1
|
Nishimura Y, Sato K, Koyanagi Y, Wakita T, Muramatsu M, Shimizu H, Bergelson JM, Arita M. Enterovirus A71 does not meet the uncoating receptor SCARB2 at the cell surface. PLoS Pathog 2024; 20:e1012022. [PMID: 38359079 PMCID: PMC10901359 DOI: 10.1371/journal.ppat.1012022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/28/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Enterovirus A71 (EV-A71) infection involves a variety of receptors. Among them, two transmembrane protein receptors have been investigated in detail and shown to be critical for infection: P-selectin glycoprotein ligand-1 (PSGL-1) in lymphocytes (Jurkat cells), and scavenger receptor class B member 2 (SCARB2) in rhabdomyosarcoma (RD) cells. PSGL-1 and SCARB2 have been reported to be expressed on the surface of Jurkat and RD cells, respectively. In the work reported here, we investigated the roles of PSGL-1 and SCARB2 in the process of EV-A71 entry. We first examined the expression of SCARB2 in Jurkat cells, and detected it within the cytoplasm, but not on the cell surface. Further, using PSGL-1 and SCARB2 knockout cells, we found that although both PSGL-1 and SCARB2 are essential for virus infection of Jurkat cells, virus attachment to these cells requires only PSGL-1. These results led us to evaluate the cell surface expression and the roles of SCARB2 in other EV-A71-susceptible cell lines. Surprisingly, in contrast to the results of previous studies, we found that SCARB2 is absent from the surface of RD cells and other susceptible cell lines we examined, and that although SCARB2 is essential for infection of these cells, it is dispensable for virus attachment. These results indicate that a receptor other than SCARB2 is responsible for virus attachment to the cell and probably for internalization of virions, not only in Jurkat cells but also in RD cells and other EV-A71-susceptible cells. SCARB2 is highly concentrated in lysosomes and late endosomes, where it is likely to trigger acid-dependent uncoating of virions, the critical final step of the entry process. Our results suggest that the essential interactions between EV-A71 and SCARB2 occur, not at the cell surface, but within the cell.
Collapse
Affiliation(s)
- Yorihiro Nishimura
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
- Department of Infectious Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe-shi, Hyogo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Jeffrey M Bergelson
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| |
Collapse
|
2
|
Hirota Y, Hayashi M, Miyauchi Y, Ishii Y, Tanaka Y, Fujimoto K. LAPTM4α is targeted from the Golgi to late endosomes/lysosomes in a manner dependent on the E3 ubiquitin ligase Nedd4-1 and ESCRT proteins. Biochem Biophys Res Commun 2021; 556:9-15. [PMID: 33836347 DOI: 10.1016/j.bbrc.2021.03.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/20/2023]
Abstract
Lysosome-associated protein transmembrane 4α (LAPTM4α) is a four transmembrane-spanning protein primarily localized in endosomes and lysosomes and has several putative lysosomal targeting signals at its C-terminal cytoplasmic domain, including tyrosine-based motifs (YxxΦ) and PY motifs (L/PxxY). LAPTM4α has been previously shown to be ubiquitinated by the E3 ubiquitin ligase Nedd4-1 through binding to its PY motifs and sorted to lysosomes, however, the molecular mechanisms underlying the localization of LAPTM4α to endosomes/lysosomes have not yet been fully elucidated. In the present study, we show that LAPTM4α binds Nedd4-1 in a manner dependent on PY motifs, while the PY motifs and Nedd4-1 are not necessarily required for LAPTM4α ubiquitination. The binding of LAPTM4α with Nedd4-1, however, is necessary for an effective sorting of LAPTM4α from the Golgi to late endosomes/lysosomes. An unexpected finding is that LAPTM4α is localized in the lumen, but not in the limiting membrane, of late endosomes, and degraded in lysosomes over time. Interestingly, we further found that siRNA knockdown of endosomal sorting complexes required for transport (ESCRT) components that mediate sorting of ubiquitinated membrane proteins into intralumenal vesicles (ILVs) of endosomes selectively blocks the transport of LAPTM4α to endosomes. Collectively, these results suggest that trafficking of LAPTM4α from the Golgi to endosomes is promoted by the interaction with Nedd4-1, which further requires ESCRT components. Furthermore, our findings highlight a novel function for ESCRT proteins in mediating protein and/or vesicle trafficking from the Golgi to endosomes/lysosomes.
