1
|
Delrue C, Speeckaert R, Moresco RN, Speeckaert MM. Cyclic Adenosine Monophosphate Signaling in Chronic Kidney Disease: Molecular Targets and Therapeutic Potentials. Int J Mol Sci 2024; 25:9441. [PMID: 39273390 PMCID: PMC11395066 DOI: 10.3390/ijms25179441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by a steady decline in kidney function and affects roughly 10% of the world's population. This review focuses on the critical function of cyclic adenosine monophosphate (cAMP) signaling in CKD, specifically how it influences both protective and pathogenic processes in the kidney. cAMP, a critical secondary messenger, controls a variety of cellular functions, including transcription, metabolism, mitochondrial homeostasis, cell proliferation, and apoptosis. Its compartmentalization inside cellular microdomains ensures accurate signaling. In kidney physiology, cAMP is required for hormone-regulated activities, particularly in the collecting duct, where it promotes water reabsorption through vasopressin signaling. Several illnesses, including Fabry disease, renal cell carcinoma, nephrogenic diabetes insipidus, Bartter syndrome, Liddle syndrome, diabetic nephropathy, autosomal dominant polycystic kidney disease, and renal tubular acidosis, have been linked to dysfunction in the cAMP system. Both cAMP analogs and phosphodiesterase inhibitors have the potential to improve kidney function and reduce kidney damage. Future research should focus on developing targeted PDE inhibitors for the treatment of CKD.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Rafael Noal Moresco
- Graduate Program in Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
2
|
Wilkin MB, Whiteford R, Akbar T, Hosseini-Alghaderi S, Revici R, Carbery AM, Baron M. The First Defined Null Allele of the Notch Regulator, a Suppressor of Deltex: Uncovering Its Novel Roles in Drosophila melanogaster Oogenesis. Biomolecules 2024; 14:522. [PMID: 38785929 PMCID: PMC11118177 DOI: 10.3390/biom14050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Suppressor of deltex (Su(dx)) is a Drosophila melanogaster member of the NEDD4 family of the HECT domain E3 ubiquitin ligases. Su(dx) acts as a regulator of Notch endocytic trafficking, promoting Notch lysosomal degradation and the down-regulation of both ligand-dependent and ligand-independent signalling, the latter involving trafficking through the endocytic pathway and activation of the endo/lysosomal membrane. Mutations of Su(dx) result in developmental phenotypes in the Drosophila wing that reflect increased Notch signalling, leading to gaps in the specification of the wing veins, and Su(dx) functions to provide the developmental robustness of Notch activity to environmental temperature shifts. The full developmental functions of Su(dx) are unclear; however, this is due to a lack of a clearly defined null allele. Here we report the first defined null mutation of Su(dx), generated by P-element excision, which removes the complete open reading frame. We show that the mutation is recessive-viable, with the Notch gain of function phenotypes affecting wing vein and leg development. We further uncover new roles for Su(dx) in Drosophila oogenesis, where it regulates interfollicular stalk formation, egg chamber separation and germline cyst enwrapment by the follicle stem cells. Interestingly, while the null allele exhibited a gain in Notch activity during oogenesis, the previously described Su(dx)SP allele, which carries a seven amino acid in-frame deletion, displayed a Notch loss of function phenotypes and an increase in follicle stem cell turnover. This is despite both alleles displaying similar Notch gain of function in wing development. We attribute this unexpected context-dependent outcome of Su(dx)sp being due to the partial retention of function by the intact C2 and WW domain regions of the protein. Our results extend our understanding of the developmental role of Su(dx) in the tissue renewal and homeostasis of the Drosophila ovary and illustrate the importance of examining an allelic series of mutations to fully understand developmental functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Martin Baron
- Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Michael Smith Building and Oxford Rd., Manchester M13 9PT, UK
| |
Collapse
|
3
|
Wright KM, Nathan S, Jiang H, Xia W, Kim H, Chakouri N, Nwafor JN, Fossier L, Srinivasan L, Chen Z, Boronina T, Post J, Paul S, Cole RN, Ben-Johny M, Cole PA, Gabelli SB. NEDD4L intramolecular interactions regulate its auto and substrate Na V1.5 ubiquitination. J Biol Chem 2024; 300:105715. [PMID: 38309503 PMCID: PMC10933555 DOI: 10.1016/j.jbc.2024.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
