dong L, Zhao J, Zhang J. Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis. Autophagy 2016; 11:2358-69. [PMID: 26566231 PMCID: PMC4835204 DOI: 10.1080/15548627.2015.1106779] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Wear particle-induced osteolysis is the leading cause of aseptic loosening, which is the most common reason for THA (total hip arthroplasty) failure and revision surgery. Although existing studies suggest that osteoblast apoptosis induced by wear debris is involved in aseptic loosening, the underlying mechanism linking wear particles to osteoblast apoptosis remains almost totally unknown. In the present study, we investigated the effect of autophagy on osteoblast apoptosis induced by CoCrMo metal particles (CoPs) in vitro and in a calvarial resorption animal model. Our study demonstrated that CoPs stimulated autophagy in osteoblasts and PIO (particle-induced osteolysis) animal models. Both autophagy inhibitor 3-MA (3-methyladenine) and siRNA of Atg5 could dramatically reduce CoPs-induced apoptosis in osteoblasts. Further, inhibition of autophagy with 3-MA ameliorated the severity of osteolysis in PIO animal models. Moreover, 3-MA also prevented osteoblast apoptosis in an antiautophagic way when tested in PIO model. Collectively, these results suggest that autophagy plays a key role in CoPs-induced osteolysis and that targeting autophagy-related pathways may represent a potential therapeutic approach for treating particle-induced peri-implant osteolysis.
Collapse
Affiliation(s)
- Zhenheng Wang
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Naicheng Liu
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Kang Liu
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Gang Zhou
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Jingjing Gan
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Zhenzhen Wang
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Tongguo Shi
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Wei He
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Lintao Wang
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Ting Guo
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Nirong Bao
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China
| | - Rui Wang
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China
| | - Zhen Huang
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Jiangning Chen
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Lei Dong
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Jianning Zhao
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China
| | - Junfeng Zhang
- a Jinling Hospital; Department of Orthopaedics; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University ; Nanjing , China.,b School of Medicine and School of Life Science; Nanjing University ; Nanjing , China.,c Jiangsu Provincial Laboratory for Nano-Technology; Nanjing University , Nanjing , China
| |
Collapse
|
18
|
Melatoninergic System in Parkinson's Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3472032. [PMID: 27829983 PMCID: PMC5088323 DOI: 10.1155/2016/3472032] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022]
Abstract
Melatonin is synthesized by several tissues besides the pineal gland, and beyond its regulatory effects in light-dark cycle, melatonin is a hormone with neuroprotective, anti-inflammatory, and antioxidant properties. Melatonin acts as a free-radical scavenger, reducing reactive species and improving mitochondrial homeostasis. Melatonin also regulates the expression of neurotrophins that are involved in the survival of dopaminergic neurons and reduces α-synuclein aggregation, thus protecting the dopaminergic system against damage. The unbalance of pineal melatonin synthesis can predispose the organism to inflammatory and neurodegenerative diseases such as Parkinson's disease (PD). The aim of this review is to summarize the knowledge about the potential role of the melatoninergic system in the pathogenesis and treatment of PD. The literature reviewed here indicates that PD is associated with impaired brain expression of melatonin and its receptors MT1 and MT2. Exogenous melatonin treatment presented an outstanding neuroprotective effect in animal models of PD induced by different toxins, such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat, and maneb. Despite the neuroprotective effects and the improvement of motor impairments, melatonin also presents the potential to improve nonmotor symptoms commonly experienced by PD patients such as sleep and anxiety disorders, depression, and memory dysfunction.
