1
|
Johnson A. Mechanistic divergences of endocytic clathrin-coated vesicle formation in mammals, yeasts and plants. J Cell Sci 2024; 137:jcs261847. [PMID: 39161994 PMCID: PMC11361644 DOI: 10.1242/jcs.261847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Clathrin-coated vesicles (CCVs), generated by clathrin-mediated endocytosis (CME), are essential eukaryotic trafficking organelles that transport extracellular and plasma membrane-bound materials into the cell. In this Review, we explore mechanisms of CME in mammals, yeasts and plants, and highlight recent advances in the characterization of endocytosis in plants. Plants separated from mammals and yeast over 1.5 billion years ago, and plant cells have distinct biophysical parameters that can influence CME, such as extreme turgor pressure. Plants can therefore provide a wider perspective on fundamental processes in eukaryotic cells. We compare key mechanisms that drive CCV formation and explore what these mechanisms might reveal about the core principles of endocytosis across the tree of life. Fascinatingly, CME in plants appears to more closely resemble that in mammalian cells than that in yeasts, despite plants being evolutionarily further from mammals than yeast. Endocytic initiation appears to be highly conserved across these three systems, requiring similar protein domains and regulatory processes. Clathrin coat proteins and their honeycomb lattice structures are also highly conserved. However, major differences are found in membrane-bending mechanisms. Unlike in mammals or yeast, plant endocytosis occurs independently of actin, highlighting that mechanistic assumptions about CME across different systems should be made with caution.
Collapse
Affiliation(s)
- Alexander Johnson
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
- Medical Imaging Cluster (MIC), Medical University of Vienna, Vienna 1090, Austria
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
2
|
Stoops EH, Ferrin MA, Jorgens DM, Drubin DG. Self-organizing actin networks drive sequential endocytic protein recruitment and vesicle release on synthetic lipid bilayers. Proc Natl Acad Sci U S A 2023; 120:e2302622120. [PMID: 37216532 PMCID: PMC10235984 DOI: 10.1073/pnas.2302622120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Forces generated by actin assembly assist membrane invagination during clathrin-mediated endocytosis (CME). The sequential recruitment of core endocytic proteins and regulatory proteins, and assembly of the actin network, are well documented in live cells and are highly conserved from yeasts to humans. However, understanding of CME protein self-organization, as well as the biochemical and mechanical principles that underlie actin's role in CME, is lacking. Here, we show that supported lipid bilayers coated with purified yeast Wiskott Aldrich Syndrome Protein (WASP), an endocytic actin assembly regulator, and incubated in cytoplasmic yeast extracts, recruit downstream endocytic proteins and assemble actin networks. Time-lapse imaging of WASP-coated bilayers revealed sequential recruitment of proteins from different endocytic modules, faithfully replicating in vivo behavior. Reconstituted actin networks assemble in a WASP-dependent manner and deform lipid bilayers, as seen by electron microscopy. Time-lapse imaging revealed that vesicles are released from the lipid bilayers with a burst of actin assembly. Actin networks pushing on membranes have previously been reconstituted; here, we have reconstituted a biologically important variation of these actin networks that self-organize on bilayers and produce pulling forces sufficient to bud off membrane vesicles. We propose that actin-driven vesicle generation may represent an ancient evolutionary precursor to diverse vesicle forming processes adapted for a wide array of cellular environments and applications.
Collapse
Affiliation(s)
- Emily H. Stoops
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Michael A. Ferrin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | | | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| |
Collapse
|
3
|
Stoops EH, Ferrin MA, Jorgens DM, Drubin DG. Self-organizing actin networks drive sequential endocytic protein recruitment and vesicle release on synthetic lipid bilayers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528546. [PMID: 36824809 PMCID: PMC9949000 DOI: 10.1101/2023.02.14.528546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Forces generated by actin assembly assist membrane invagination during clathrin-mediated endocytosis (CME). The sequential recruitment of core endocytic proteins and regulatory proteins, and assembly of the actin network, are well documented in live cells and are highly conserved from yeasts to humans. However, understanding of CME protein self-organization, as well as the biochemical and mechanical principles that underlie actin’s role in CME, is lacking. Here, we show that supported lipid bilayers coated with purified yeast WASP, an endocytic actin assembly regulator, and incubated in cytoplasmic yeast extracts, recruit downstream endocytic proteins and assemble actin tails. Time-lapse imaging of WASP-coated bilayers revealed sequential recruitment of proteins from different endocytic modules, faithfully replicating in vivo behavior. Reconstituted actin networks assemble in a WASP-dependent manner and deform lipid bilayers, as seen by electron microscopy. Time-lapse imaging revealed that vesicles are released from the lipid bilayers with a burst of actin assembly. Actin networks pushing on membranes have previously been reconstituted; here, we have reconstituted a biologically important variation of these actin networks that self-organize on bilayers and produce pulling forces sufficient to bud off membrane vesicles. We propose that actin-driven vesicle generation may represent an ancient evolutionary precursor to diverse vesicle forming processes adapted for a wide array of cellular environments and applications. Significance Statement Actin filament assembly participates in many vesicle-forming processes. However, the underlying principles for how assembly is initiated and organized to effectively harness assembly forces remain elusive. To address this gap, we report a novel reconstitution of actin-driven vesicle release from supported lipid bilayers. Using real-time imaging, we observe sequential recruitment of endocytic proteins and, following a burst of actin assembly, vesicle release from bilayers. Given the absence of cargo or upstream endocytic regulatory proteins on the bilayers, and the participation of actin in many vesicle-forming processes, we posit that this mode of vesicle formation represents an early evolutionary precursor for multiple trafficking pathways. We expect that this assay will be of great use for future investigations of actin-mediated vesicle-forming processes.
Collapse
Affiliation(s)
- Emily H. Stoops
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Michael A. Ferrin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Danielle M. Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
4
|
Skruzny M. The endocytic protein machinery as an actin-driven membrane-remodeling machine. Eur J Cell Biol 2022; 101:151267. [PMID: 35970066 DOI: 10.1016/j.ejcb.2022.151267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
In clathrin-mediated endocytosis, a principal membrane trafficking route of all eukaryotic cells, forces are applied to invaginate the plasma membrane and form endocytic vesicles. These forces are provided by specific endocytic proteins and the polymerizing actin cytoskeleton. One of the best-studied endocytic systems is endocytosis in yeast, known for its simplicity, experimental amenability, and overall similarity to human endocytosis. Importantly, the yeast endocytic protein machinery generates and transmits tremendous force to bend the plasma membrane, making this system beneficial for mechanistic studies of cellular force-driven membrane reshaping. This review summarizes important protein players, molecular functions, applied forces, and open questions and perspectives of this robust, actin-powered membrane-remodeling protein machine.
Collapse
Affiliation(s)
- Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
5
|
Abstract
Fundamental discoveries have shaped our molecular understanding of presynaptic processes, such as neurotransmitter release, active zone organization and mechanisms of synaptic vesicle (SV) recycling. However, certain regulatory steps still remain incompletely understood. Protein liquid-liquid phase separation (LLPS) and its role in SV clustering and active zone regulation now introduce a new perception of how the presynapse and its different compartments are organized. This article highlights the newly emerging concept of LLPS at the synapse, providing a systematic overview on LLPS tendencies of over 500 presynaptic proteins, spotlighting individual proteins and discussing recent progress in the field. Newly discovered LLPS systems like ELKS/liprin-alpha and Eps15/FCho are put into context, and further LLPS candidate proteins, including epsin1, dynamin, synaptojanin, complexin and rabphilin-3A, are highlighted.
Collapse
Affiliation(s)
- Janin Lautenschläger
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
6
|
Yoshida N, Ogura I, Nagano M, Ando T, Toshima JY, Toshima J. Cooperative regulation of endocytic vesicle transport by yeast Eps15-like protein Pan1p and epsins. J Biol Chem 2021; 297:101254. [PMID: 34592316 PMCID: PMC8628263 DOI: 10.1016/j.jbc.2021.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
Dynamic actin filaments are required for the formation and internalization of endocytic vesicles. Yeast actin cables serve as a track for the translocation of endocytic vesicles to early endosomes, but the molecular mechanisms regulating the interaction between vesicles and the actin cables remain ambiguous. Previous studies have demonstrated that the yeast Eps15-like protein Pan1p plays an important role in this interaction, and that interaction is not completely lost even after deletion of the Pan1p actin-binding domain, suggesting that additional proteins mediate association of the vesicle with the actin cable. Other candidates for mediating the interaction are endocytic coat proteins Sla2p (yeast Hip1R) and Ent1p/2p (yeast epsins), as these proteins can bind to both the plasma membrane and the actin filament. Here, we investigated the degree of redundancy in the actin-binding activities of Pan1p, Sla2p, and Ent1p/2p involved in the internalization and transport of endocytic vesicles. Expression of the nonphosphorylatable form of Pan1p, Pan1-18TA, caused abnormal accumulation of both actin cables and endocytic vesicles, and this accumulation was additively suppressed by deletion of the actin-binding domains of both Pan1p and Ent1p. Interestingly, deletion of the actin-binding domains of Pan1p and Ent1p in cells lacking the ENT2 gene resulted in severely defective internalization of endocytic vesicles and recruitment of actin cables to the site of endocytosis. These results suggest that Pan1p and Ent1p/2p cooperatively regulate the interaction between the endocytic vesicle and the actin cable.