Collapse
Affiliation(s)
- Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Masaharu Hayashi
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuu Miyauchi
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
3
|
Fujimoto K, Uchida S, Amen RNS, Ishii Y, Tanaka Y, Hirota Y. Lysosomal integral membrane protein LGP85 (LIMP-2) is ubiquitinated at the N-terminal cytoplasmic domain. Biochem Biophys Res Commun 2020; 524:424-430. [PMID: 32007273 DOI: 10.1016/j.bbrc.2020.01.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/15/2020] [Indexed: 11/23/2022]
Abstract
LGP85/LIMP-2 is a type III transmembrane glycoprotein of lysosomes, which traverses the membrane twice with an N-terminal uncleaved signal sequence and C-terminal hydrophobic domain. In addition to functioning as a receptor for a lysosomal enzyme β-glucocerebrosidase and for several enteroviruses, LGP85 plays a key role in the biogenesis and maintenance of endosomal/lysosomal compartments (ELCs). Our previous studies have demonstrated that overexpression of rat LGP85 into COS cells results in the enlarged ELCs, from where membrane trafficking is impaired. We show here that rat LGP85 is polyubiquitinated at the N-terminal short cytoplasmic domain that comprises of only three amino acid residues, alanine, arginine, and cysteine. Replacement of either arginine or cysteine with alanine within the N-terminal cytoplasmic domain did not influence the ubiquitination of LGP85, thereby indicating that ubiquitin (Ub) is conjugated to the α-NH2 group of the N-terminal alanine residue. Furthermore, we were able to define a domain necessary for ubiquitination in a region ranging from the amino acids 156 to 255 within the lumenal domain of LGP85. This is the first report showing that the integral lysosomal membrane protein LGP85 is ubiquitinated.
Collapse
Affiliation(s)
- Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan.
| | - Shotaro Uchida
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Riham N S Amen
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan.
| |
Collapse
|
4
|
dos Santos GF, Veras ASC, de Freitas MC, McCabe J, Seraphim PM, Teixeira GR. Strength training reduces lipid accumulation in liver of obese Wistar rats. Life Sci 2019; 235:116834. [DOI: 10.1016/j.lfs.2019.116834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023]
|
5
|
Sattler N, Bosmani C, Barisch C, Guého A, Gopaldass N, Dias M, Leuba F, Bruckert F, Cosson P, Soldati T. Functions of the Dictyostelium LIMP-2 and CD36 homologues in bacteria uptake, phagolysosome biogenesis and host cell defence. J Cell Sci 2018; 131:jcs218040. [PMID: 30054386 DOI: 10.1242/jcs.218040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2023] Open
Abstract
Phagocytic cells take up, kill and digest microbes by a process called phagocytosis. To this end, these cells bind the particle, rearrange their actin cytoskeleton, and orchestrate transport of digestive factors to the particle-containing phagosome. The mammalian lysosomal membrane protein LIMP-2 (also known as SCARB2) and CD36, members of the class B of scavenger receptors, play a crucial role in lysosomal enzyme trafficking and uptake of mycobacteria, respectively, and generally in host cell defences against intracellular pathogens. Here, we show that the Dictyostelium discoideum LIMP-2 homologue LmpA regulates phagocytosis and phagolysosome biogenesis. The lmpA knockdown mutant is highly affected in actin-dependent processes, such as particle uptake, cellular spreading and motility. Additionally, the cells are severely impaired in phagosomal acidification and proteolysis, likely explaining the higher susceptibility to infection with the pathogenic bacterium Mycobacterium marinum, a close cousin of the human pathogen Mycobacterium tuberculosis Furthermore, we bring evidence that LmpB is a functional homologue of CD36 and specifically mediates uptake of mycobacteria. Altogether, these data indicate a role for LmpA and LmpB, ancestors of the family of which LIMP-2 and CD36 are members, in lysosome biogenesis and host cell defence.