Collapse
|
19
|
Pi H, Xu S, Reiter RJ, Guo P, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, Zhang R, He M, Lu Y, Liu C, Duan W, Yu Z, Zhou Z. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy 2016; 11:1037-51. [PMID: 26120888 PMCID: PMC4590599 DOI: 10.1080/15548627.2015.1052208] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cadmium is one of the most toxic metal compounds found in the environment. It is well established that Cd induces hepatotoxicity in humans and multiple animal models. Melatonin, a major secretory product of the pineal gland, has been reported to protect against Cd-induced hepatotoxicity. However, the mechanism behind this protection remains to be elucidated. We exposed HepG2 cells to different concentrations of cadmium chloride (2.5, 5, and 10 μM) for 12 h. We found that Cd induced mitochondrial-derived superoxide anion-dependent autophagic cell death. Specifically, Cd decreased SIRT3 protein expression and activity and promoted the acetylation of SOD2, superoxide dismutase 2, mitochondrial, thus decreasing its activity, a key enzyme involved in mitochondrial ROS production, although Cd did not disrupt the interaction between SIRT3 and SOD2. These effects were ameliorated by overexpression of SIRT3. However, a catalytic mutant of SIRT3 (SIRT3H248Y) lacking deacetylase activity lost the capacity to suppress Cd-induced autophagy. Notably, melatonin treatment enhanced the activity but not the expression of SIRT3, decreased the acetylation of SOD2, inhibited mitochondrial-derived O2•− production and suppressed the autophagy induced by 10 μM Cd. Moreover, 3-(1H-1,2,3-triazol-4-yl)pyridine, a confirmed selective SIRT3 inhibitor, blocked the melatonin-mediated suppression of autophagy by inhibiting SIRT3-SOD2 signaling. Importantly, melatonin suppressed Cd-induced autophagic cell death by enhancing SIRT3 activity in vivo. These results suggest that melatonin exerts a hepatoprotective effect on mitochondrial-derived O2•−-stimulated autophagic cell death that is dependent on the SIRT3/SOD2 pathway.
Collapse
Key Words
- 3-MA, 3-methyladenine
- 3-TYP, 3-(1H-1,2,3-triazol-4-yl)pyridine
- ACTB, actin, β
- Baf A1, bafilomycin A1
- Cd, cadmium
- CdCl2, cadmium chloride
- GPT/ALT, glutamic-pyruvate transaminase (alanine aminotransferase)
- H2O2, hydrogen peroxide
- LC3, microtubule-associated protein 1 light chain 3
- O2•−, superoxide anion
- SIRT1, sirtuin 1
- SIRT3
- SIRT3, sirtuin 3
- SOD2
- SOD2, superoxide dismutase 2, mitochondrial
- SQSTM1/p62, sequestosome 1
- autophagy
- cadmium
- hepatotoxicity
- mROS, mitochondrial reactive oxygen species
- mel, melatonin
- melatonin
- mitochondrial ROS
- tf-LC3, tandem fluorescent mRFP-GFP-LC3B
Collapse
Affiliation(s)
- Huifeng Pi
- a Department of Occupational Health; Third Military Medical University ; Chongqing , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cloning and Transcriptional Activity of the Mouse Omi/HtrA2 Gene Promoter. Int J Mol Sci 2016; 17:ijms17010119. [PMID: 26784188 PMCID: PMC4730360 DOI: 10.3390/ijms17010119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023] Open
Abstract
HtrA serine peptidase 2 (HtrA2), also named Omi, is a pro-apoptotic protein that exhibits dramatic changes in expression levels in a variety of disorders, including ischemia/reperfusion injury, cancer, and neurodegeneration. In our study, Omi/HtrA2 protein levels were high in the heart, brain, kidney and liver, with elevated heart/brain expression in aging mice. A similar expression pattern was observed at the mRNA level, which suggests that the regulation of Omi/HtrA2 is predominately transcriptional. Promoter binding by transcription factors is the main influencing factor of transcription, and to identify specific promoter elements that contribute to the differential expression of mouse Omi/HtrA2, we constructed truncated Omi/HtrA2 promoter/luciferase reporter vectors and analyzed their relative luciferase activity; it was greatest in the promoter regions at -1205~-838 bp and -146~+93 bp, with the -838~-649 bp region exhibiting negative regulatory activity. Bioinformatics analysis suggested that the Omi/HtrA2 gene promoter contains a CpG island at -709~+37 bp, and eight heat shock transcription factor 1 (HSF1) sites, two Sp1 transcription factor (SP1)sites, one activator protein (AP) site, seven p53 sites, and four YY1 transcription factor(YY1) sites were predicted in the core areas. Furthermore, we found that p53 and HSF1 specifically binds to the Omi/HtrA2 promoter using chromatin immunoprecipitation analysis. These results provide a foundation for understanding Omi/HtrA2 regulatory mechanisms, which could further understanding of HtrA-associated diseases.