Collapse
Affiliation(s)
- Nao Yoshida
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Ippo Ogura
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Tadashi Ando
- Department of Applied Electronics, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Junko Y Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan; School of Health Science, Tokyo University of Technology, Ota-ku, Tokyo, Japan.
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan.
| |
Collapse
|
7
|
Jiang H, Sandoval Del Prado LE, Leung C, Wang D. Huntingtin-interacting protein family members have a conserved pro-viral function from Caenorhabditis elegans to humans. Proc Natl Acad Sci U S A 2020; 117:22462-22472. [PMID: 32839311 PMCID: PMC7486723 DOI: 10.1073/pnas.2006914117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Huntingtin-interacting protein family members are evolutionarily conserved from yeast to humans, and they are known to be key factors in clathrin-mediated endocytosis. Here we identified the Caenorhabditis elegans protein huntingtin-interacting protein-related 1 (HIPR-1) as a host factor essential for Orsay virus infection of C. elegans Ablation of HIPR-1 resulted in a greater than 10,000-fold reduction in viral RNA, which could be rescued by ectopic expression of HIPR-1. Viral RNA replication from an endogenous transgene replicon system was not affected by lack of HIPR-1, suggesting that HIPR-1 plays a role during an early, prereplication virus life-cycle stage. Ectopic expression of HIPR-1 mutants demonstrated that neither the clathrin light chain-binding domain nor the clathrin heavy chain-binding motif were needed for virus infection, whereas the inositol phospholipid-binding and F-actin-binding domains were essential. In human cell culture, deletion of the human HIP orthologs HIP1 and HIP1R led to decreased infection by Coxsackie B3 virus. Finally, ectopic expression of a chimeric HIPR-1 harboring the human HIP1 ANTH (AP180 N-terminal homology) domain rescued Orsay infection in C. elegans, demonstrating conservation of its function through evolution. Collectively, these findings further our knowledge of cellular factors impacting viral infection in C. elegans and humans.
Collapse
Affiliation(s)
- Hongbing Jiang
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110;
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Luis Enrique Sandoval Del Prado
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Christian Leung
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - David Wang
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110;
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
8
|
Dimou S, Diallinas G. Life and Death of Fungal Transporters under the Challenge of Polarity. Int J Mol Sci 2020; 21:ijms21155376. [PMID: 32751072 PMCID: PMC7432044 DOI: 10.3390/ijms21155376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic plasma membrane (PM) transporters face critical challenges that are not widely present in prokaryotes. The two most important issues are proper subcellular traffic and targeting to the PM, and regulated endocytosis in response to physiological, developmental, or stress signals. Sorting of transporters from their site of synthesis, the endoplasmic reticulum (ER), to the PM has been long thought, but not formally shown, to occur via the conventional Golgi-dependent vesicular secretory pathway. Endocytosis of specific eukaryotic transporters has been studied more systematically and shown to involve ubiquitination, internalization, and sorting to early endosomes, followed by turnover in the multivesicular bodies (MVB)/lysosomes/vacuole system. In specific cases, internalized transporters have been shown to recycle back to the PM. However, the mechanisms of transporter forward trafficking and turnover have been overturned recently through systematic work in the model fungus Aspergillus nidulans. In this review, we present evidence that shows that transporter traffic to the PM takes place through Golgi bypass and transporter endocytosis operates via a mechanism that is distinct from that of recycling membrane cargoes essential for fungal growth. We discuss these findings in relation to adaptation to challenges imposed by cell polarity in fungi as well as in other eukaryotes and provide a rationale of why transporters and possibly other housekeeping membrane proteins ‘avoid’ routes of polar trafficking.
Collapse
|
9
|
Identification of Suppressor of Clathrin Deficiency-1 ( SCD1) and Its Connection to Clathrin-Mediated Endocytosis in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:867-877. [PMID: 30679249 PMCID: PMC6404604 DOI: 10.1534/g3.118.200782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clathrin is a major coat protein involved in vesicle formation during endocytosis and transport in the endosomal/trans Golgi system. Clathrin is required for normal growth of yeast (Saccharomyces cerevisiae) and in some genetic backgrounds deletion of the clathrin heavy chain gene (CHC1) is lethal. Our lab defined a locus referred to as “suppressor of clathrin deficiency” (SCD1). In the presence of the scd1-v allele (“v” – viable), yeast cells lacking clathrin heavy chain survive but grow slowly, are morphologically abnormal and have many membrane trafficking defects. In the presence of scd1-i (“i”- inviable), chc1∆ causes lethality. As a strategy to identify SCD1, we used pooled linkage analysis and whole genome sequencing. Here, we report that PAL2 (YHR097C) is the SCD1 locus. pal2∆ is synthetic lethal with chc1∆; whereas a deletion of its paralog, PAL1, is not synthetic lethal with clathrin deficiency. Like Pal1, Pal2 has two NPF motifs that are potential binding sites for EH domain proteins such as the early endocytic factor Ede1, and Pal2 associates with Ede1. Also, GFP-tagged Pal2p localizes to cortical patches containing other immobile phase endocytic coat factors. Overall, our data show that PAL2 is the SCD1 locus and the Pal2 protein has characteristics of an early factor involved in clathrin-mediated endocytosis.
Collapse
|
10
|
Live-cell imaging of early coat protein dynamics during clathrin-mediated endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1566-1578. [PMID: 30077636 DOI: 10.1016/j.bbamcr.2018.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/23/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
Clathrin-mediated endocytosis is an essential process that is mediated by the stepwise appearance or disappearance of many different proteins at the plasma membrane. In the budding yeast, these proteins are categorized into at least five modules, according to their spatiotemporal dynamics. Among them, the dynamics of proteins in the late coat module are well characterized, but those in the early coat module still remain unclear because of the lack of a suitable fluorescent marker with sufficient brightness to allow analysis. To examine the dynamics of early coat proteins, in this study we tagged four representative early coat proteins with 3GFP, and expressed them in a single cell. This cell exhibited a significant increase in the fluorescence intensity of early coat proteins relative to that of each 3GFP-tagged protein. Using this strain, we performed a detailed analysis of early coat proteins, including their precise lifetime, changes in fluorescence intensity, and motility on the plasma membrane. We found that early coat proteins move on the plasma membrane before internalization. Additionally, we expressed these 3GFP-tagged proteins in mutants with deletion of genes related to endocytosis, and found four mutants - end3Δ, las17Δ, sla2Δ, and clc1Δ- in which the lifetime of early coat proteins was markedly increased. Interestingly, deletion of the CLC1 gene dramatically reduced the internalization of early coat proteins whereas internalization of actin patches was largely unchanged, suggesting that the clc1Δ mutant might have a defect in the link between the early coat and actin modules.
Collapse
|
11
|
A Flow Cytometry-Based Phenotypic Screen To Identify Novel Endocytic Factors in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2018. [PMID: 29540444 PMCID: PMC5940143 DOI: 10.1534/g3.118.200102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endocytosis is a fundamental process for internalizing material from the plasma membrane, including many transmembrane proteins that are selectively internalized depending on environmental conditions. In most cells, the main route of entry is clathrin-mediated endocytosis (CME), a process that involves the coordinated activity of over 60 proteins; however, there are likely as-yet unidentified proteins involved in cargo selection and/or regulation of endocytosis. We performed a mutagenic screen to identify novel endocytic genes in Saccharomyces cerevisiae expressing the methionine permease Mup1 tagged with pHluorin (pHl), a pH-sensitive GFP variant whose fluorescence is quenched upon delivery to the acidic vacuole lumen. We used fluorescence-activated cell sorting to isolate mutagenized cells with elevated fluorescence, resulting from failure to traffic Mup1-pHl cargo to the vacuole, and further assessed subcellular localization of Mup1-pHl to characterize the endocytic defects in 256 mutants. A subset of mutant strains was classified as having general endocytic defects based on mislocalization of additional cargo proteins. Within this group, we identified mutations in four genes encoding proteins with known roles in endocytosis: the endocytic coat components SLA2, SLA1, and EDE1, and the ARP3 gene, whose product is involved in nucleating actin filaments to form branched networks. All four mutants demonstrated aberrant dynamics of the endocytic machinery at sites of CME; moreover, the arp3R346H mutation showed reduced actin nucleation activity in vitro. Finally, whole genome sequencing of two general endocytic mutants identified mutations in conserved genes not previously implicated in endocytosis, KRE33 and IQG1, demonstrating that our screening approach can be used to identify new components involved in endocytosis.