Collapse
Affiliation(s)
- Natascha Sattler
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Cristina Bosmani
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Caroline Barisch
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Aurélie Guého
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Navin Gopaldass
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Marco Dias
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | - Florence Leuba
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Franz Bruckert
- Laboratoire des Matériaux et du Génie Physique (LMGP), Grenoble Institute of Technology, 3 parvis Louis Néel, BP 257, 38016 Grenoble cedex 1, France
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | - Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| |
Collapse
|
6
|
Zucca FA, Vanna R, Cupaioli FA, Bellei C, De Palma A, Di Silvestre D, Mauri P, Grassi S, Prinetti A, Casella L, Sulzer D, Zecca L. Neuromelanin organelles are specialized autolysosomes that accumulate undegraded proteins and lipids in aging human brain and are likely involved in Parkinson's disease. NPJ Parkinsons Dis 2018; 4:17. [PMID: 29900402 PMCID: PMC5988730 DOI: 10.1038/s41531-018-0050-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 01/08/2023] Open
Abstract
During aging, neuronal organelles filled with neuromelanin (a dark-brown pigment) and lipid bodies accumulate in the brain, particularly in the substantia nigra, a region targeted in Parkinson's disease. We have investigated protein and lipid systems involved in the formation of these organelles and in the synthesis of the neuromelanin of human substantia nigra. Membrane and matrix proteins characteristic of lysosomes were found in neuromelanin-containing organelles at a lower number than in typical lysosomes, indicating a reduced enzymatic activity and likely impaired capacity for lysosomal and autophagosomal fusion. The presence of proteins involved in lipid transport may explain the accumulation of lipid bodies in the organelle and the lipid component in neuromelanin structure. The major lipids observed in lipid bodies of the organelle are dolichols with lower amounts of other lipids. Proteins of aggregation and degradation pathways were present, suggesting a role for accumulation by this organelle when the ubiquitin-proteasome system is inadequate. The presence of proteins associated with aging and storage diseases may reflect impaired autophagic degradation or impaired function of lysosomal enzymes. The identification of typical autophagy proteins and double membranes demonstrates the organelle's autophagic nature and indicates that it has engulfed neuromelanin precursors from the cytosol. Based on these data, it appears that the neuromelanin-containing organelle has a very slow turnover during the life of a neuron and represents an intracellular compartment of final destination for numerous molecules not degraded by other systems.
Collapse
Affiliation(s)
- Fabio A. Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Renzo Vanna
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
- IRCCS Don Carlo Gnocchi ONLUS Foundation, Milan, Italy
| | - Francesca A. Cupaioli
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Chiara Bellei
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Antonella De Palma
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Dario Di Silvestre
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Pierluigi Mauri
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY USA
- Department of Neurology, Columbia University Medical Center, New York, NY USA
- Department of Pharmacology, Columbia University Medical Center, New York, NY USA
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY USA
| |
Collapse
|
7
|
Dibbens L, Schwake M, Saftig P, Rubboli G. SCARB2/LIMP2 deficiency in action myoclonus-renal failure syndrome. Epileptic Disord 2016; 18:63-72. [PMID: 27582254 DOI: 10.1684/epd.2016.0843] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Action myoclonus-renal failure syndrome (AMRF) is an autosomal recessive progressive myoclonus epilepsy (PME) associated with renal dysfunction that appears in the second or third decade of life and that is caused by loss-of-function mutations in the SCARB2 gene encoding lysosomal integral membrane protein type 2 (LIMP2). Recent reports have documented cases with PME associated with SCARB2 mutations without renal compromise. Additional neurological features can be demyelinating peripheral neuropathy, hearing loss and dementia. The course of the disease in relentlessly progressive. In this paper we provide an updated overview of the clinical and genetic features of SCARB2-related PME and on the functions of the LIMP2 protein.
Collapse
Affiliation(s)
- Leanne Dibbens
- Epilepsy Research Group, School of Pharmacy and Medical Sciences, University of South Australia, and Sansom Institute for Health Research, South Australia, Australia
| | | | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University Kiel, Germany
| | - Guido Rubboli
- Danish Epilepsy Center, Filadelfia/University of Copenhagen, Dianalund, Denmark, IRCCS, Institute of Neurologicak Sciences, Bellaria Hospital, Bologna, Italy
| |
Collapse
|
8
|
The Role of VP1 Amino Acid Residue 145 of Enterovirus 71 in Viral Fitness and Pathogenesis in a Cynomolgus Monkey Model. PLoS Pathog 2015; 11:e1005033. [PMID: 26181772 PMCID: PMC4504482 DOI: 10.1371/journal.ppat.1005033] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/19/2015] [Indexed: 12/17/2022] Open