NEDD4L is a HECT-type E3 ligase that catalyzes the addition of ubiquitin to intracellular substrates such as the cardiac voltage-gated sodium channel, NaV1.5. The intramolecular interactions of NEDD4L regulate its enzymatic activity which is essential for proteostasis. For NaV1.5, this process is critical as alterations in Na+ current is involved in cardiac diseases including arrhythmias and heart failure. In this study, we perform extensive biochemical and functional analyses that implicate the C2 domain and the first WW-linker (1,2-linker) in the autoregulatory mechanism of NEDD4L. Through in vitro and electrophysiological experiments, the NEDD4L 1,2-linker was determined to be important in substrate ubiquitination of NaV1.5. We establish the preferred sites of ubiquitination of NEDD4L to be in the second WW-linker (2,3-linker). Interestingly, NEDD4L ubiquitinates the cytoplasmic linker between the first and second transmembrane domains of the channel (DI-DII) of NaV1.5. Moreover, we design a genetically encoded modulator of Nav1.5 that achieves Na+ current reduction using the NEDD4L HECT domain as cargo of a NaV1.5-binding nanobody. These investigations elucidate the mechanisms regulating the NEDD4 family and furnish a new molecular framework for understanding NaV1.5 ubiquitination.
Collapse
Affiliation(s)
- Katharine M Wright
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sara Nathan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wendy Xia
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - HyoJeon Kim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Justin N Nwafor
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lucile Fossier
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Lakshmi Srinivasan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Zan Chen
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy Post
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suman Paul
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Rotin D, Prag G. Physiological Functions of the Ubiquitin Ligases Nedd4-1 and Nedd4-2. Physiology (Bethesda) 2024; 39:18-29. [PMID: 37962894 DOI: 10.1152/physiol.00023.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023] Open
Abstract
The Nedd4 family of E3 ubiquitin ligases, consisting of a C2-WW(n)-HECT domain architecture, includes the closely related Nedd4/Nedd4-1 and Nedd4L/Nedd4-2, which play critical roles in human physiology and pathophysiology.This review focuses on the regulation of enzymatic activity of these Nedd4 proteins, as well as on their roles in regulating stability and function of membrane and other signaling proteins, such as ion channels, ion transporters, and growth factor receptors. The diseases caused by impairment of such regulation are discussed, as well as opportunities and challenges for targeting these enzymes for therapy.
Collapse
Affiliation(s)
- Daniela Rotin
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Biochemistry Department, University of Toronto, Ontario, Canada
| | - Gali Prag
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
- Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
5
|
Bakhos-Douaihy D, Seaayfan E, Frachon N, Demaretz S, Kömhoff M, Laghmani K. Diacidic Motifs in the Carboxyl Terminus Are Required for ER Exit and Translocation to the Plasma Membrane of NKCC2. Int J Mol Sci 2022; 23:ijms232112761. [PMID: 36361553 PMCID: PMC9656672 DOI: 10.3390/ijms232112761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mutations in the apical Na-K-2Cl co-transporter, NKCC2, cause type I Bartter syndrome (BS1), a life-threatening kidney disease. We have previously demonstrated that the BS1 variant Y998X, which deprives NKCC2 from its highly conserved dileucine-like motifs, compromises co-transporter surface delivery through ER retention mechanisms. However, whether these hydrophobic motifs are sufficient for anterograde trafficking of NKCC2 remains to be determined. Interestingly, sequence analysis of NKCC2 C-terminus revealed the presence of consensus di-acidic (D/E-X-D/E) motifs, 949EEE951 and 1019DAELE1023, located upstream and downstream of BS1 mutation Y998X, respectively. Di-acidic codes are involved in ER export of proteins through interaction with COPII budding machinery. Importantly, whereas mutating 949EEE951 motif to 949AEA951 had no effect on NKCC2 processing, mutating 1019DAE1021 to 1019AAA1021 heavily impaired complex-glycosylation and cell surface expression of the cotransporter in HEK293 and OKP cells. Most importantly, triple mutation of D, E and E residues of 1019DAELE1023 to 1019AAALA1023 almost completely abolished NKCC2 complex-glycosylation, suggesting that this mutant failed to exit the ER. Cycloheximide chase analysis demonstrated that the absence of the terminally glycosylated form of 1019AAALA1023 was caused by defects in NKCC2 maturation. Accordingly, co-immunolocalization experiments revealed that 1019AAALA1023 was trapped in the ER. Finally, overexpression of a dominant negative mutant of Sar1-GTPase abolished NKCC2 maturation and cell surface expression, clearly indicating that NKCC2 export from the ER is COPII-dependent. Hence, our data indicate that in addition to the di-leucine like motifs, NKCC2 uses di-acidic exit codes for export from the ER through the COPII-dependent pathway. We propose that any naturally occurring mutation of NKCC2 interfering with this pathway could form the molecular basis of BS1.