Collapse
|
12
|
Local actin polymerization during endocytic carrier formation. Biochem Soc Trans 2018; 46:565-576. [DOI: 10.1042/bst20170355] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Abstract
Extracellular macromolecules, pathogens and cell surface proteins rely on endocytosis to enter cells. Key steps of endocytic carrier formation are cargo molecule selection, plasma membrane folding and detachment from the cell surface. While dedicated proteins mediate each step, the actin cytoskeleton contributes to all. However, its role can be indirect to the actual molecular events driving endocytosis. Here, we review our understanding of the molecular steps mediating local actin polymerization during the formation of endocytic carriers. Clathrin-mediated endocytosis is the least reliant on local actin polymerization, as it is only engaged to counter forces induced by membrane tension or cytoplasmic pressure. Two opposite situations are coated pit formation in yeast and at the basolateral surface of polarized mammalian cells which are, respectively, dependent and independent on actin polymerization. Conversely, clathrin-independent endocytosis forming both nanometer [CLIC (clathrin-independent carriers)/GEEC (glycosylphosphatidylinositol (GPI)-anchored protein enriched endocytic compartments), caveolae, FEME (fast endophilin-mediated endocytosis) and IL-2β (interleukin-2β) uptake] and micrometer carriers (macropinocytosis) are dependent on actin polymerization to power local membrane deformation and carrier budding. A variety of endocytic adaptors can recruit and activate the Cdc42/N-WASP or Rac1/WAVE complexes, which, in turn, engage the Arp2/3 complex, thereby mediating local actin polymerization at the membrane. However, the molecular steps for RhoA and formin-mediated actin bundling during endocytic pit formation remain unclear.
Collapse
|
13
|
Tolsma TO, Cuevas LM, Di Pietro SM. The Sla1 adaptor-clathrin interaction regulates coat formation and progression of endocytosis. Traffic 2018. [PMID: 29542219 DOI: 10.1111/tra.12563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Clathrin-mediated endocytosis is a fundamental transport pathway that depends on numerous protein-protein interactions. Testing the importance of the adaptor protein-clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin-binding motif (sla1AAA ) that disrupt clathrin binding. Live-cell imaging showed an impaired Sla1-clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3-dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1-clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending.
Collapse
Affiliation(s)
- Thomas O Tolsma
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado
| | - Lena M Cuevas
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado
| | - Santiago M Di Pietro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
14
|
Apel AR, Hoban K, Chuartzman S, Tonikian R, Sidhu S, Schuldiner M, Wendland B, Prosser D. Syp1 regulates the clathrin-mediated and clathrin-independent endocytosis of multiple cargo proteins through a novel sorting motif. Mol Biol Cell 2017; 28:2434-2448. [PMID: 28701344 PMCID: PMC5576906 DOI: 10.1091/mbc.e15-10-0731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 12/14/2022] Open
Abstract
Internalization of proteins from the plasma membrane (PM) allows for cell-surface composition regulation, signaling of network modulation, and nutrient uptake. Clathrin-mediated endocytosis (CME) is a major internalization route for PM proteins. During CME, endocytic adaptor proteins bind cargoes at the cell surface and link them to the PM and clathrin coat. Muniscins are a conserved family of endocytic adaptors, including Syp1 in budding yeast and its mammalian orthologue, FCHo1. These adaptors bind cargo via a C-terminal μ-homology domain (μHD); however, few cargoes exhibiting muniscin-dependent endocytosis have been identified, and the sorting sequence recognized by the µHD is unknown. To reveal Syp1 cargo-sorting motifs, we performed a phage display screen and used biochemical methods to demonstrate that the Syp1 µHD binds DxY motifs in the previously identified Syp1 cargo Mid2 and the v-SNARE Snc1. We also executed an unbiased visual screen, which identified the peptide transporter Ptr2 and the ammonium permease Mep3 as Syp1 cargoes containing DxY motifs. Finally, we determined that, in addition to regulating cargo entry through CME, Syp1 can promote internalization of Ptr2 through a recently identified clathrin-independent endocytic pathway that requires the Rho1 GTPase. These findings elucidate the mechanism of Syp1 cargo recognition and its role in trafficking.
Collapse
Affiliation(s)
| | - Kyle Hoban
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Silvia Chuartzman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Raffi Tonikian
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Sachdev Sidhu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Beverly Wendland
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Derek Prosser
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
15
|
Goud Gadila SK, Williams M, Saimani U, Delgado Cruz M, Makaraci P, Woodman S, Short JC, McDermott H, Kim K. Yeast dynamin Vps1 associates with clathrin to facilitate vesicular trafficking and controls Golgi homeostasis. Eur J Cell Biol 2017; 96:182-197. [DOI: 10.1016/j.ejcb.2017.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/11/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022] Open
|
16
|
Kock C, Arlt H, Ungermann C, Heinisch JJ. Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signalling. Cell Microbiol 2016; 18:1251-67. [DOI: 10.1111/cmi.12635] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Christian Kock
- Universität Osnabrück; Fachbereich Biologie/Chemie, AG Genetik; 49076 Osnabrück Germany
| | - Henning Arlt
- Universität Osnabrück; Fachbereich Biologie/Chemie, AG Biochemie; 49076 Osnabrück Germany
| | - Christian Ungermann
- Universität Osnabrück; Fachbereich Biologie/Chemie, AG Biochemie; 49076 Osnabrück Germany
| | - Jürgen J. Heinisch
- Universität Osnabrück; Fachbereich Biologie/Chemie, AG Genetik; 49076 Osnabrück Germany
| |
Collapse
|
17
|
Kukulski W, Picco A, Specht T, Briggs JA, Kaksonen M. Clathrin modulates vesicle scission, but not invagination shape, in yeast endocytosis. eLife 2016; 5. [PMID: 27341079 PMCID: PMC4945154 DOI: 10.7554/elife.16036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/23/2016] [Indexed: 01/18/2023] Open
Abstract
In a previous paper (Picco et al., 2015), the dynamic architecture of the protein machinery during clathrin-mediated endocytosis was visualized using a new live imaging and particle tracking method. Here, by combining this approach with correlative light and electron microscopy, we address the role of clathrin in this process. During endocytosis, clathrin forms a cage-like coat around the membrane and associated protein components. There is growing evidence that clathrin does not determine the membrane morphology of the invagination but rather modulates the progression of endocytosis. We investigate how the deletion of clathrin heavy chain impairs the dynamics and the morphology of the endocytic membrane in budding yeast. Our results show that clathrin is not required for elongating or shaping the endocytic membrane invagination. Instead, we find that clathrin contributes to the regularity of vesicle scission and thereby to controlling vesicle size. DOI:http://dx.doi.org/10.7554/eLife.16036.001
Collapse
Affiliation(s)
- Wanda Kukulski
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Andrea Picco
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Tanja Specht
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - John Ag Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marko Kaksonen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Boettner DR, Segarra VA, Moorthy BT, de León N, Creagh J, Collette JR, Malhotra A, Lemmon SK. Creating a chimeric clathrin heavy chain that functions independently of yeast clathrin light chain. Traffic 2016; 17:754-68. [PMID: 27062026 DOI: 10.1111/tra.12401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 01/20/2023]
Abstract
Clathrin facilitates vesicle formation during endocytosis and sorting in the trans-Golgi network (TGN)/endosomal system. Unlike in mammals, yeast clathrin function requires both the clathrin heavy (CHC) and clathrin light (CLC) chain, since Chc1 does not form stable trimers without Clc1. To further delineate clathrin subunit functions, we constructed a chimeric CHC protein (Chc-YR) , which fused the N-terminus of yeast CHC (1-1312) to the rat CHC residues 1318-1675, including the CHC trimerization region. The novel CHC-YR allele encoded a stable protein that fractionated as a trimer. CHC-YR also complemented chc1Δ slow growth and clathrin TGN/endosomal sorting defects. In strains depleted for Clc1 (either clc1Δ or chc1Δ clc1Δ), CHC-YR, but not CHC1, suppressed TGN/endosomal sorting and growth phenotypes. Chc-YR-GFP (green fluorescent protein) localized to the TGN and cortical patches on the plasma membrane, like Chc1 and Clc1. However, Clc1-GFP was primarily cytoplasmic in chc1Δ cells harboring pCHC-YR, indicating that Chc-YR does not bind yeast CLC. Still, some partial phenotypes persisted in cells with Chc-YR, which are likely due either to loss of CLC recruitment or chimeric HC lattice instability. Ultimately, these studies have created a tool to examine non-trimerization roles for the clathrin LC.
Collapse
Affiliation(s)
- Douglas R Boettner
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA.,Current address: Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Verónica A Segarra
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA.,Current Address: Department of Biology, High Point University, High Point, NC, USA
| | - Balaji T Moorthy
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | - Nagore de León
- Departamento de Microbiologıa y Genetica/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - John Creagh
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| | - John R Collette
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA.,Current address: Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Arun Malhotra
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Sandra K Lemmon
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA
| |
Collapse
|
19
|
de León N, Hoya M, Curto MA, Moro S, Yanguas F, Doncel C, Valdivieso MH. The AP-2 complex is required for proper temporal and spatial dynamics of endocytic patches in fission yeast. Mol Microbiol 2016; 100:409-24. [PMID: 26749213 DOI: 10.1111/mmi.13327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/27/2022]
Abstract
In metazoans the AP-2 complex has a well-defined role in clathrin-mediated endocytosis. By contrast, its direct role in endocytosis in unicellular eukaryotes has been questioned. Here, we report co- immunoprecipitation between the fission yeast AP-2 component Apl3p and clathrin, as well as the genetic interactions between apl3Δ and clc1 and sla2Δ/end4Δ mutants. Furthermore, a double clc1 apl3Δ mutant was found to be defective in FM4-64 uptake. In an otherwise wild-type strain, apl3Δ cells exhibit altered dynamics of the endocytic sites, with a heterogeneous and extended lifetime of early and late markers at the patches. Additionally, around 50% of the endocytic patches exhibit abnormal spatial dynamics, with immobile patches and patches that bounce backwards to the cell surface, showing a pervasive effect of the absence of AP-2. These alterations in the endocytic machinery result in abnormal cell wall synthesis and morphogenesis. Our results complement those found in budding yeast and confirm that a direct role of AP-2 in endocytosis has been conserved throughout evolution.