Abstract
Enterovirus 71 (EV71), a major causative agent of hand, foot, and mouth disease, occasionally causes severe neurological symptoms. We identified P-selectin glycoprotein ligand-1 (PSGL-1) as an EV71 receptor and found that an amino acid residue 145 in the capsid protein VP1 (VP1-145) defined PSGL-1-binding (PB) and PSGL-1-nonbinding (non-PB) phenotypes of EV71. However, the role of PSGL-1-dependent EV71 replication in neuropathogenesis remains poorly understood. In this study, we investigated viral replication, genetic stability, and the pathogenicity of PB and non-PB strains of EV71 in a cynomolgus monkey model. Monkeys were intravenously inoculated with cDNA-derived PB and non-PB strains of EV71, EV71-02363-EG and EV71-02363-KE strains, respectively, with two amino acid differences at VP1-98 and VP1-145. Mild neurological symptoms, transient lymphocytopenia, and inflammatory cytokine responses, were found predominantly in the 02363-KE-inoculated monkeys. During the early stage of infection, viruses were frequently detected in clinical samples from 02363-KE-inoculated monkeys but rarely in samples from 02363-EG-inoculated monkeys. Histopathological analysis of central nervous system (CNS) tissues at 10 days postinfection revealed that 02363-KE induced neuropathogenesis more efficiently than that induced by 02363-EG. After inoculation with 02363-EG, almost all EV71 variants detected in clinical samples, CNS, and non-CNS tissues, possessed a G to E amino acid substitution at VP1-145, suggesting a strong in vivo selection of VP1-145E variants and CNS spread presumably in a PSGL-1-independent manner. EV71 variants with VP1-145G were identified only in peripheral blood mononuclear cells in two out of four 02363-EG-inoculated monkeys. Thus, VP1-145E variants are mainly responsible for the development of viremia and neuropathogenesis in a non-human primate model, further suggesting the in vivo involvement of amino acid polymorphism at VP1-145 in cell-specific viral replication, in vivo fitness, and pathogenesis in EV71-infected individuals. Recently, large outbreaks of hand, foot, and mouth disease, including fatal neurological cases in young children primarily because of enterovirus 71 (EV71) have been reported, particularly in the Asia Pacific regions where the disease poses a serious threat to public health. Based on mutational and structural analyses of EV71, we identified amino acid residue 145 of the capsid protein VP1 (VP1-145) as a critical molecular determinant for the binding of EV71 to a specific cellular receptor, human P-selectin glycoprotein ligand-1 (PSGL-1). VP1-145 is highly variable among EV71 isolates and has been identified as a potential neurovirulence determinant in humans and experimental mouse models. To elucidate the in vivo involvement of PSGL-1-depentent replication and pathogenesis, we investigated viral replication, genetic stability, and the pathogenicity of the PSGL-1-binding (PB) and PSGL-1-nonbinding (non-PB) strains of EV71 in a cynomolgus monkey model. After the intravenous inoculation with the PB strain, viruses found to be highly mutated at VP1-145 with resultant VP1-145E variants (non-PB) inducing viremia and neuropathogenesis, presumably in a PSGL-1-independent manner. VP1-145G variants were identified only in peripheral blood mononuclear cells from two PB-inoculated monkeys. Our study provides new insights into the interplay between virus, receptors, and host in EV71-infected individuals.
Collapse
|
9
|
Guo H, Zhang J, Zhang X, Wang Y, Yu H, Yin X, Li J, Du P, Plumas J, Chaperot L, Chen J, Su L, Liu Y, Zhang L. SCARB2/LIMP-2 Regulates IFN Production of Plasmacytoid Dendritic Cells by Mediating Endosomal Translocation of TLR9 and Nuclear Translocation of IRF7. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:4737-49. [PMID: 25862818 PMCID: PMC4506778 DOI: 10.4049/jimmunol.1402312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/14/2015] [Indexed: 12/15/2022]
Abstract
Scavenger receptor class B, member 2 (SCARB2) is essential for endosome biogenesis and reorganization and serves as a receptor for both β-glucocerebrosidase and enterovirus 71. However, little is known about its function in innate immune cells. In this study, we show that, among human peripheral blood cells, SCARB2 is most highly expressed in plasmacytoid dendritic cells (pDCs), and its expression is further upregulated by CpG oligodeoxynucleotide stimulation. Knockdown of SCARB2 in pDC cell line GEN2.2 dramatically reduces CpG-induced type I IFN production. Detailed studies reveal that SCARB2 localizes in late endosome/lysosome of pDCs, and knockdown of SCARB2 does not affect CpG oligodeoxynucleotide uptake but results in the retention of TLR9 in the endoplasmic reticulum and an impaired nuclear translocation of IFN regulatory factor 7. The IFN-I production by TLR7 ligand stimulation is also impaired by SCARB2 knockdown. However, SCARB2 is not essential for influenza virus or HSV-induced IFN-I production. These findings suggest that SCARB2 regulates TLR9-dependent IFN-I production of pDCs by mediating endosomal translocation of TLR9 and nuclear translocation of IFN regulatory factor 7.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, BJ 100101, China; University of Chinese Academy of Sciences, Beijing, BJ 100080, China