Collapse
Affiliation(s)
- Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Sylvie Demaretz
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children’s Hospital, Philipps-University, 35043 Marburg, Germany
| | - Kamel Laghmani
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
6
|
García-Rubio D, Martínez-Vieyra I, de la Mora MB, Fuentes-García MA, Cerecedo D. Clinical Application of Epithelial Sodium Channel (ENaC) as a Biomarker for Arterial Hypertension. BIOSENSORS 2022; 12:bios12100806. [PMID: 36290943 PMCID: PMC9599886 DOI: 10.3390/bios12100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Arterial hypertension (HTN) is a global public health concern and an important risk factor for cardiovascular diseases and renal failure. We previously reported overexpression of ENaC on the plasma membrane of human platelets is a hallmark of HTN. In this double-blinded study of an open population (n = 167), we evaluated the sensitivity and specificity of a diagnostic assay based on gold nanoparticles (AuNPs) conjugated to an antibody against epithelial sodium channel (ENaC) expressed on platelets, which is detected using a fluorescent anti-ENaC secondary antibody and spectrofluorometry. Using the cutoff value for the AuNP-anti-ENaC assay, we confirmed the diagnosis for 62.1% of patients with clinical HTN and detected 59.7% of patients had previously undiagnosed HTN. Although some shortcomings in terms of accurately discriminating healthy individuals and patients with HTN still need to be resolved, we propose this AuNP-anti-ENaC assay could be used for initial screening and early diagnosis to critically improve opportune clinical management of HTN.
Collapse
Affiliation(s)
- Diana García-Rubio
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Ivette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | | | | | - Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07738, Mexico
- Correspondence: ; Tel.: +52-555-729-6300 (ext. 55531)
| |
Collapse
|
7
|
Elevated intracellular Na + and osmolarity stimulate catalytic activity of the ubiquitin ligase Nedd4-2. Proc Natl Acad Sci U S A 2022; 119:e2122495119. [PMID: 35858421 PMCID: PMC9335340 DOI: 10.1073/pnas.2122495119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Regulation of catalytic activity of E3 ubiquitin ligases is critical for their cellular functions. We identified an unexpected mode of regulation of E3 catalytic activity by ions and osmolarity; enzymatic activity of the HECT family E3 Nedd4-2/Nedd4L is enhanced by increased intracellular Na+ ([Na+]i) and by hyperosmolarity. This stimulated activity is mediated by activation of p38-MAPK and is inhibited by WNKs. Moreover, protease (Furin)-mediated activation of the epithelial Na+ channel ENaC (a bona fide Nedd4-2 substrate), which leads to increased [Na+]i and osmolarity, results in enhanced Nedd4-2 catalytic activity. This enhancement is inhibited by a Furin inhibitor, by a protease-resistant ENaC mutant, or by treatment with the ENaC inhibitor amiloride. Moreover, WNK inhibition, which stimulates catalytic activity of Nedd4-2, leads to reduced levels of cell-surface ENaC and reduced channel activity. ENaC activity does not affect Nedd4-2:ENaC binding. Therefore, these results demonstrate activation of a ubiquitin ligase by Na+ and osmotic changes. Importantly, they reveal a negative feedback loop in which active ENaC leads to stimulation of catalytic activity of its own suppressor, Nedd4-2, to protect cells from excessive Na+ loading and hyperosmotic stress and to protect the animal from hypertension.