Collapse
Affiliation(s)
- Nagore de León
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Marta Hoya
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
| | - M-Angeles Curto
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Sandra Moro
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Francisco Yanguas
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Cristina Doncel
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
| | - M-Henar Valdivieso
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
| |
Collapse
|
20
|
Vásquez-Soto B, Manríquez N, Cruz-Amaya M, Zouhar J, Raikhel NV, Norambuena L. Sortin2 enhances endocytic trafficking towards the vacuole in Saccharomyces cerevisiae. Biol Res 2015. [PMID: 26209329 PMCID: PMC4515019 DOI: 10.1186/s40659-015-0032-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND A highly regulated trafficking of cargo vesicles in eukaryotes performs protein delivery to a variety of cellular compartments of endomembrane system. The two main routes, the secretory and the endocytic pathways have pivotal functions in uni- and multi-cellular organisms. Protein delivery and targeting includes cargo recognition, vesicle formation and fusion. Developing new tools to modulate protein trafficking allows better understanding the endomembrane system mechanisms and their regulation. The compound Sortin2 has been described as a protein trafficking modulator affecting targeting of the vacuolar protein carboxypeptidase Y (CPY), triggering its secretion in Saccharomyces cerevisiae. RESULTS A reverse chemical-genetics approach was used to identify key proteins for Sortin2 bioactivity. A genome-wide Sortin2 resistance screen revealed six yeast deletion mutants that do not secrete CPY when grown at Sortin2 condition where the parental strain does: met18, sla1, clc1, dfg10, dpl1 and yjl175w. Integrating mutant phenotype and gene ontology annotation of the corresponding genes and their interactome pointed towards a high representation of genes involved in the endocytic process. In wild type yeast endocytosis towards the vacuole was faster in presence of Sortin2, which further validates the data of the genome-wide screen. This effect of Sortin2 depends on structural features of the molecule, suggesting compound specificity. Sortin2 did not affect endocytic trafficking in Sortin2-resistant mutants, strongly suggesting that the Sortin2 effects on the secretory and endocytic pathways are linked. CONCLUSIONS Overall, the results reveal that Sortin2 enhances the endocytic transport pathway in Saccharomyces cerevisiae. This cellular effect is most likely at the level where secretory and endocytic pathways are merged. Them Sortin2 specificity over the endomembrane system places it as a powerful biological modulator for cell biology.
Collapse
Affiliation(s)
- Beatriz Vásquez-Soto
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile.
| | - Nicolás Manríquez
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile.
| | - Mirna Cruz-Amaya
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile.
| | - Jan Zouhar
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Natasha V Raikhel
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile.
| |
Collapse
|
21
|
Abstract
Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed.
Collapse
Affiliation(s)
- Bruce L Goode
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Julian A Eskin
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Beverly Wendland
- The Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218
| |
Collapse
|
22
|
Bradford MK, Whitworth K, Wendland B. Pan1 regulates transitions between stages of clathrin-mediated endocytosis. Mol Biol Cell 2015; 26:1371-85. [PMID: 25631817 PMCID: PMC4454182 DOI: 10.1091/mbc.e14-11-1510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Saccharomyces cerevisiae endocytic protein Pan1 is critical for coat interactions during three transitions of the endocytic pathway. Pan1 depletion arrests endocytosis and causes actin misregulation, leading to actin flares that are connected to the coat but not the membrane. The Pan1 central region is critical for endocytic and essential functions. Endocytosis is a well-conserved process by which cells invaginate small portions of the plasma membrane to create vesicles containing extracellular and transmembrane cargo proteins. Dozens of proteins and hundreds of specific binding interactions are needed to coordinate and regulate these events. Saccharomyces cerevisiae is a powerful model system with which to study clathrin-mediated endocytosis (CME). Pan1 is believed to be a scaffolding protein due to its interactions with numerous proteins that act throughout the endocytic process. Previous research characterized many Pan1 binding interactions, but due to Pan1's essential nature, the exact mechanisms of Pan1's function in endocytosis have been difficult to define. We created a novel Pan1-degron allele, Pan1-AID, in which Pan1 can be specifically and efficiently degraded in <1 h upon addition of the plant hormone auxin. The loss of Pan1 caused a delay in endocytic progression and weakened connections between the coat/actin machinery and the membrane, leading to arrest in CME. In addition, we determined a critical role for the central region of Pan1 in endocytosis and viability. The regions important for endocytosis and viability can be separated, suggesting that Pan1 may have a distinct role in the cell that is essential for viability.
Collapse
Affiliation(s)
| | - Karen Whitworth
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Beverly Wendland
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
23
|
Idrissi FZ, Geli MI. Zooming in on the molecular mechanisms of endocytic budding by time-resolved electron microscopy. Cell Mol Life Sci 2014; 71:641-57. [PMID: 24002236 PMCID: PMC11113444 DOI: 10.1007/s00018-013-1452-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/17/2013] [Accepted: 08/08/2013] [Indexed: 12/31/2022]
Abstract
Endocytic budding implies the remodeling of a plasma membrane portion from a flat sheet to a closed vesicle. Clathrin- and actin-mediated endocytosis in yeast has proven a very powerful model to study this process, with more than 60 evolutionarily conserved proteins involved in fashioning primary endocytic vesicles. Major progress in the field has been made during the last decades by defining the sequential recruitment of the endocytic machinery at the cell cortex using live-cell fluorescence microscopy. Higher spatial resolution has been recently achieved by developing time-resolved electron microscopy methods, allowing for the first time the visualization of changes in the plasma membrane shape, coupled to the dynamics of the endocytic machinery. Here, we highlight these advances and review recent findings from yeast and mammals that have increased our understanding of where and how endocytic proteins may apply force to remodel the plasma membrane during different stages of the process.
Collapse
Affiliation(s)
- Fatima-Zahra Idrissi
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona (CSIC), Baldiri i Reixac 15, 08028, Barcelona, Spain,
| | | |
Collapse
|
24
|
Abstract
Clathrin-mediated endocytosis (CME) is conserved among eukaryotes and has been extensively analyzed at a molecular level. Here, we present an analysis of CME in the human fungal pathogen Candida albicans that shows the same modular structure as those in other fungi and mammalian cells. Intriguingly, C. albicans is perfectly viable in the absence of Arp2/3, an essential component of CME in other systems. In C. albicans, Arp2/3 function remains essential for CME as all 15 proteins tested that participate in CME, including clathrin, lose their characteristic dynamics observed in wild-type (WT) cells. However, since arp2/3 cells are still able to endocytose lipids and fluid-phase markers, but not the Ste2 and Mup1 plasma membrane proteins, there must be an alternate clathrin-independent pathway we term Arp2/3-independent endocytosis (AIE). Characterization of AIE shows that endocytosis in arp2 mutants relies on actin cables and other Arp2/3-independent actin structures, as inhibition of actin functions prevented cargo uptake in arp2/3 mutants. Transmission electron microscopy (TEM) showed that arp2/3 mutants still formed invaginating tubules, cell structures whose proper functions are believed to heavily rely on Arp2/3. Finally, Prk1 and Sjl2, two proteins involved in patch disassembly during CME, were not correctly localized to sites of endocytosis in arp2 mutants, implying a role of Arp2/3 in CME patch disassembly. Overall, C. albicans contains an alternative endocytic pathway (AIE) that relies on actin cable function to permit clathrin-independent endocytosis (CIE) and provides a system to further explore alternate endocytic routes that likely exist in fungal species. There is a well-established process of endocytosis that is generally used by eukaryotic cells termed clathrin-mediated endocytosis (CME). Although the details are somewhat different between lower and higher eukaryotes, CME appears to be the dominant endocytic process in all eukaryotes. While fungi such as Saccharomyces cerevisiae have proven excellent models for dissecting the molecular details of endocytosis, loss of CME is so detrimental that it has been difficult to study alternate pathways functioning in its absence. Although the fungal pathogen Candida albicans has a CME pathway that functions similarly to that of S. cerevisiae, inactivation of this pathway does not compromise growth of yeast-form C. albicans. In these cells, lipids and fluid-phase molecules are still endocytosed in an actin-dependent manner, but membrane proteins are not. Thus, C. albicans provides a powerful model for the analysis of CME-independent endocytosis in lower eukaryotes.
Collapse
|
25
|
de León N, Sharifmoghadam MR, Hoya M, Curto MÁ, Doncel C, Valdivieso MH. Regulation of cell wall synthesis by the clathrin light chain is essential for viability in Schizosaccharomyces pombe. PLoS One 2013; 8:e71510. [PMID: 23977061 PMCID: PMC3747244 DOI: 10.1371/journal.pone.0071510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/02/2013] [Indexed: 11/19/2022] Open
Abstract
The regulation of cell wall synthesis by the clathrin light chain has been addressed. Schizosaccharomyces pombe clc1Δ mutant was inviable in the absence of osmotic stabilization; when grown in sorbitol-supplemented medium clc1Δ cells grew slowly, formed aggregates, and had strong defects in morphology. Additionally, clc1Δ cells exhibited an altered cell wall composition. A mutant that allowed modulating the amount of Clc1p was created to analyze in more detail the dependence of cell wall synthesis on clathrin. A 40% reduction in the amount of Clc1p did not affect acid phosphatase secretion and bulk lipid internalization. Under these conditions, β(1,3)glucan synthase activity and cell wall synthesis were reduced. Also, the delivery of glucan synthases to the cell surface, and the secretion of the Eng1p glucanase were defective. These results suggest that the defects in the cell wall observed in the conditional mutant were due to a defective secretion of enzymes involved in the synthesis/remodelling of this structure, rather than to their endocytosis. Our results show that a reduction in the amount of clathrin that has minor effects on general vesicle trafficking has a strong impact on cell wall synthesis, and suggest that this is the reason for the lethality of clc1Δ cells in the absence of osmotic stabilization.