| | - Jialong Zhang
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, BJ 100101, China
| | - Xuyuan Zhang
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, BJ 100101, China; University of Chinese Academy of Sciences, Beijing, BJ 100080, China
| | - Yanbing Wang
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, BJ 100101, China
| | - Haisheng Yu
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, BJ 100101, China; University of Chinese Academy of Sciences, Beijing, BJ 100080, China
| | - Xiangyun Yin
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, BJ 100101, China; University of Chinese Academy of Sciences, Beijing, BJ 100080, China
| | - Jingyun Li
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, BJ 100101, China; University of Chinese Academy of Sciences, Beijing, BJ 100080, China
| | - Peishuang Du
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, BJ 100101, China
| | - Joel Plumas
- Department of Research and Development, Etablissement Français du Sang Rhône-Alpes Grenoble, La Tronche 38701, France
| | - Laurence Chaperot
- Department of Research and Development, Etablissement Français du Sang Rhône-Alpes Grenoble, La Tronche 38701, France
| | - Jianzhu Chen
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, BJ 100101, China; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Lishan Su
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, BJ 100101, China; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Yongjun Liu
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, BJ 100101, China; Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204
| | - Liguo Zhang
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, BJ 100101, China;
| |
Collapse
|
10
|
Gonçalves VM, D'Almeida V, Müller KB, Real F, Mortara RA. Lysosomal integral membrane protein 2 (LIMP-2) restricts the invasion of Trypanosoma cruzi extracellular amastigotes through the activity of the lysosomal enzyme β-glucocerebrosidase. Microbes Infect 2014; 16:253-60. [PMID: 24269705 DOI: 10.1016/j.micinf.2013.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/20/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
Lysosomal integral membrane protein 2 (LIMP-2, SCARB2) is directly linked to β-glucocerebrosidase enzyme (βGC) and mediates the transport of this enzyme from the Golgi complex to lysosomes. Active βGC cleaves the β-glycosidic linkages of glucosylceramide, an intermediate in the metabolism of sphingoglycolipids, generating ceramide. In this study we used mouse embryonic fibroblasts (MEFs) deficient for LIMP-2 and observed that these cells were more susceptible to infection by extracellular amastigotes of the protozoan parasite Trypanosoma cruzi when compared to wild-type (WT) fibroblasts. The absence of LIMP-2 decreases the activity of βGC measured in fibroblast extracts. Replacement of βGC enzyme in LIMP-2 deficient fibroblasts restores the infectivity indices to those of WT cells in T. cruzi invasion assays. Considering the participation of βGC in the production of host cell ceramide, we propose that T. cruzi extracellular amastigotes are more invasive to cells deficient in this membrane component. These results contribute to our understanding of the role of host cell lysosomal components in T. cruzi invasion.
Collapse
Affiliation(s)
- Viviane Martinelli Gonçalves
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Vânia D'Almeida
- Department of Psychobiology, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Karen Barbosa Müller
- Department of Pediatrics, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Fernando Real
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil.
| | - Renato Arruda Mortara
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| |
Collapse
|
11
|
Gonzalez A, Valeiras M, Sidransky E, Tayebi N. Lysosomal integral membrane protein-2: a new player in lysosome-related pathology. Mol Genet Metab 2014; 111:84-91. [PMID: 24389070 PMCID: PMC3924958 DOI: 10.1016/j.ymgme.2013.12.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 12/27/2022]
Abstract
Lysosomes require the presence of many specialized proteins to facilitate their roles in cellular maintenance. One such protein that has proven to be an important player in the lysosomal field is lysosomal integral membrane protein-2 (LIMP-2), encoded by the gene SCARB2. LIMP-2 is required for the normal biogenesis and maintenance of lysosomes and endosomes and has been identified as the specific receptor for glucocerebrosidase, the enzyme deficient in Gaucher disease. Research into LIMP-2 and the SCARB2 gene indicate that it may be a factor contributing to the clinical heterogeneity seen among patients with Gaucher disease. Mutations in SCARB2 have also been identified as the cause of action myoclonus renal failure (AMRF), and in some cases progressive myoclonic epilepsy. A total of 14 disease-causing SCARB2 mutations have been identified to date. The role of LIMP-2 in human pathology has expanded with its identification as a component of the intercalated disk in cardiac muscle and as a receptor for specific enteroviruses, two unanticipated findings that reaffirm the myriad roles of lysosomal proteins. Studies into the full impact of LIMP-2 deficiency and the LIMP2/glucocerebrosidase molecular pathway will lead to a better understanding of disease pathogenesis in Gaucher disease and AMRF, and to new insights into lysosomal processing, trafficking and function.