Collapse
|
21
|
Lamine-Ajili A, Fahmy AM, Létourneau M, Chatenet D, Labonté P, Vaudry D, Fournier A. Effect of the pituitary adenylate cyclase-activating polypeptide on the autophagic activation observed in in vitro and in vivo models of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1862:688-695. [PMID: 26769362 DOI: 10.1016/j.bbadis.2016.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/10/2015] [Accepted: 01/04/2016] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that leads to destruction of the midbrain dopaminergic (DA) neurons. This phenomenon is related to apoptosis and its activation can be blocked by the pituitary adenylate cyclase-activating polypeptide (PACAP). Growing evidence indicates that autophagy, a self-degradation activity that cleans up the cell, is induced during the course of neurodegenerative diseases. However, the role of autophagy in the pathogenesis of neuronal disorders is yet poorly understood and the potential ability of PACAP to modulate the related autophagic activation has never been significantly investigated. Hence, we explored the putative autophagy-modulating properties of PACAP in in vitro and in vivo models of PD, using the neurotoxic agents 1-methyl-4-phenylpyridinium (MPP(+)) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), respectively, to trigger alterations of DA neurons. In both models, following the toxin exposure, PACAP reduced the autophagic activity as evaluated by the production of LC3 II, the modulation of the p62 protein levels, and the formation of autophagic vacuoles. The ability of PACAP to inhibit autophagy was also observed in an in vitro cell assay by the blocking of the p62-sequestration activity produced with the autophagy inducer rapamycin. Thus, the results demonstrated that autophagy is induced in PD experimental models and that PACAP exhibits not only anti-apoptotic but also anti-autophagic properties.
Collapse
Affiliation(s)
- Asma Lamine-Ajili
- INRS, Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC, Canada H7V 1B7; INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821, Mont-Saint-Aignan, France; Laboratoire Samuel-de-Champlain, Université de Rouen, France/INRS, Canada
| | - Ahmed M Fahmy
- INRS, Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Myriam Létourneau
- INRS, Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC, Canada H7V 1B7; Laboratoire Samuel-de-Champlain, Université de Rouen, France/INRS, Canada
| | - David Chatenet
- INRS, Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Patrick Labonté
- INRS, Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - David Vaudry
- INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821, Mont-Saint-Aignan, France; Laboratoire Samuel-de-Champlain, Université de Rouen, France/INRS, Canada
| | - Alain Fournier
- INRS, Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC, Canada H7V 1B7; Laboratoire Samuel-de-Champlain, Université de Rouen, France/INRS, Canada.
| |
Collapse
|
22
|
Teng YC, Tai YI, Huang HJ, Lin AMY. Melatonin Ameliorates Arsenite-Induced Neurotoxicity: Involvement of Autophagy and Mitochondria. Mol Neurobiol 2015; 52:1015-22. [DOI: 10.1007/s12035-015-9250-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Xu Z, Chen Y, Xu G, Peng C, Liu E, Li Y, Niu J, Li C. Omi/HtrA2 pro-apoptotic marker differs in various hepatocellular carcinoma cell lines owing to ped/pea-15 expression level. Oncol Rep 2015; 33:905-12. [PMID: 25484138 DOI: 10.3892/or.2014.3656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/08/2014] [Indexed: 11/05/2022] Open
Abstract
Omi/HtrA2 promotes cell apoptosis in human cancer cells. Early studies showed that primary hepatocellular carcinoma requires Omi/HtrA2 expression for cell apoptosis. Additionally, the Omi/HtrA2 pro-apoptotic marker demonstrated a difference in some cell types. However, how the Omi/HtrA2 pro-apoptotic marker reacts during the process of hepatocellular carcinoma cell apoptosis remains to be determined. Thus, we investigated the role and possible mechanism of Omi/HtrA2 on hepatocellular carcinoma cell apoptosis using various hepatocellular carcinoma cell lines. The results were analyzed using RT‑qPCR and western blot analysis. In the present study, we found that Omi/HtrA2 was overexpressed in hepatocellular carcinoma cell lines and induced hepatocellular carcinoma cell apoptosis. Additiionally, the only manner in which Omi/HtrA2 participated in cell death in PLC cells may be dependent on IAP-binding. Omi/HtrA2‑inducing HepG2 cell apoptosis may mainly depend on its serine protease activity while both IAP-binding and its serine protease activity participated in Hep3B cell apoptosis. This result suggested that Omi/HtrA2 pro-apoptotic marker differs in various hepatocellular carcinoma cell lines. PLC cells were also devoid of the expression of ped/pea-15 as the substrate of Omi/HtrA2 serine protease while ped/pea-15 was overexpressed in HepG2 and Hep3B cells and ped/pea-15 expression was higher in HepG2 cells than that in Hep3B cells. These results showed that Omi/HtrA2 overexpression promotes hepatocellular carcinoma cell apoptosis and the ped/pea-15 expression level causes this difference of the Omi/HtrA2 pro-apoptotic marker in the various hepatocellular carcinoma cell lines.