Collapse
Affiliation(s)
- Nagore de León
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | | | - Marta Hoya
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - M.-Ángeles Curto
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - Cristina Doncel
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - M.-Henar Valdivieso
- Departamento de Microbiología y Genética/IBFG, Universidad de Salamanca/CSIC, Salamanca, Spain
- * E-mail:
| |
Collapse
|
26
|
Abstract
To ensure spread from one cell to another, exocytosed vaccinia virions recruit cellular actin polymerization machinery to blast off from the cell surface on actin tails. Humphries et al. (2012) now show that the virus exploits clathrin to organize viral factors into a launch pad that facilitates efficient actin tail formation.
Collapse
Affiliation(s)
- Florian I Schmidt
- Institute of Biochemistry, ETH Zürich, Schafmattstrasse 18, Zürich 8093, Switzerland
| | | |
Collapse
|
27
|
Chi RJ, Torres OT, Segarra VA, Lansley T, Chang JS, Newpher TM, Lemmon SK. Role of Scd5, a protein phosphatase-1 targeting protein, in phosphoregulation of Sla1 during endocytosis. J Cell Sci 2012; 125:4728-39. [PMID: 22825870 DOI: 10.1242/jcs.098871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation regulates assembly and disassembly of proteins during endocytosis. In yeast, Prk1 and Ark1 phosphorylate factors after vesicle internalization leading to coat disassembly. Scd5, a protein phosphatase-1 (PP1)-targeting subunit, is proposed to regulate dephosphorylation of Prk1/Ark1 substrates to promote new rounds of endocytosis. In this study we analyzed scd5-PP1Δ2, a mutation causing impaired PP1 binding. scd5-PP1Δ2 caused hyperphosphorylation of several Prk1 endocytic targets. Live-cell imaging of 15 endocytic components in scd5-PP1Δ2 revealed that most factors arriving before the invagination/actin phase of endocytosis had delayed lifetimes. Severely affected were early factors and Sla2 (Hip1R homolog), whose lifetime was extended nearly fourfold. In contrast, the lifetime of Sla1, a Prk1 target, was extended less than twofold, but its cortical recruitment was significantly reduced. Delayed Sla2 dynamics caused by scd5-PP1Δ2 were suppressed by SLA1 overexpression. This was dependent on the LxxQxTG repeats (SR) of Sla1, which are phosphorylated by Prk1 and bind Pan1, another Prk1 target, in the dephosphorylated state. Without the SR, Sla1ΔSR was still recruited to the cell surface, but was less concentrated in cortical patches than Pan1. sla1ΔSR severely impaired endocytic progression, but this was partially suppressed by overexpression of LAS17, suggesting that without the SR region the SH3 region of Sla1 causes constitutive negative regulation of Las17 (WASp). These results demonstrate that Scd5/PP1 is important for recycling Prk1 targets to initiate new rounds of endocytosis and provide new mechanistic information on the role of the Sla1 SR domain in regulating progression to the invagination/actin phase of endocytosis.
Collapse
Affiliation(s)
- Richard J Chi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Bonazzi M, Vasudevan L, Mallet A, Sachse M, Sartori A, Prevost MC, Roberts A, Taner SB, Wilbur JD, Brodsky FM, Cossart P. Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization. ACTA ACUST UNITED AC 2012; 195:525-36. [PMID: 22042622 PMCID: PMC3206339 DOI: 10.1083/jcb.201105152] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clathrin assembles at bacterial adhesion sites and its phosphorylation is required for actin recruitment during bacterial infection. Bacterial pathogens recruit clathrin upon interaction with host surface receptors during infection. Here, using three different infection models, we observed that host–pathogen interactions induce tyrosine phosphorylation of clathrin heavy chain. This modification was critical for recruitment of actin at bacteria–host adhesion sites during bacterial internalization or pedestal formation. At the bacterial interface, clathrin assembled to form coated pits of conventional size. Because such structures cannot internalize large particles such as bacteria, we propose that during infection, clathrin-coated pits serve as platforms to initiate actin rearrangements at bacteria–host adhesion sites. We then showed that the clathrin–actin interdependency is initiated by Dab2 and depends on the presence of clathrin light chain and its actin-binding partner Hip1R, and that the fully assembled machinery can recruit Myosin VI. Together, our study highlights a physiological role for clathrin heavy chain phosphorylation and reinforces the increasingly recognized function of clathrin in actin cytoskeletal organization in mammalian cells.
Collapse
Affiliation(s)
- Matteo Bonazzi
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Clathrin-mediated endocytosis (CME) is the major pathway for internalization of membrane proteins from the cell surface. Half a century of studies have uncovered tremendous insights into how a clathrin-coated vesicle is formed. More recently, the advent of live-cell imaging has provided a dynamic view of this process. As CME is highly conserved from yeast to humans, budding yeast provides an evolutionary template for this process and has been a valuable system for dissecting the underlying molecular mechanisms. In this review we trace the formation of a clathrin-coated vesicle from initiation to uncoating, focusing on key findings from the yeast system.
Collapse
|
30
|
Carroll SY, Stimpson HEM, Weinberg J, Toret CP, Sun Y, Drubin DG. Analysis of yeast endocytic site formation and maturation through a regulatory transition point. Mol Biol Cell 2011; 23:657-68. [PMID: 22190733 PMCID: PMC3279393 DOI: 10.1091/mbc.e11-02-0108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
ETOC: During yeast endocytic site formation, Ede1p (yeast Eps15), but not clathrin light chain, is important for the recruitment of most other early-arriving proteins to endocytic sites. Cargo and clathrin light chain may play roles in regulating the transition of endocytic sites out of the “intermediate coat” stage of endocytosis. The earliest stages of endocytic site formation and the regulation of endocytic site maturation are not well understood. Here we analyzed the order in which the earliest proteins are detectable at endocytic sites in budding yeast and found that an uncharacterized protein, Pal1p/Ydr348cp, is also present at the initial stages of endocytosis. Because Ede1p (homologue of Eps15) and clathrin are the early-arriving proteins most important for cargo uptake, their roles during the early stages of endocytosis were examined more comprehensively. Ede1p is necessary for efficient recruitment of most early-arriving proteins, but not for the recruitment of the adaptor protein Yap1802p, to endocytic sites. The early-arriving proteins, as well as the later-arriving proteins Sla2p and Ent1/2p (homologues of Hip1R and epsins), were found to have longer lifetimes in CLC1-knockout yeast, which indicates that clathrin light chain facilitates the transition from the intermediate to late coat stages. Cargo also arrives during the early stages of endocytosis, and therefore its effect on endocytic machinery dynamics was investigated. Our results are consistent with a role for cargo in regulating the transition of endocytic sites from the early stages of formation to the late stages during which vesicle formation occurs.
Collapse
Affiliation(s)
- Susheela Y Carroll
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
31
|
Suzuki R, Toshima JY, Toshima J. Regulation of clathrin coat assembly by Eps15 homology domain-mediated interactions during endocytosis. Mol Biol Cell 2011; 23:687-700. [PMID: 22190739 PMCID: PMC3279396 DOI: 10.1091/mbc.e11-04-0380] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ETOC: The EH domain is a highly conserved protein–protein interaction domain involved in endocytosis. The EH domains of yeast endocytic proteins, Pan1p, End3p, and Ede1p, have a redundant function and are required for efficient recruitment of several endocytic proteins to sites of endocytosis in order to facilitate clathrin coat assembly. Clathrin-mediated endocytosis involves a coordinated series of molecular events regulated by interactions among a variety of proteins and lipids through specific domains. One such domain is the Eps15 homology (EH) domain, a highly conserved protein–protein interaction domain present in a number of proteins distributed from yeast to mammals. Several lines of evidence suggest that the yeast EH domain–containing proteins Pan1p, End3p, and Ede1p play important roles during endocytosis. Although genetic and cell-biological studies of these proteins suggested a role for the EH domains in clathrin-mediated endocytosis, it was unclear how they regulate clathrin coat assembly. To explore the role of the EH domain in yeast endocytosis, we mutated those of Pan1p, End3p, or Ede1p, respectively, and examined the effects of single, double, or triple mutation on clathrin coat assembly. We found that mutations of the EH domain caused a defect of cargo internalization and a delay of clathrin coat assembly but had no effect on assembly of the actin patch. We also demonstrated functional redundancy among the EH domains of Pan1p, End3p, and Ede1p for endocytosis. Of interest, the dynamics of several endocytic proteins were differentially affected by various EH domain mutations, suggesting functional diversity of each EH domain.