Collapse
|
8
|
Aisenberg WH, McCray BA, Sullivan JM, Diehl E, DeVine LR, Alevy J, Bagnell AM, Carr P, Donohue JK, Goretzki B, Cole RN, Hellmich UA, Sumner CJ. Multiubiquitination of TRPV4 reduces channel activity independent of surface localization. J Biol Chem 2022; 298:101826. [PMID: 35300980 PMCID: PMC9010760 DOI: 10.1016/j.jbc.2022.101826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin (Ub)-mediated regulation of plasmalemmal ion channel activity canonically occurs via stimulation of endocytosis. Whether ubiquitination can modulate channel activity by alternative mechanisms remains unknown. Here, we show that the transient receptor potential vanilloid 4 (TRPV4) cation channel is multiubiquitinated within its cytosolic N-terminal and C-terminal intrinsically disordered regions (IDRs). Mutagenizing select lysine residues to block ubiquitination of the N-terminal but not C-terminal IDR resulted in a marked elevation of TRPV4-mediated intracellular calcium influx, without increasing cell surface expression levels. Conversely, enhancing TRPV4 ubiquitination via expression of an E3 Ub ligase reduced TRPV4 channel activity but did not decrease plasma membrane abundance. These results demonstrate Ub-dependent regulation of TRPV4 channel function independent of effects on plasma membrane localization. Consistent with ubiquitination playing a key negative modulatory role of the channel, gain-of-function neuropathy-causing mutations in the TRPV4 gene led to reduced channel ubiquitination in both cellular and Drosophila models of TRPV4 neuropathy, whereas increasing mutant TRPV4 ubiquitination partially suppressed channel overactivity. Together, these data reveal a novel mechanism via which ubiquitination of an intracellular flexible IDR domain modulates ion channel function independently of endocytic trafficking and identify a contributory role for this pathway in the dysregulation of TRPV4 channel activity by neuropathy-causing mutations.
Collapse
Affiliation(s)
- William H Aisenberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brett A McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy M Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika Diehl
- Department of Chemistry, Biochemistry Section, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Lauren R DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan Alevy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anna M Bagnell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patrice Carr
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jack K Donohue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benedikt Goretzki
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, Frankfurt am Main, Germany
| | - Robert N Cole
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, Frankfurt am Main, Germany
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
9
|
Palma AG, Kotsias BA. The Effect of Dynasore Upon the Negative Interaction Between ENaC and CFTR Channels in Xenopus laevis Oocytes. J Membr Biol 2022; 255:61-69. [DOI: 10.1007/s00232-021-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
|
10
|
Xia S, Bozóky Z, Di Paola M, Laselva O, Ahmadi S, Jiang JX, Pitstick AL, Jiang C, Rotin D, Mayhew CN, Jones NL, Bear CE. High-Throughput Functional Analysis of CFTR and Other Apically Localized Proteins in iPSC-Derived Human Intestinal Organoids. Cells 2021; 10:cells10123419. [PMID: 34943927 PMCID: PMC8699884 DOI: 10.3390/cells10123419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023] Open
Abstract
Induced Pluripotent Stem Cells (iPSCs) can be differentiated into epithelial organoids that recapitulate the relevant context for CFTR and enable testing of therapies targeting Cystic Fibrosis (CF)-causing mutant proteins. However, to date, CF-iPSC-derived organoids have only been used to study pharmacological modulation of mutant CFTR channel activity and not the activity of other disease-relevant membrane protein constituents. In the current work, we describe a high-throughput, fluorescence-based assay of CFTR channel activity in iPSC-derived intestinal organoids and describe how this method can be adapted to study other apical membrane proteins. Specifically, we show how this assay can be employed to study CFTR and ENaC channels and an electrogenic acid transporter in the same iPSC-derived intestinal tissue. This phenotypic platform promises to expand CF therapy discovery to include strategies that target multiple determinants of epithelial fluid transport.
Collapse
Affiliation(s)
- Sunny Xia
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
- Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.J.); (D.R.); (N.L.J.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Zoltán Bozóky
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
| | - Michelle Di Paola
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Onofrio Laselva
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Saumel Ahmadi
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Jia Xin Jiang
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
| | - Amy L. Pitstick
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (A.L.P.); (C.N.M.)
| | - Chong Jiang
- Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.J.); (D.R.); (N.L.J.)
| | - Daniela Rotin
- Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.J.); (D.R.); (N.L.J.)