Collapse
Affiliation(s)
- Ashley Gonzalez
- Section on Molecular Neurogenetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA
| | - Mark Valeiras
- Section on Molecular Neurogenetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA.
| | - Nahid Tayebi
- Section on Molecular Neurogenetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Carrasco-Marín E, Fernández-Prieto L, Rodriguez-Del Rio E, Madrazo-Toca F, Reinheckel T, Saftig P, Alvarez-Dominguez C. LIMP-2 links late phagosomal trafficking with the onset of the innate immune response to Listeria monocytogenes: a role in macrophage activation. J Biol Chem 2011; 286:3332-41. [PMID: 21123180 PMCID: PMC3030339 DOI: 10.1074/jbc.m110.146761] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/21/2010] [Indexed: 11/06/2022] Open
Abstract
The innate immune response to Listeria monocytogenes depends on phagosomal bacterial degradation by macrophages. Here, we describe the role of LIMP-2, a lysosomal type III transmembrane glycoprotein and scavenger-like protein, in Listeria phagocytosis. LIMP-2-deficient mice display a macrophage-related defect in Listeria innate immunity. They produce less acute phase pro-inflammatory cytokines/chemokines, MCP-1, TNF-α, and IL-6 but normal levels of IL-12, IL-10, and IFN-γ and a 25-fold increase in susceptibility to Listeria infection. This macrophage defect results in a low listericidal potential, poor response to TNF-α activation signals, impaired phago-lysosome transformation into antigen-processing compartments, and uncontrolled LM cytosolic growth that fails to induce normal levels of acute phase pro-inflammatory cytokines. LIMP-2 transfection of CHO cells confirmed that LIMP-2 participates in the degradation of Listeria within phagosomes, controls the late endosomal/lysosomal fusion machinery, and is linked to the activation of Rab5a. Therefore, the role of LIMP-2 appears to be connected to the TNF-α-dependent and early activation of Listeria macrophages through internal signals linking the regulation of late trafficking events with the onset of the innate Listeria immune response.
Collapse
Affiliation(s)
- Eugenio Carrasco-Marín
- From the Servicio de Inmunología, Hospital Santa Cruz de Liencres y Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, 39120 Liencres, Spain
| | - Lorena Fernández-Prieto
- From the Servicio de Inmunología, Hospital Santa Cruz de Liencres y Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, 39120 Liencres, Spain
| | - Estela Rodriguez-Del Rio
- From the Servicio de Inmunología, Hospital Santa Cruz de Liencres y Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, 39120 Liencres, Spain
| | - Fidel Madrazo-Toca
- From the Servicio de Inmunología, Hospital Santa Cruz de Liencres y Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, 39120 Liencres, Spain
| | - Thomas Reinheckel
- the Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Paul Saftig
- the Biochemical Institute, Christian-Albrechts University-Kiel, D-24098 Kiel, Germany, and
| | - Carmen Alvarez-Dominguez
- From the Servicio de Inmunología, Hospital Santa Cruz de Liencres y Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, 39120 Liencres, Spain
| |
Collapse
|
13
|
Blanz J, Groth J, Zachos C, Wehling C, Saftig P, Schwake M. Disease-causing mutations within the lysosomal integral membrane protein type 2 (LIMP-2) reveal the nature of binding to its ligand beta-glucocerebrosidase. Hum Mol Genet 2010; 19:563-72. [PMID: 19933215 DOI: 10.1093/hmg/ddp523] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Action myoclonus-renal failure syndrome (AMRF) is caused by mutations in the lysosomal integral membrane protein type 2 (LIMP-2/SCARB2). LIMP-2 was identified as a sorting receptor for beta-glucocerebrosidase (beta-GC), which is defective in Gaucher disease. To date, six AMRF-causing mutations have been described, including splice site, missense and nonsense mutations. All mutations investigated in this study lead to a retention of LIMP-2 in the endoplasmic reticulum (ER) but affect the binding to beta-GC differentially. From the three nonsense mutations, only the Q288X mutation was still able to bind to beta-GC as efficiently as compared with wild-type LIMP-2, whereas the W146SfsX16 and W178X mutations lost their beta-GC-binding capacity almost completely. The LIMP-2 segment 145-288, comprising the nonsense mutations, contains a highly conserved coiled-coil domain, which we suggest determines beta-GC binding. In fact, disruption of the helical arrangement and amphiphatic nature of the coiled-coil domain abolishes beta-GC binding, and a synthetic peptide comprising the coiled-coil domain of LIMP-2 displays pH-selective multimerization properties. In contrast to the reduced binding properties of the nonsense mutations, the only missense mutation (H363N) found in AMRF leads to increased binding of beta-GC to LIMP-2, indicating that this highly conserved histidine modifies the affinity of LIMP-2 to its ligand. With the present study, we demonstrate that disruption of the coiled-coil structure or AMRF disease-causing mutations abolish beta-GC binding, indicating the importance of an intact coiled-coil structure for the interaction of LIMP-2 and beta-GC.