Collapse
Affiliation(s)
- Ryohei Suzuki
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | |
Collapse
|
32
|
Prosser DC, Drivas TG, Maldonado-Báez L, Wendland B. Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin. ACTA ACUST UNITED AC 2011; 195:657-71. [PMID: 22065638 PMCID: PMC3257529 DOI: 10.1083/jcb.201104045] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Much like mammalian cells, yeast contain a Rho-dependent pathway for endocytosis in addition to canonical clathrin-dependent endocytosis. Yeast is a powerful model organism for dissecting the temporal stages and choreography of the complex protein machinery during endocytosis. The only known mechanism for endocytosis in yeast is clathrin-mediated endocytosis, even though clathrin-independent endocytic pathways have been described in other eukaryotes. Here, we provide evidence for a clathrin-independent endocytic pathway in yeast. In cells lacking the clathrin-binding adaptor proteins Ent1, Ent2, Yap1801, and Yap1802, we identify a second endocytic pathway that depends on the GTPase Rho1, the downstream formin Bni1, and the Bni1 cofactors Bud6 and Spa2. This second pathway does not require components of the better-studied endocytic pathway, including clathrin and Arp2/3 complex activators. Thus, our results reveal the existence of a second pathway for endocytosis in yeast, which suggests similarities with the RhoA-dependent endocytic pathways of mammalian cells.
Collapse
Affiliation(s)
- Derek C Prosser
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
33
|
Weinberg J, Drubin DG. Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol 2011; 22:1-13. [PMID: 22018597 DOI: 10.1016/j.tcb.2011.09.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/26/2011] [Accepted: 09/01/2011] [Indexed: 02/04/2023]
Abstract
Clathrin-mediated endocytosis in the budding yeast Saccharomyces cerevisiae involves the ordered recruitment, activity and disassembly of nearly 60 proteins at distinct sites on the plasma membrane. Two-color live-cell fluorescence microscopy has proven to be invaluable for in vivo analysis of endocytic proteins: identifying new components, determining the order of protein arrival and dissociation, and revealing even very subtle mutant phenotypes. Yeast genetics and functional genomics facilitate identification of complex interaction networks between endocytic proteins and their regulators. Quantitative datasets produced by these various analyses have made theoretical modeling possible. Here, we discuss recent findings on budding yeast endocytosis that have advanced our knowledge of how -60 endocytic proteins are recruited, perform their functions, are regulated by lipid and protein modifications, and are disassembled, all with remarkable regularity.
Collapse
Affiliation(s)
- Jasper Weinberg
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
34
|
Boettner DR, Friesen H, Andrews B, Lemmon SK. Clathrin light chain directs endocytosis by influencing the binding of the yeast Hip1R homologue, Sla2, to F-actin. Mol Biol Cell 2011; 22:3699-714. [PMID: 21849475 PMCID: PMC3183023 DOI: 10.1091/mbc.e11-07-0628] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The clathrin light-chain (LC) N-terminal region interacts with the Sla2/Hip1/Hip1R family of ANTH/talin–like proteins. In vivo evidence shows that LC–Sla2 binding is important for releasing Sla2 attachments to actin in the endocytic coat. Loss of this regulation can suppress major actin defects during endocytosis. The role of clathrin light chain (CLC) in clathrin-mediated endocytosis is not completely understood. Previous studies showed that the CLC N-terminus (CLC-NT) binds the Hip1/Hip1R/Sla2 family of membrane/actin–binding factors and that overexpression of the CLC-NT in yeast suppresses endocytic defects of clathrin heavy-chain mutants. To elucidate the mechanistic basis for this suppression, we performed synthetic genetic array analysis with a clathrin CLC-NT deletion mutation (clc1-Δ19-76). clc1-Δ19-76 suppressed the internalization defects of null mutations in three late endocytic factors: amphiphysins (rvs161 and rvs167) and verprolin (vrp1). In actin sedimentation assays, CLC binding to Sla2 inhibited Sla2 interaction with F-actin. Furthermore, clc1-Δ19-76 suppression of the rvs and vrp phenotypes required the Sla2 actin-binding talin-Hip1/R/Sla2 actin-tethering C-terminal homology domain, suggesting that clc1-Δ19-76 promotes internalization by prolonging actin engagement by Sla2. We propose that CLC directs endocytic progression by pruning the Sla2-actin attachments in the clathrin lattice, providing direction for membrane internalization.
Collapse
Affiliation(s)
- Douglas R Boettner
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
35
|
Domagala A, Pulido S, Kamieniczna M, Kurpisz M, Herr JC. An isoimmune response to human sperm clathrin in an infertile woman with systemic lupus erythematosus. J Reprod Immunol 2011; 89:95-102. [PMID: 21470689 DOI: 10.1016/j.jri.2011.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 01/21/2011] [Accepted: 01/27/2011] [Indexed: 11/25/2022]
Abstract
We have employed a proteomic approach to study the immune response to human sperm in an infertile female patient suffering from systemic lupus erythematosus (SLE). Human sperm antigenic extracts were resolved by means of two-dimensional electrophoresis and electroblotted onto nitrocellulose membranes. The membranes were incubated with serum from the SLE patient. Sperm antigens that were reactive to polyclonal antibodies were next visualized on X-ray film, using the enhanced chemiluminescence (ECL). Three spots corresponding to the positions of sperm immunoreactive antigens on a nitrocellulose membrane were localized in a silver stained gel and subjected to mass spectrometry. A database search of the sequences recognized by the analyzed SLE serum revealed its homology to the clathrin heavy chain (CHC). Further analysis revealed that anti-CHC antibody reacted with multiple sperm antigenic determinants, resolved by either one- or two-dimensional electrophoresis. When studied by immunofluorescence, we demonstrated anti-CHC antibody reactivity with the sperm tail tip (corresponding to the sperm agglutination pattern), also with the principal piece and with cytoplasmic droplets around the sperm midpiece. Live sperm clearly exhibited reactivity with the midpiece. This study demonstrates clathrin heavy chain on human sperm using serum of an infertile individual with a concomitant autoimmune disease.
Collapse
Affiliation(s)
- Alina Domagala
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | |
Collapse
|
36
|
Brady RJ, Damer CK, Heuser JE, O'Halloran TJ. Regulation of Hip1r by epsin controls the temporal and spatial coupling of actin filaments to clathrin-coated pits. J Cell Sci 2010; 123:3652-61. [PMID: 20923836 DOI: 10.1242/jcs.066852] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, it has become clear that the actin cytoskeleton is involved in clathrin-mediated endocytosis. During clathrin-mediated endocytosis, clathrin triskelions and adaptor proteins assemble into lattices, forming clathrin-coated pits. These coated pits invaginate and detach from the membrane, a process that requires dynamic actin polymerization. We found an unexpected role for the clathrin adaptor epsin in regulating actin dynamics during this late stage of coated vesicle formation. In Dictyostelium cells, epsin is required for both the membrane recruitment and phosphorylation of the actin- and clathrin-binding protein Hip1r. Epsin-null and Hip1r-null cells exhibit deficiencies in the timing and organization of actin filaments at clathrin-coated pits. Consequently, clathrin structures persist on the membranes of epsin and Hip1r mutants and the internalization of clathrin structures is delayed. We conclude that epsin works with Hip1r to regulate actin dynamics by controlling the spatial and temporal coupling of actin filaments to clathrin-coated pits. Specific residues in the ENTH domain of epsin that are required for the membrane recruitment and phosphorylation of Hip1r are also required for normal actin and clathrin dynamics at the plasma membrane. We propose that epsin promotes the membrane recruitment and phosphorylation of Hip1r, which in turn regulates actin polymerization at clathrin-coated pits.
Collapse
Affiliation(s)
- Rebecca J Brady
- Department of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
37
|
Bitsikas V, Karachaliou M, Gournas C, Diallinas G. Hypertonic conditions trigger transient plasmolysis, growth arrest and blockage of transporter endocytosis in Aspergillus nidulans and Saccharomyces cerevisiae. Mol Membr Biol 2010; 28:54-68. [PMID: 20919858 DOI: 10.3109/09687688.2010.510484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
By using Aspergillus nidulans strains expressing functional GFP-tagged transporters under hypertonic conditions, we noticed the rapid appearance of cortical, relatively static, fluorescent patches (0.5-2.3 μm). These patches do not correspond to transporter microdomains as they co-localize with other plasma membrane-associated molecules, such as the pleckstrin homology (PH) domain and the SsoA t-Snare, or the lipophilic markers FM4-64 and filipin. In addition, they do not show characteristics of lipid rafts, MCCs or other membrane microdomains. Deconvoluted microscopic images showed that fluorescent patches correspond to plasma membrane invaginations. Transporters remain fully active during this phenomenon of localized plasmolysis. Plasmolysis was however associated with reduced growth rate and a dramatic blockage in transporter and FM4-64 endocytosis. These phenomena are transient and rapidly reversible upon wash-out of hypertonic media. Based on the observation that block in endocytosis by hypertonic treatment altered dramatically the cellular localization of tropomyosin (GFP-TpmA), although it did not affect the cortical appearance of upstream (SlaB-GFP) or downstream (AbpA-mRFP) endocytic components, we conclude that hypertonicity modifies actin dynamics and thus acts indirectly on endocytosis. This was further supported by the effect of latrunculin B, an actin depolymerization agent, on endocytosis. We show that the phenomena observed in A. nidulans also occur in Saccharomyces cerevisiae, suggesting that they constitute basic homeostatic responses of ascomycetes to hypertonic shock. Finally, our work shows that hypertonic treatments can be used as physiological tools to study the endocytic down-regulation of transporters in A. nidulans, as non-conditional genetic blocks affecting endocytic internalization are lethal or severely debilitating.