Collapse
Affiliation(s)
- Zongquan Xu
- Deparment of Hepatic Oncology, Jiangxi Provincial Cancer Hospital, Nanchang 330029, P.R. China
| | - Yu Chen
- Deparment of Hepatic Oncology, Jiangxi Provincial Cancer Hospital, Nanchang 330029, P.R. China
| | - Guohui Xu
- Deparment of Hepatic Oncology, Jiangxi Provincial Cancer Hospital, Nanchang 330029, P.R. China
| | - Cheng Peng
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Enyu Liu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Yunguang Li
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Jun Niu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Changhai Li
- Hepatic Surgery Center Affiliated Tongji Hospital, Tongji Medical College of HuaZhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
24
|
Trivedi P, Jena G, Tikoo K, Kumar V. Melatonin modulated autophagy and Nrf2 signaling pathways in mice with colitis-associated colon carcinogenesis. Mol Carcinog 2015; 55:255-67. [DOI: 10.1002/mc.22274] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/15/2014] [Accepted: 11/26/2014] [Indexed: 01/07/2023]
Affiliation(s)
- P.P. Trivedi
- Facility for Risk Assessment and Intervention Studies; Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research; Punjab India
| | - G.B. Jena
- Facility for Risk Assessment and Intervention Studies; Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research; Punjab India
| | - K.B. Tikoo
- Laboratory of Chromatin Biology; Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research; Punjab India
| | - V. Kumar
- Icon Analytical Equipment Pvt Ltd; Delhi India
| |
Collapse
|
25
|
Hernández-Plata E, Quiroz-Compeán F, Ramírez-Garcia G, Barrientos EY, Rodríguez-Morales NM, Flores A, Wrobel K, Wrobel K, Méndez I, Díaz-Muñoz M, Robles J, Martínez-Alfaro M. Melatonin reduces lead levels in blood, brain and bone and increases lead excretion in rats subjected to subacute lead treatment. Toxicol Lett 2015; 233:78-83. [PMID: 25601058 DOI: 10.1016/j.toxlet.2015.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/18/2014] [Accepted: 01/16/2015] [Indexed: 02/08/2023]
Abstract
Melatonin, a hormone known for its effects on free radical scavenging and antioxidant activity, can reduce lead toxicity in vivo and in vitro.We examined the effects of melatonin on lead bio-distribution. Rats were intraperitoneally injected with lead acetate (10, 15 or 20mg/kg/day) with or without melatonin (10mg/kg/day) daily for 10 days. In rats intoxicated with the highest lead doses, those treated with melatonin had lower lead levels in blood and higher levels in urine and feces than those treated with lead alone, suggesting that melatonin increases lead excretion. To explore the mechanism underlying this effect, we first assessed whether lead/melatonin complexes were formed directly. Electronic density functional (DFT) calculations showed that a lead/melatonin complex is energetically feasible; however, UV spectroscopy and NMR analysis showed no evidence of such complexes. Next, we examined the liver mRNA levels of metallothioneins (MT) 1 and 2. Melatonin cotreatment increased the MT2 mRNA expression in the liver of rats that received the highest doses of lead. The potential effects of MTs on the tissue distribution and excretion of lead are not well understood. This is the first report to suggest that melatonin directly affects lead levels in organisms exposed to subacute lead intoxication.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Flores
- Universidad de Guanajuato, y Departamento de Biología, México
| | | | | | - Isabel Méndez
- Instituto de Neurobiología UNAM, Campus Juriquilla, Querétaro, México
| | | | | | | |
Collapse
|
26
|
Bassani TB, Gradowski RW, Zaminelli T, Barbiero JK, Santiago RM, Boschen SL, da Cunha C, Lima MMS, Andreatini R, Vital MABF. Neuroprotective and antidepressant-like effects of melatonin in a rotenone-induced Parkinson's disease model in rats. Brain Res 2014; 1593:95-105. [PMID: 25301688 DOI: 10.1016/j.brainres.2014.09.068] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 09/17/2014] [Accepted: 09/27/2014] [Indexed: 12/21/2022]
Abstract
Parkinson׳s disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Systemic and intranigral exposure to rotenone in rodents reproduces many of the pathological and behavioral features of PD in humans and thus has been used as an animal model of the disease. Melatonin is a neurohormone secreted by the pineal gland, which has several important physiological functions. It has been reported to be neuroprotective in some animal models of PD. The present study investigated the effects of prolonged melatonin treatment in rats previously exposed to rotenone. The animals were intraperitoneally treated for 10 days with rotenone (2.5mg/kg) or its vehicle. 24h later, they were intraperitoneally treated with melatonin (10mg/kg) or its vehicle for 28 days. One day after the last rotenone exposure, the animals exhibited hypolocomotion in the open field test, which spontaneously reversed at the last motor evaluation. We verified that prolonged melatonin treatment after dopaminergic lesion did not alter motor function but produced antidepressant-like effects in the forced swim test, prevented the rotenone-induced reduction of striatal dopamine, and partially prevented tyrosine hydroxylase immunoreactivity loss in the SNpc. Our results indicate that melatonin exerts neuroprotective and antidepressant-like effects in the rotenone model of PD.