Collapse
Affiliation(s)
- Judith Blanz
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 2009; 10:623-35. [PMID: 19672277 DOI: 10.1038/nrm2745] [Citation(s) in RCA: 1204] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lysosomes are the primary catabolic compartments of eukaryotic cells. They degrade extracellular material that has been internalized by endocytosis and intracellular components that have been sequestered by autophagy. In addition, specialized cells contain lysosome-related organelles that store and secrete proteins for cell-type-specific functions. The functioning of a healthy cell is dependent on the proper targeting of newly synthesized lysosomal proteins. Accumulating evidence suggests that there are multiple lysosomal delivery pathways that together allow the regulated and sequential deposition of lysosomal components. The importance of lysosomal trafficking pathways is emphasized by recent findings that reveal new roles for lysosomal membrane proteins in cellular physiology and in an increasing number of diseases that are characterized by defects in lysosome biogenesis.
Collapse
Affiliation(s)
- Paul Saftig
- Department of Biochemistry, Christian-Albrechts University, Kiel, Germany.
| | | |
Collapse
|
15
|
Masuyama N, Kuronita T, Tanaka R, Muto T, Hirota Y, Takigawa A, Fujita H, Aso Y, Amano J, Tanaka Y. HM1.24 is internalized from lipid rafts by clathrin-mediated endocytosis through interaction with alpha-adaptin. J Biol Chem 2009; 284:15927-41. [PMID: 19359243 DOI: 10.1074/jbc.m109.005124] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HM1.24/Bst2/CD317 is a protein highly expressed in multiple myeloma cells and has unique topology with two membrane anchor domains, an NH2-terminal transmembrane domain and a glycosylphosphatidylinositol attached to the COOH terminus. We show here that human HM1.24 is localized not only on the cell surface but also in the trans-Golgi network and/or recycling endosomes, where it resides in detergent-resistant microdomains, lipid rafts. In contrast to other glycosylphosphatidylinositol-anchored proteins, HM1.24 was internalized from lipid rafts on the cell surface by clathrin-mediated endocytosis. Interestingly, a non-canonical tyrosine-based motif, which contains two tyrosine residues, Tyr-6 and Tyr-8, present in the NH2-terminal cytoplasmic tail, was essential for endocytosis through interaction with an Deltaa-adaptin, but not mu2-subunit, of the AP-2 complex. Indeed, an appendage domain of alpha-adaptin was identified as a protein interacting with the cytoplasmic tail of HM1.24. Furthermore, overexpression of the appendage domain of alpha-adaptin in cells depleted of alpha-adaptin could rescue the clathrin-mediated endocytosis of HM1.24 but not of the transferrin receptor. Taken together, our findings suggest that clathrin-dependent endocytosis of human HM1.24 from the cell surface lipid rafts is mediated by direct interaction with alpha-adaptin.
Collapse
Affiliation(s)
- Naoko Masuyama
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Drug-induced phospholipidosis is caused by blockade of mannose 6-phosphate receptor-mediated targeting of lysosomal enzymes. Biochem Biophys Res Commun 2008; 377:268-74. [DOI: 10.1016/j.bbrc.2008.09.121] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 11/20/2022]
|
17
|
Lekishvili T, Fromm E, Mujoomdar M, Berditchevski F. The tumour-associated antigen L6 (L6-Ag) is recruited to the tetraspanin-enriched microdomains: implication for tumour cell motility. J Cell Sci 2008; 121:685-94. [PMID: 18270265 DOI: 10.1242/jcs.020347] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumour-associated antigen L6 (L6-Ag, also known as TM4SF1) regulates tumour cell motility and invasiveness. We found that L6-Ag is abundant on the plasma membrane and on intracellular vesicles, on which it is co-localised with the markers for late endosomal/lysosomal compartments, including Lamp1/Lamp2 proteins and LBPA. Antibody internalisation and live-imaging experiments suggested that L6-Ag is targeted to late endocytic organelles (LEO) predominantly via a biosynthetic pathway. Mapping experiments showed that the presence of transmembrane regions is sufficient for directing L6-Ag to LEO. On the plasma membrane, L6-Ag is associated with tetraspanin-enriched microdomains (TERM). All three predicted cytoplasmic regions of L6-Ag are crucial for the effective recruitment of the protein to TERM. Recruitment to TERM correlated with the pro-migratory activity of L6-Ag. Depletion of L6-Ag with siRNA has a selective effect on the surface expression of tetraspanins CD63 and CD82. By contrast, the expression levels of other tetraspanins and beta1 integrins was not affected. We found that L6-Ag is ubiquitylated and that ubiquitylation is essential for its function in cell migration. These data suggest that L6-Ag influences cell motility via TERM by regulating the surface presentation and endocytosis of some of their components.