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Christopher N. Mayhew
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (A.L.P.); (C.N.M.)
| | - Nicola L. Jones
- Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (C.J.); (D.R.); (N.L.J.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Christine E. Bear
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada; (S.X.); (Z.B.); (O.L.); (J.X.J.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
- Correspondence:
| |
Collapse
|
11
|
Yeh YC, Lin YP, Kramer H, Parekh AB. Single-nucleotide polymorphisms in Orai1 associated with atopic dermatitis inhibit protein turnover, decrease calcium entry and disrupt calcium-dependent gene expression. Hum Mol Genet 2021; 29:1808-1823. [PMID: 31600783 PMCID: PMC7372555 DOI: 10.1093/hmg/ddz223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Loss-of function mutations in Orai1 Ca2+ channels lead to a form of severe combined immunodeficiency, auto-immunity, muscle hypotonia and defects in dental enamel production and sweat gland function. Two single-nucleotide polymorphisms (SNPs) in Orai1 have been found and localize to the second extracellular loop. These polymorphisms associate with atopic dermatitis but how they affect Ca2+ signalling and cell function is unknown. Here, we find that Orai1–SNPs turnover considerably more slowly than wild type Orai1 and are more abundantly expressed in the plasma membrane. We show a central role for flotillin in the endocytotic recycling of Orai1 channels and that endocytosed wild type Orai1 is trafficked to Rab 7-positive late endosomes for lysosomal degradation. Orai1–SNPs escape the degradation pathway and instead enter Rab 11-positive recycling endosomes, where they are returned to the surface membrane through Arf6-dependent exocytosis. We find that Orai1–SNPs escape late endosomes through endosomal pH regulation of interaction between the channel and flotillin. We identify a pH-sensitive electrostatic interaction between positively charged arginine in extracellular loop 2 (K210) and a negatively charged aspartate (D112) in extracellular loop 1 that helps determine Orai1 turnover. The increase in membrane Orai1–SNP leads to a mis-match in Orai1–STIM stoichiometry, resulting in inhibition of Ca2+ entry and Ca2+-dependent gene expression. Our results identify new strategies for targeting atopic dermatitis.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT UK
| | - Yu-Ping Lin
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT UK
| | - Holger Kramer
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Anant B Parekh
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT UK
| |
Collapse
|
12
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Cheung TT, Geda AC, Ware AW, Rasulov SR, Tenci P, Hamilton KL, McDonald FJ. Retromer is involved in epithelial Na+ channel trafficking. Am J Physiol Renal Physiol 2020; 319:F895-F907. [DOI: 10.1152/ajprenal.00198.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The epithelial Na+ channel (ENaC) located at the apical membrane in many epithelia is the rate-limiting step for Na+ reabsorption. Tight regulation of the plasma membrane population of ENaC is required, as hypertension or hypotension may result if too many or too few ENaCs are present. Endocytosed ENaC travels to the early endosome and is then either trafficked to the lysosome for degradation or recycled back to the plasma membrane. Recently, the retromer recycling complex, located at the early endosome, has been implicated in plasma membrane protein recycling pathways. We hypothesized that the retromer is required for recycling of ENaC. Stabilization of retromer function with the retromer stabilizing chaperone R55 increased ENaC current, whereas knockdown or overexpression of individual retromer and associated proteins altered ENaC current and cell surface population of ENaC. KIBRA was identified as an ENaC-binding protein allowing ENaC to link to sorting nexin 4 to alter ENaC trafficking. Knockdown of the retromer-associated cargo-binding sorting nexin 27 protein did not alter ENaC current, whereas CCDC22, a CCC-complex protein, coimmunoprecipitated with ENaC, and CCDC22 knockdown decreased ENaC current and population at the cell surface. Together, our results confirm that retromer and the CCC complex play a role in recycling of ENaC to the plasma membrane.