Collapse
Affiliation(s)
- Taysa B Bassani
- Pharmacology Department, Federal University of Paraná, Brazil
| | | | - Tiago Zaminelli
- Pharmacology Department, Federal University of Paraná, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Martín V, Sanchez-Sanchez AM, Puente-Moncada N, Gomez-Lobo M, Alvarez-Vega MA, Antolín I, Rodriguez C. Involvement of autophagy in melatonin-induced cytotoxicity in glioma-initiating cells. J Pineal Res 2014; 57:308-16. [PMID: 25163989 DOI: 10.1111/jpi.12170] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/22/2014] [Indexed: 12/28/2022]
Abstract
Glioblastoma-initiating cells (GICs) represent a stem cell-like subpopulation within malignant glioblastomas responsible for tumor development, progression, therapeutic resistance, and tumor relapse. Thus, eradication of this subpopulation is essential to achieve stable, long-lasting remission. We have previously reported that melatonin decreases cell proliferation of glioblastoma cells both in vitro and in vivo and synergistically increases effectiveness of drugs in glioblastoma cells and also in GICs. In this study, we evaluated the effect of the indolamine alone in GICs and found that melatonin treatment reduces GICs proliferation and induces a decrease in self-renewal and clonogenic ability accompanied by a reduction in the expression of stem cell markers. Moreover, our results also indicate that melatonin treatment, by modulating stem cell properties, induces cell death with ultrastructural features of autophagy. Thus, data reported here reinforce the therapeutic potential of melatonin as a treatment of malignant glioblastoma both by inhibiting tumor bulk proliferation or killing GICs, and simultaneously enhancing the effect of chemotherapy.
Collapse
Affiliation(s)
- Vanesa Martín
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
San‐Miguel B, Crespo I, Vallejo D, Álvarez M, Prieto J, González‐Gallego J, Tuñón MJ. Melatonin modulates the autophagic response in acute liver failure induced by the rabbit hemorrhagic disease virus. J Pineal Res 2014; 56:313-21. [PMID: 24499270 PMCID: PMC7166588 DOI: 10.1111/jpi.12124] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/31/2014] [Indexed: 12/29/2022]
Abstract
Autophagy is an important survival pathway and participates in the host response to infection. Beneficial effects of melatonin have been previously reported in an animal model of acute liver failure (ALF) induced by the rabbit hemorrhagic disease virus (RHDV). This study was aimed to investigate whether melatonin protection against liver injury induced by the RHDV associates to modulation of autophagy. Rabbits were infected with 2 × 10(4) hemagglutination units of a RHDV isolate and received 20 mg/kg melatonin at 0, 12, and 24 hr postinfection. RHDV induced autophagy, with increased expression of beclin-1, ubiquitin-like autophagy-related (Atg)5, Atg12, Atg16L1 and sequestrosome 1 (p62/SQSTM1), protein 1 light chain 3 (LC3) staining, and conversion of LC3-I to autophagosome-associated LC3-II. These effects reached a maximum at 24 hr postinfection, in parallel to extensive colocalization of LC3 and lysosome-associated membrane protein (LAMP)-1. The autophagic response induced by RHDV infection was significantly inhibited by melatonin administration. Melatonin treatment also resulted in decreased immunoreactivity for RHDV viral VP60 antigen and a significantly reduction in RHDV VP60 mRNA levels, oxidized to reduced glutathione ratio (GSSG/GSH), caspase-3 activity, and immunoglobulin-heavy-chain-binding protein (BiP) and CCAAT/enhancer-binding protein homologous protein (CHOP) expression. Results indicate that, in addition to its antioxidant and antiapoptotic effects, and the suppression of ER stress, melatonin induces a decrease in autophagy associated with RHDV infection and inhibits RHDV RNA replication. Results obtained reveal novel molecular pathways accounting for the protective effect of melatonin in this animal model of ALF.
