1
|
Pettersson S, Edin F, Bakkman L, McGawley K. Effects of supplementing with an 18% carbohydrate-hydrogel drink versus a placebo during whole-body exercise in -5 °C with elite cross-country ski athletes: a crossover study. J Int Soc Sports Nutr 2019; 16:46. [PMID: 31655603 PMCID: PMC6815417 DOI: 10.1186/s12970-019-0317-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/03/2019] [Indexed: 12/02/2022] Open
Abstract
Background Whilst the ergogenic effects of carbohydrate intake during prolonged exercise are well-documented, few investigations have studied the effects of carbohydrate ingestion during cross-country skiing, a mode of exercise that presents unique metabolic demands on athletes due to the combined use of large upper- and lower-body muscle masses. Moreover, no previous studies have investigated exogenous carbohydrate oxidation rates during cross-country skiing. The current study investigated the effects of a 13C-enriched 18% multiple-transportable carbohydrate solution (1:0.8 maltodextrin:fructose) with additional gelling polysaccharides (CHO-HG) on substrate utilization and gastrointestinal symptoms during prolonged cross-country skiing exercise in the cold, and subsequent double-poling time-trial performance in ~ 20 °C. Methods Twelve elite cross-country ski athletes (6 females, 6 males) performed 120-min of submaximal roller-skiing (69.3 ± 2.9% of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{\mathrm{V}} $$\end{document}V˙O2peak) in −5 °C while receiving either 2.2 g CHO-HG·min− 1 or a non-caloric placebo administered in a double-blind, randomized manner. Whole-body substrate utilization and exogenous carbohydrate oxidation was calculated for the last 60 min of the submaximal exercise. The maximal time-trial (2000 m for females, 2400 m for males) immediately followed the 120-min submaximal bout. Repeated-measures ANOVAs with univariate follow-ups were conducted, as well as independent and paired t-tests, and significance was set at P < 0.05. Data are presented as mean ± SD. Results Exogenous carbohydrate oxidation contributed 27.6 ± 6.6% to the total energy yield with CHO-HG and the peak exogenous carbohydrate oxidation rate reached 1.33 ± 0.27 g·min− 1. Compared to placebo, fat oxidation decreased by 9.5 ± 4.8% with CHO-HG, total carbohydrate oxidation increased by 9.5 ± 4.8% and endogenous carbohydrate utilization decreased by 18.1 ± 6.4% (all P < 0.05). No severe gastrointestinal symptoms were reported in either trial and euhydration was maintained in both trials. Time-trial performance (8.4 ± 0.4 min) was not improved following CHO-HG compared to placebo (− 0.8 ± 3.5 s; 95% confidence interval − 3.0 to 1.5 s; P = 0.46). No sex differences were identified in substrate utilization or relative performance. Conclusions Ingestion of an 18% multiple-transportable carbohydrate solution with gelling polysaccharides was found to be well-tolerated during 120 min of submaximal whole-body exercise, but did not improve subsequent maximal double-poling performance.
Collapse
Affiliation(s)
- Stefan Pettersson
- Center for Health and Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden. .,Swedish Olympic Committee, Stockholm, Sweden.
| | - Fredrik Edin
- Center for Health and Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | | | - Kerry McGawley
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
3
|
Djelic M, Mazic S, Lazovic B, Zikic D, Sumarac-Dumanovic M, Micic D. Carbohydrate and fatty acid metabolism responses to a graded maximal exercise test and recovery period in athletes and sedentary subjects. Sci Sports 2015. [DOI: 10.1016/j.scispo.2015.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Stelzer I, Kröpfl JM, Fuchs R, Pekovits K, Mangge H, Raggam RB, Gruber HJ, Prüller F, Hofmann P, Truschnig-Wilders M, Obermayer-Pietsch B, Haushofer AC, Kessler HH, Mächler P. Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function. Scand J Med Sci Sports 2014; 25:e442-50. [PMID: 25438993 DOI: 10.1111/sms.12347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2014] [Indexed: 01/18/2023]
Abstract
Although amateur sports have become increasingly competitive within recent decades, there are as yet few studies on the possible health risks for athletes. This study aims to determine the impact of ultra-endurance exercise-induced stress on the number and function of circulating hematopoietic progenitor cells (CPCs) and hematological, inflammatory, clinical, metabolic, and stress parameters in moderately trained amateur athletes. Following ultra-endurance exercise, there were significant increases in leukocytes, platelets, interleukin-6, fibrinogen, tissue enzymes, blood lactate, serum cortisol, and matrix metalloproteinase-9. Ultra-endurance exercise did not influence the number of CPCs but resulted in a highly significant decline of CPC functionality after the competition. Furthermore, Epstein-Barr virus was seen to be reactivated in one of seven athletes. The link between exercise-induced stress and decline of CPC functionality is supported by a negative correlation between cortisol and CPC function. We conclude that ultra-endurance exercise induces metabolic stress and an inflammatory response that affects not only mature hematopoietic cells but also the function of the immature hematopoietic stem and progenitor cell fraction, which make up the immune system and provide for regeneration.