Collapse
Affiliation(s)
- Tamara Lekishvili
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
18
|
Hirota Y, Kuronita T, Fujita H, Tanaka Y. A role for Rab5 activity in the biogenesis of endosomal and lysosomal compartments. Biochem Biophys Res Commun 2007; 364:40-7. [DOI: 10.1016/j.bbrc.2007.09.089] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 09/21/2007] [Indexed: 12/01/2022]
|
19
|
Reczek D, Schwake M, Schröder J, Hughes H, Blanz J, Jin X, Brondyk W, Van Patten S, Edmunds T, Saftig P. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell 2007; 131:770-83. [PMID: 18022370 DOI: 10.1016/j.cell.2007.10.018] [Citation(s) in RCA: 396] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 09/05/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
Abstract
beta-glucocerebrosidase, the enzyme defective in Gaucher disease, is targeted to the lysosome independently of the mannose-6-phosphate receptor. Affinity-chromatography experiments revealed that the lysosomal integral membrane protein LIMP-2 is a specific binding partner of beta-glucocerebrosidase. This interaction involves a coiled-coil domain within the lumenal domain. beta-glucocerebrosidase activity and protein levels were severely decreased in LIMP-2-deficient mouse tissues. Analysis of fibroblasts and macrophages isolated from these mice indicated that the majority of beta-glucocerebrosidase was secreted. Missorting of beta-glucocerebrosidase was also evident in vivo, as protein and activity levels were significantly higher in sera from LIMP-2-deficient mice compared to wild-type. Reconstitution of LIMP-2 in LIMP-2-deficient fibroblasts led to a rescue of beta-glucocerebrosidase levels and distribution. LIMP-2 expression also led to lysosomal transport of a beta-glucocerebrosidase endoplasmic reticulum retention mutant. These data support a role for LIMP-2 as the mannose-6-phosphate-independent trafficking receptor for beta-glucocerebrosidase.
Collapse
Affiliation(s)
- David Reczek
- Genzyme Corporation, 1 Mountain Road, Framingham, MA 01701, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Knipper M, Claussen C, Rüttiger L, Zimmermann U, Lüllmann-Rauch R, Eskelinen EL, Schröder J, Schwake M, Saftig P. Deafness in LIMP2-deficient mice due to early loss of the potassium channel KCNQ1/KCNE1 in marginal cells of the stria vascularis. J Physiol 2006; 576:73-86. [PMID: 16901941 PMCID: PMC1995639 DOI: 10.1113/jphysiol.2006.116889] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/11/2006] [Accepted: 08/08/2006] [Indexed: 12/17/2022] Open
Abstract
Our previous studies revealed a critical role of the lysosomal membrane protein LIMP2 in the regulation of membrane transport processes in the endocytic pathway. Here we show that LIMP2-deficient mice display a progressive high-frequency hearing loss and decreased otoacoustic emissions as early as 4 weeks of age. In temporal overlap to hearing impairment, fluorescence immunohistochemical studies revealed that the potassium channel KCNQ1 and its beta-subunit KCNE1 were almost completely lost in the luminal part of marginal cells in the stria vascularis, affecting first higher and later also lower frequency processing cochlear turns. Concomitant with this, the expression of megalin, a multiligand endocytic receptor, was reduced in luminal surfaces of marginal cells within the stria vascularis. KCNQ1/KCNE1 and megalin were also lost in the dark cells of the vestibular system. Although LIMP2 is normally expressed in all cells of the stria vascularis, in the organ of Corti and cochlear neurons, the lack of LIMP2 preferentially caused a loss of KCNQ1/KCNE1 and megalin, and structural changes were only seen months later, indicating that these proteins are highly sensitive to disturbances in the lysosomal pathway. The spatio-temporal correlation of the loss of KCNQ1/KCNE1 surface expression and loss of hearing thresholds supports the notion that the decline of functional KCNQ1/KCNE1 is likely to be the primary cause of the hearing loss. Our findings suggest an important role for LIMP2 in the control of the localization and the level of apically expressed membrane proteins such as KCNQ1, KCNE1 and megalin in the stria vascularis.
Collapse
Affiliation(s)
- Marlies Knipper
- Biochemical Institute, Christian-Albrechts-University Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|