Collapse
Affiliation(s)
| | - Irene Crespo
- Institute of Biomedicine (IBIOMED)University of LeónLeónSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Spain
| | - Daniela Vallejo
- Institute of Biomedicine (IBIOMED)University of LeónLeónSpain
| | | | - Jesús Prieto
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Spain
- Division of Hepatology and Gene TherapyCenter for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
| | - Javier González‐Gallego
- Institute of Biomedicine (IBIOMED)University of LeónLeónSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Spain
| | - María J. Tuñón
- Institute of Biomedicine (IBIOMED)University of LeónLeónSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Spain
| |
Collapse
|
29
|
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder of unknown etiology, although a complex interaction between environmental and genetic factors has been implicated as a pathogenic mechanism of selected neuronal loss. A better understanding of the etiology, pathogenesis, and molecular mechanisms underlying the disease process may be gained from research on animal models. While cell and tissue models are helpful in unraveling involved molecular pathways, animal models are much better suited to study the pathogenesis and potential treatment strategies. The animal models most relevant to PD include those generated by neurotoxic chemicals that selectively disrupt the catecholaminergic system such as 6-hydroxydopamine; 1-methyl-1,2,3,6-tetrahydropiridine; agricultural pesticide toxins, such as rotenone and paraquat; the ubiquitin proteasome system inhibitors; inflammatory modulators; and several genetically manipulated models, such as α-synuclein, DJ-1, PINK1, Parkin, and leucine-rich repeat kinase 2 transgenic or knock-out animals. Genetic and nongenetic animal models have their own unique advantages and limitations, which must be considered when they are employed in the study of pathogenesis or treatment approaches. This review provides a summary and a critical review of our current knowledge about various in vivo models of PD used to test novel therapeutic strategies.
Collapse
Affiliation(s)
- Weidong Le
- />1st Affiliated Hospital, Dalian Medical University, Dalian, 116011 China
| | - Pavani Sayana
- />Department of Medicine, Gandhi Medical College, Padmarao Nagar, Secunderabad, AP 500020 India
| | - Joseph Jankovic
- />Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
30
|
Huang JY, Lu YM, Wang H, Liu J, Liao MH, Hong LJ, Tao RR, Ahmed MM, Liu P, Liu SS, Fukunaga K, Du YZ, Han F. The effect of lipid nanoparticle PEGylation on neuroinflammatory response in mouse brain. Biomaterials 2013; 34:7960-70. [DOI: 10.1016/j.biomaterials.2013.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
31
|
Choi SI, Kim KS, Oh JY, Jin JY, Lee GH, Kim EK. Melatonin induces autophagy via an mTOR-dependent pathway and enhances clearance of mutant-TGFBIp. J Pineal Res 2013; 54:361-72. [PMID: 23363291 DOI: 10.1111/jpi.12039] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022]
Abstract
The hallmark of granular corneal dystrophy type 2 (GCD2) is the deposit of mutant transforming growth factor-β (TGF-β)-induced protein (TGFBIp) in the cornea. We have recently shown that there is a delay in autophagic degradation of mutant-TGFBIp via impaired autophagic flux in GCD2 corneal fibroblasts. We hypothesized that melatonin can specifically induce autophagy and consequently eliminate mutant-TGFBIp in GCD corneal fibroblasts. Our results show that melatonin activates autophagy in both wild-type (WT) and GCD2-homozygous (HO) corneal fibroblast cell lines via the mammalian target of rapamycin (mTOR)-dependent pathway. Melatonin treatment also led to increased levels of beclin 1, which is involved in autophagosome formation and maturation. Furthermore, melatonin significantly reduced the amounts of mutant- and WT-TGFBIp. Treatment with melatonin counteracted the autophagy-inhibitory effects of bafilomycin A1, a potent inhibitor of autophagic flux, demonstrating that melatonin enhances activation of autophagy and increases degradation of TGFBIp. Cotreatment with melatonin and rapamycin, an autophagy inducer, had an additive effect on mutant-TGFBIp clearance compared to treatment with either drug alone. Treatment with the selective melatonin receptor antagonist luzindole did not block melatonin-induced autophagy. Given its ability to activate autophagy, melatonin is a potential therapeutic agent for GCD2.