Collapse
Affiliation(s)
- I Stelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - J M Kröpfl
- Institute of Human Movement Sciences and Sport, Exercise Physiology Lab, ETH Zurich, Zurich, Switzerland.,Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - R Fuchs
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - K Pekovits
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - H Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - R B Raggam
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - H-J Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - F Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - P Hofmann
- Institute of Sports Science, Karl-Franzens-University of Graz, Graz, Austria
| | - M Truschnig-Wilders
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - B Obermayer-Pietsch
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - A C Haushofer
- Institute of Medical and Chemical Laboratory Diagnostics Wels-Grieskirchen, Wels-Grieskirchen, Austria
| | - H H Kessler
- Research Unit Molecular Diagnostics, IHMEM, Medical University of Graz, Graz, Austria
| | - P Mächler
- Center for Cardiac Rehabilitation, SKA-PVA St. Radegund, Graz, Austria
| |
Collapse
|
5
|
Díaz Gómez MM, Bocanegra Jaramillo OL, Teixeira RR, Espindola FS. Salivary surrogates of plasma nitrite and catecholamines during a 21-week training season in swimmers. PLoS One 2013; 8:e64043. [PMID: 23700456 PMCID: PMC3660304 DOI: 10.1371/journal.pone.0064043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/11/2013] [Indexed: 01/01/2023] Open
Abstract
The collection of samples of saliva is noninvasive and straightforward, which turns saliva into an ideal fluid for monitoring the adaptive response to training. Here, we investigated the response of the salivary proteins alpha-amylase (sAA), chromogranin A (sCgA), and the concentration of total protein (sTP) as well as salivary nitrite (sNO2) in relation to plasma catecholamines and plasma nitrite (pNO2), respectively. The variation in these markers was compared to the intensity and load of training during a 21-week training season in 12 elite swimmers. Overall, the salivary proteins tracked the concentration of plasma adrenaline and were inversely correlated with the training outcomes. No correlations were observed between sNO2 and pNO2. However, sNO2 correlated positively with the intensity and load of training. We argue that the decrease in sympathetic activity is responsible for the decrease in the concentration of proteins throughout the training season. Furthermore, the increase in nitrite is likely to reflect changes in hemodynamics and regulation of vascular tone. The association of the salivary markers with the training outcomes underlines their potential as noninvasive markers of training status in professional athletes.
Collapse
Affiliation(s)
- Miguel Mauricio Díaz Gómez
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | | - Renata Roland Teixeira
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Foued Salmen Espindola
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
7
|
Howatson G, McHugh MP, Hill JA, Brouner J, Jewell AP, Van Someren KA, Shave RE, Howatson SA. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports 2009; 20:843-52. [DOI: 10.1111/j.1600-0838.2009.01005.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Banfi G, Melegati G, Barassi A, Dogliotti G, Melzi d’Eril G, Dugué B, Corsi MM. Effects of whole-body cryotherapy on serum mediators of inflammation and serum muscle enzymes in athletes. J Therm Biol 2009. [DOI: 10.1016/j.jtherbio.2008.10.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Schippinger G, Fankhauser F, Abuja PM, Winklhofer-Roob BM, Nadlinger K, Halwachs-Baumann G, Wonisch W. Competitive and seasonal oxidative stress in elite alpine ski racers. Scand J Med Sci Sports 2008; 19:206-12. [DOI: 10.1111/j.1600-0838.2007.00763.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Takashima W, Ishii K, Takizawa K, Yamaguchi T, Nosaka K. Muscle damage and soreness following a 50-km cross-country ski race. Eur J Sport Sci 2007. [DOI: 10.1080/17461390701197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|