Collapse
Affiliation(s)
- Vassilis Bitsikas
- Faculty of Biology, Department of Botany, University of Athens, Panepistimioupolis, Athens, Greece
| | | | | | | |
Collapse
|
38
|
Sirotkin V, Berro J, Macmillan K, Zhao L, Pollard TD. Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast. Mol Biol Cell 2010; 21:2894-904. [PMID: 20587778 PMCID: PMC2921122 DOI: 10.1091/mbc.e10-02-0157] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report time courses of the accumulation and loss of 16 fluorescent fusion proteins at sites of clathrin-mediated endocytosis in fission yeast. Mathematical modeling shows that dendritic nucleation hypothesis can account for the kinetics of actin assembly in vivo and disassembly requires actin filament severing along with depolymerization. We used quantitative confocal microscopy to measure the numbers of 16 proteins tagged with fluorescent proteins during assembly and disassembly of endocytic actin patches in fission yeast. The peak numbers of each molecule that accumulate in patches varied <30–50% between individual patches. The pathway begins with accumulation of 30–40 clathrin molecules, sufficient to build a hemisphere at the tip of a plasma membrane invagination. Thereafter precisely timed waves of proteins reach characteristic peak numbers: endocytic adaptor proteins (∼120 End4p and ∼230 Pan1p), activators of Arp2/3 complex (∼200 Wsp1p and ∼340 Myo1p) and ∼300 Arp2/3 complexes just ahead of a burst of actin assembly into short, capped and highly cross-linked filaments (∼7000 actins, ∼200 capping proteins, and ∼900 fimbrins). Coronin arrives last as all other components disperse upon patch internalization and movement over ∼10 s. Patch internalization occurs without recruitment of dynamins. Mathematical modeling, described in the accompanying paper (Berro et al., 2010, MBoC 21: 2803–2813), shows that the dendritic nucleation hypothesis can account for the time course of actin assembly into a branched network of several hundred filaments 100–200 nm long and that patch disassembly requires actin filament fragmentation in addition to depolymerization from the ends.
Collapse
Affiliation(s)
- Vladimir Sirotkin
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | | | | | |
Collapse
|
39
|
The Sla2p/HIP1/HIP1R family: similar structure, similar function in endocytosis? Biochem Soc Trans 2010; 38:187-91. [DOI: 10.1042/bst0380187] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HIP1 (huntingtin interacting protein 1) has two close relatives: HIP1R (HIP1-related) and yeast Sla2p. All three members of the family have a conserved domain structure, suggesting a common function. Over the past decade, a number of studies have characterized these proteins using a combination of biochemical, imaging, structural and genetic techniques. These studies provide valuable information on binding partners, structure and dynamics of HIP1/HIP1R/Sla2p. In general, all suggest a role in CME (clathrin-mediated endocytosis) for the three proteins, though some differences have emerged. In this mini-review we summarize the current views on the roles of these proteins, while emphasizing the unique attributes of each family member.
Collapse
|
40
|
Gale CA, Leonard MD, Finley KR, Christensen L, McClellan M, Abbey D, Kurischko C, Bensen E, Tzafrir I, Kauffman S, Becker J, Berman J. SLA2 mutations cause SWE1-mediated cell cycle phenotypes in Candida albicans and Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2009; 155:3847-3859. [PMID: 19778960 DOI: 10.1099/mic.0.033233-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The early endocytic patch protein Sla2 is important for morphogenesis and growth rates in Saccharomyces cerevisiae and Candida albicans, but the mechanism that connects these processes is not clear. Here we report that growth defects in cells lacking CaSLA2 or ScSLA2 are associated with a cell cycle delay that is influenced by Swe1, a morphogenesis checkpoint kinase. To establish how Swe1 monitors Sla2 function, we compared actin organization and cell cycle dynamics in strains lacking other components of early endocytic patches (Sla1 and Abp1) with those in strains lacking Sla2. Only sla2 strains had defects in actin cables, a known trigger of the morphogenesis checkpoint, yet all three strains exhibited Swe1-dependent phenotypes. Thus, Swe1 appears to monitor actin patch in addition to actin cable function. Furthermore, Swe1 contributed to virulence in a mouse model of disseminated candidiasis, implying a role for the morphogenesis checkpoint during the pathogenesis of C. albicans infections.
Collapse
Affiliation(s)
- Cheryl A Gale
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pediatrics, University of Minnesota, Minneapolis MN 55455, USA
| | - Michelle D Leonard
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kenneth R Finley
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Leah Christensen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Darren Abbey
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cornelia Kurischko
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric Bensen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Iris Tzafrir
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jeff Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Judith Berman
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
41
|
Stimpson HEM, Toret CP, Cheng AT, Pauly BS, Drubin DG. Early-arriving Syp1p and Ede1p function in endocytic site placement and formation in budding yeast. Mol Biol Cell 2009; 20:4640-51. [PMID: 19776351 DOI: 10.1091/mbc.e09-05-0429] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent studies have revealed the detailed timing of protein recruitment to endocytic sites in budding yeast. However, little is understood about the early stages of their formation. Here we identify the septin-associated protein Syp1p as a component of the machinery that drives clathrin-mediated endocytosis in budding yeast. Syp1p arrives at endocytic sites early in their formation and shares unique dynamics with the EH-domain protein Ede1p. We find that Syp1p is related in amino acid sequence to several mammalian proteins one of which, SGIP1-alpha, is an endocytic component that binds the Ede1p homolog Eps15. Like Syp1p, SGIP1-alpha arrives early at sites of clathrin-mediated endocytosis, suggesting that Syp1p/Ede1p and SGIP1-alpha/Eps15 may have a conserved function. In yeast, both Syp1p and Ede1p play important roles in the rate of endocytic site turnover. Additionally, Ede1p is important for endocytic site formation, whereas Syp1p acts as a polarized factor that recruits both Ede1p and endocytic sites to the necks of emerging buds. Thus Ede1p and Syp1p are conserved, early-arriving endocytic proteins with roles in the formation and placement of endocytic sites, respectively.
Collapse
Affiliation(s)
- Helen E M Stimpson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | | | | | | | | |
Collapse
|
42
|
Gottfried I, Ehrlich M, Ashery U. HIP1 exhibits an early recruitment and a late stage function in the maturation of coated pits. Cell Mol Life Sci 2009; 66:2897-911. [PMID: 19626275 PMCID: PMC11115706 DOI: 10.1007/s00018-009-0077-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 06/12/2009] [Indexed: 11/26/2022]
Abstract
Huntingtin interacting protein 1 (HIP1) is an accessory protein of the clathrin-mediated endocytosis (CME) pathway, yet its precise role and the step at which it becomes involved are unclear. We employed live-cell imaging techniques to focus on the early steps of CME and characterize HIP1 dynamics. We show that HIP1 is highly colocalized with clathrin at the plasma membrane and shares similar dynamics with a subpopulation of clathrin assemblies. Employing transferrin receptor fused to pHluorin, we distinguished between open pits to which HIP1 localizes and newly internalized vesicles that are devoid of HIP1. Moreover, shRNA knockdown of clathrin compromised HIP1 membranal localization, unlike the reported behavior of Sla2p. HIP1 fragment, lacking its ANTH and Talin-like domains, inhibits internalization of transferrin, but retains colocalization with membranal clathrin assemblies. These data demonstrate HIP1's role in pits maturation and formation of the coated vesicle, and its strong dependence on clathrin for membranal localization.
Collapse
Affiliation(s)
- Irit Gottfried
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Uri Ashery
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| |
Collapse
|
43
|
Robertson AS, Smythe E, Ayscough KR. Functions of actin in endocytosis. Cell Mol Life Sci 2009; 66:2049-65. [PMID: 19290477 PMCID: PMC11115948 DOI: 10.1007/s00018-009-0001-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/10/2009] [Accepted: 02/13/2009] [Indexed: 12/30/2022]
Abstract
Endocytosis is a fundamental eukaryotic process required for remodelling plasma-membrane lipids and protein to ensure appropriate membrane composition. Increasing evidence from a number of cell types reveals that actin plays an active, and often essential, role at key endocytic stages. Much of our current mechanistic understanding of the endocytic process has come from studies in budding yeast and has been facilitated by yeast's genetic amenability and by technological advances in live cell imaging. While endocytosis in metazoans is likely to be subject to a greater array of regulatory signals, recent reports indicate that spatiotemporal aspects of vesicle formation requiring actin are likely to be conserved across eukaryotic evolution. In this review we focus on the 'modular' model of endocytosis in yeast before highlighting comparisons with other cell types. Our discussion is limited to endocytosis involving clathrin as other types of endocytosis have not been demonstrated in yeast.