Collapse
Affiliation(s)
- Seung-Il Choi
- Corneal Dystrophy Research Institute; Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
32
|
Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J Pineal Res 2013; 54:127-38. [PMID: 23137057 DOI: 10.1111/jpi.12026] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/01/2012] [Indexed: 12/17/2022]
Abstract
Mitochondria and chloroplasts are major sources of free radical generation in living organisms. Because of this, these organelles require strong protection from free radicals and associated oxidative stress. Melatonin is a potent free radical scavenger and antioxidant. It meets the criteria as a mitochondrial and chloroplast antioxidant. Evidence has emerged to show that both mitochondria and chloroplasts may have the capacity to synthesize and metabolize melatonin. The activity of arylalkylamine N-acetyltransferase (AANAT), the reported rate-limiting enzyme in melatonin synthesis, has been identified in mitochondria, and high levels of melatonin have also been found in this organelle. From an evolutionary point of view, the precursor of mitochondria probably is the purple nonsulfur bacterium, particularly, Rhodospirillum rubrum, and chloroplasts are probably the descendents of cyanobacteria. These bacterial species were endosymbionts of host proto-eukaryotes and gradually transformed into cellular organelles, that is, mitochondria and chloroplasts, respectively, thereby giving rise to eukaryotic cells. Of special importance, both purple nonsulfur bacteria (R. rubrum) and cyanobacteria synthesize melatonin. The enzyme activities required for melatonin synthesis have also been detected in these primitive species. It is our hypothesis that mitochondria and chloroplasts are the original sites of melatonin synthesis in the early stage of endosymbiotic organisms; this synthetic capacity was carried into host eukaryotes by the above-mentioned bacteria. Moreover, their melatonin biosynthetic capacities have been preserved during evolution. In most, if not in all cells, mitochondria and chloroplasts may continue to be the primary sites of melatonin generation. Melatonin production in other cellular compartments may have derived from mitochondria and chloroplasts. On the basis of this hypothesis, it is also possible to explain why plants typically have higher melatonin levels than do animals. In plants, both chloroplasts and mitochondria likely synthesize melatonin, while animal cells contain only mitochondria. The high levels of melatonin produced by mitochondria and chloroplasts are used to protect these important cellular organelles against oxidative stress and preserve their physiological functions. The superior beneficial effects of melatonin in both mitochondria and chloroplasts have been frequently reported.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas, Health Science Center, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Coto-Montes A, Boga JA, Rosales-Corral S, Fuentes-Broto L, Tan DX, Reiter RJ. Role of melatonin in the regulation of autophagy and mitophagy: a review. Mol Cell Endocrinol 2012; 361:12-23. [PMID: 22575351 DOI: 10.1016/j.mce.2012.04.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/15/2012] [Indexed: 01/27/2023]
Abstract
Oxidative stress plays an essential role in triggering many cellular processes including programmed cell death. Proving a relationship between apoptosis and reactive oxygen species has been the goal of numerous studies. Accumulating data point to an essential role for oxidative stress in the activation of autophagy. The term autophagy encompasses several processes including not only survival or death mechanisms, but also pexophagy, mitophagy, ER-phagy or ribophagy, depending of which organelles are targeted for specific autophagic degradation. However, whether the outcome of autophagy is survival or death and whether the initiating conditions are starvation, pathogens or death receptors, reactive oxygen species are invariably involved. The role of antioxidants in the regulation of these processes, however, has been sparingly investigated. Among the known antioxidants, melatonin has high efficacy and, in both experimental and clinical situations, its protective actions against oxidative stress are well documented. Beneficial effects against mitochondrial dysfunction have also been described for melatonin; thus, this indoleamine seems to be linked to mitophagy. The present review focuses on data and the most recent advances related to the role of melatonin in health and disease, on autophagy activation in general, and on mitophagy in particular.
Collapse
Affiliation(s)
- Ana Coto-Montes
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|