Collapse
Affiliation(s)
- Alastair S. Robertson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN UK
| | - Elizabeth Smythe
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN UK
| | - Kathryn R. Ayscough
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
44
|
Collette JR, Chi RJ, Boettner DR, Fernandez-Golbano IM, Plemel R, Merz AJ, Geli MI, Traub LM, Lemmon SK. Clathrin functions in the absence of the terminal domain binding site for adaptor-associated clathrin-box motifs. Mol Biol Cell 2009; 20:3401-13. [PMID: 19458198 DOI: 10.1091/mbc.e08-10-1082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clathrin is involved in vesicle formation in the trans-Golgi network (TGN)/endosomal system and during endocytosis. Clathrin recruitment to membranes is mediated by the clathrin heavy chain (HC) N-terminal domain (TD), which forms a seven-bladed beta-propeller. TD binds membrane-associated adaptors, which have short peptide motifs, either the clathrin-box (CBM) and/or the W-box; however, the importance of the TD binding sites for these motifs has not been tested in vivo. We investigated the importance of the TD in clathrin function by generating 1) mutations in the yeast HC gene (CHC1) to disrupt the binding sites for the CBM and W-box (chc1-box), and 2) four TD-specific temperature-sensitive alleles of CHC1. We found that TD is important for the retention of resident TGN enzymes and endocytosis of alpha-factor; however, the known adaptor binding sites are not necessary, because chc1-box caused little to no effect on trafficking pathways involving clathrin. The Chc1-box TD was able to interact with the endocytic adaptor Ent2 in a CBM-dependent manner, and HCs encoded by chc1-box formed clathrin-coated vesicles. These data suggest that additional or alternative binding sites exist on the TD propeller to help facilitate the recruitment of clathrin to sites of vesicle formation.
Collapse
Affiliation(s)
- John R Collette
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Endocytosis is crucial for cell polarity and apical membrane recycling in the filamentous fungus Aspergillus oryzae. EUKARYOTIC CELL 2008; 8:37-46. [PMID: 19028995 DOI: 10.1128/ec.00207-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Establishing the occurrence of endocytosis in filamentous fungi was elusive in the past mainly due to the lack of reliable indicators of endocytosis. Recently, however, it was shown that the fluorescent dye N-(3-triethylammoniumpropyl)-4-(p-diethyl-aminophenyl-hexatrienyl)pyridinium dibromide (FM4-64) and the plasma membrane protein AoUapC (Aspergillus oryzae UapC) fused to enhanced green fluorescent protein (EGFP) were internalized from the plasma membrane by endocytosis. Although the occurrence of endocytosis was clearly demonstrated, its physiological importance in filamentous fungi still remains largely unaddressed. We generated a strain in which A. oryzae end4 (Aoend4), the A. oryzae homolog of Saccharomyces cerevisiae END4/SLA2, was expressed from the Aoend4 locus under the control of a regulatable thiA promoter. The growth of this strain was severely impaired, and its hyphal morphology was altered in the Aoend4-repressed condition. Moreover, in the Aoend4-repressed condition, neither FM4-64 nor AoUapC-EGFP was internalized, indicating defective endocytosis. Furthermore, the localization of a secretory soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) was abnormal in the Aoend4-repressed condition. Aberrant accumulation of cell wall components was also observed by calcofluor white staining and transmission electron microscopy analysis, and several genes that encode cell wall-building enzymes were upregulated, indicating that the regulation of cell wall synthesis is abnormal in the Aoend4-repressed condition, whereas Aopil1 disruptants do not display the phenotype exhibited in the Aoend4-repressed condition. Our results strongly suggest that endocytosis is crucial for the hyphal tip growth in filamentous fungi.
Collapse
|
46
|
Abstract
Investigations into the mechanisms which regulate entry of integral membrane proteins, and associated ligands, into the cell through vesicular carriers (endocytosis) have greatly benefited from the application of live-cell imaging. Several excellent recent reviews have detailed specific aspects of endocytosis, such as entry of particular cargo, or the different routes of internalization. The aim of the present review is to highlight how advances in live-cell fluorescence microscopy have affected the study of clathrin-mediated endocytosis. The last decade has seen a tremendous increase in the development and dissemination of methods for imaging endocytosis in live cells, and this has been followed by a dramatic shift in the way this critical cellular pathway is studied and understood. The present review begins with a description of the technical advances which have permitted new types of experiment to be performed, as well as potential pitfalls of these new technologies. Subsequently, advances in the understanding of three key endocytic proteins will be addressed: clathrin, dynamin and AP-2 (adaptor protein 2). Although great strides have clearly been made in these areas in recent years, as is often the case, each answer has bred numerous questions. Furthermore, several examples are highlighted where, because of seemingly minor differences in experimental systems, what appear at first to be very similar studies have, at times, yielded vastly differing results and conclusions. Thus this is an exceedingly exciting time to study endocytosis, and this area serves as a clear demonstration of the power of applying live-cell imaging to answer fundamental biological questions.
Collapse
|
47
|
Maldonado-Báez L, Dores MR, Perkins EM, Drivas TG, Hicke L, Wendland B. Interaction between Epsin/Yap180 adaptors and the scaffolds Ede1/Pan1 is required for endocytosis. Mol Biol Cell 2008; 19:2936-48. [PMID: 18448668 PMCID: PMC2441688 DOI: 10.1091/mbc.e07-10-1019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 04/16/2008] [Accepted: 04/22/2008] [Indexed: 01/08/2023] Open
Abstract
The spatial and temporal regulation of the interactions among the approximately 60 proteins required for endocytosis is under active investigation in many laboratories. We have identified the interaction between monomeric clathrin adaptors and endocytic scaffold proteins as a critical prerequisite for the recruitment and/or spatiotemporal dynamics of endocytic proteins at early and late stages of internalization. Quadruple deletion yeast cells (DeltaDeltaDeltaDelta) lacking four putative adaptors, Ent1/2 and Yap1801/2 (homologues of epsin and AP180/CALM proteins), with a plasmid encoding Ent1 or Yap1802 mutants, have defects in endocytosis and growth at 37 degrees C. Live-cell imaging revealed that the dynamics of the early- and late-acting scaffold proteins Ede1 and Pan1, respectively, depend upon adaptor interactions mediated by adaptor asparagine-proline-phenylalanine motifs binding to scaffold Eps15 homology domains. These results suggest that adaptor/scaffold interactions regulate transitions from early to late events and that clathrin adaptor/scaffold protein interaction is essential for clathrin-mediated endocytosis.
Collapse
Affiliation(s)
| | - Michael R. Dores
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208
| | - Edward M. Perkins
- Integrated Imaging Center, The Johns Hopkins University, Baltimore, MD 21218; and
| | | | - Linda Hicke
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208
| | | |
Collapse
|
48
|
Araujo-Bazán L, Peñalva MA, Espeso EA. Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol Microbiol 2008; 67:891-905. [DOI: 10.1111/j.1365-2958.2007.06102.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Repass SL, Brady RJ, O'Halloran TJ. Dictyostelium Hip1r contributes to spore shape and requires epsin for phosphorylation and localization. J Cell Sci 2007; 120:3977-88. [PMID: 17971415 DOI: 10.1242/jcs.011213] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clathrin-coated pits assemble on the plasma membrane to select and sequester proteins within coated vesicles for delivery to intracellular compartments. Although a host of clathrin-associated proteins have been identified, much less is known regarding the interactions between clathrin-associated proteins or how individual proteins influence the function of other proteins. In this study, we present evidence of a functional relationship between two clathrin-associated proteins in Dictyostelium, Hip1r and epsin. Hip1r-null cells form fruiting bodies that yield defective spores that lack the organized fibrils typical of wild-type spores. This spore coat defect leads to formation of round, rather than ovoid, spores in Hip1r-null cells that exhibit decreased viability. Like Hip1r-null cells, epsin-null cells also construct fruiting bodies with round spores, but these spores are more environmentally robust. Double-null cells that harbor deletions in both epsin and Hip1r form fruiting bodies, with spores identical in shape and viability to Hip1r single-null cells. In the growing amoeba, Hip1r is phosphorylated and localizes to puncta on the plasma membrane that also contain epsin. Both the phosphorylation state and localization of Hip1r into membrane puncta require epsin. Moreover, expression of the N-terminal ENTH domain of epsin is sufficient to restore both the phosphorylation and the restricted localization of Hip1r within plasma membrane puncta. The results from this study reveal a novel interaction between two clathrin-associated proteins during cellular events in both growing and developing Dictyostelium cells.
Collapse
Affiliation(s)
- Shannon Lea Repass
- Department of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin TX 78712, USA
| | | | | |
Collapse
|
50
|
Hehnly H, Stamnes M. Regulating cytoskeleton-based vesicle motility. FEBS Lett 2007; 581:2112-8. [PMID: 17335816 PMCID: PMC1974873 DOI: 10.1016/j.febslet.2007.01.094] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 01/18/2007] [Indexed: 11/17/2022]
Abstract
During vesicular transport, the assembly of the coat complexes and the selection of cargo proteins must be coordinated with the subsequent translocation of vesicles from the donor to an acceptor compartment. Here, we review recent progress toward uncovering the molecular mechanisms that connect transport vesicles to the protein machinery responsible for cytoskeleton-mediated motility. An emerging theme is that vesicle cargo proteins, either directly or through binding interactions with coat proteins, are able to influence cytoskeletal dynamics and motor protein function. Hence, a vesicle's cargo composition may help direct its intracellular motility and targeting.
Collapse
Affiliation(s)
- Heidi Hehnly
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|