Collapse
Affiliation(s)
- Tanya T. Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna C. Geda
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Adam W. Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sahib R. Rasulov
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Polly Tenci
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kirk L. Hamilton
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Fiona J. McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Wichmann L, Althaus M. Evolution of epithelial sodium channels: current concepts and hypotheses. Am J Physiol Regul Integr Comp Physiol 2020; 319:R387-R400. [PMID: 32783689 DOI: 10.1152/ajpregu.00144.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The conquest of freshwater and terrestrial habitats was a key event during vertebrate evolution. Occupation of low-salinity and dry environments required significant osmoregulatory adaptations enabling stable ion and water homeostasis. Sodium is one of the most important ions within the extracellular liquid of vertebrates, and molecular machinery for urinary reabsorption of this electrolyte is critical for the maintenance of body osmoregulation. Key ion channels involved in the fine-tuning of sodium homeostasis in tetrapod vertebrates are epithelial sodium channels (ENaCs), which allow the selective influx of sodium ions across the apical membrane of epithelial cells lining the distal nephron or the colon. Furthermore, ENaC-mediated sodium absorption across tetrapod lung epithelia is crucial for the control of liquid volumes lining the pulmonary surfaces. ENaCs are vertebrate-specific members of the degenerin/ENaC family of cation channels; however, there is limited knowledge on the evolution of ENaC within this ion channel family. This review outlines current concepts and hypotheses on ENaC phylogeny and discusses the emergence of regulation-defining sequence motifs in the context of osmoregulatory adaptations during tetrapod terrestrialization. In light of the distinct regulation and expression of ENaC isoforms in tetrapod vertebrates, we discuss the potential significance of ENaC orthologs in osmoregulation of fishes as well as the putative fates of atypical channel isoforms in mammals. We hypothesize that ancestral proton-sensitive ENaC orthologs might have aided the osmoregulatory adaptation to freshwater environments whereas channel regulation by proteases evolved as a molecular adaptation to lung liquid homeostasis in terrestrial tetrapods.
Collapse
Affiliation(s)
- Lukas Wichmann
- Institute for Animal Physiology, Justus Liebig University, Giessen, Germany
| | - Mike Althaus
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| |
Collapse
|
15
|
Yamazaki O, Hirohama D, Ishizawa K, Shibata S. Role of the Ubiquitin Proteasome System in the Regulation of Blood Pressure: A Review. Int J Mol Sci 2020; 21:E5358. [PMID: 32731518 PMCID: PMC7432568 DOI: 10.3390/ijms21155358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
The kidney and the vasculature play crucial roles in regulating blood pressure. The ubiquitin proteasome system (UPS), a multienzyme process mediating covalent conjugation of the 76-amino acid polypeptide ubiquitin to a substrate protein followed by proteasomal degradation, is involved in multiple cellular processes by regulating protein turnover in various tissues. Increasing evidence demonstrates the roles of UPS in blood pressure regulation. In the kidney, filtered sodium is reabsorbed through diverse sodium transporters and channels along renal tubules, and studies conducted till date have provided insights into the complex molecular network through which ubiquitin ligases modulate sodium transport in different segments. Components of these pathways include ubiquitin ligase neuronal precursor cell-expressed developmentally downregulated 4-2, Cullin-3, and Kelch-like 3. Moreover, accumulating data indicate the roles of UPS in blood vessels, where it modulates nitric oxide bioavailability and vasoconstriction. Cullin-3 not only regulates renal salt reabsorption but also controls vascular tone using different adaptor proteins that target distinct substrates in vascular smooth muscle cells. In endothelial cells, UPS can also contribute to blood pressure regulation by modulating endothelial nitric oxide synthase. In this review, we summarize current knowledge regarding the role of UPS in blood pressure regulation, focusing on renal sodium reabsorption and vascular function.
Collapse
Affiliation(s)
| | | | | | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan; (O.Y.); (D.H.); (K.I.)
| |
Collapse
|
16
|
Tu J, Zhang B, Fang G, Chang W, Zhao Y. Neddylation-mediated Nedd4-2 activation regulates ubiquitination modification of renal NBCe1. Exp Cell Res 2020; 390:111958. [DOI: 10.1016/j.yexcr.2020.111958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
|
17
|
Effects of syntaxins 2, 3, and 4 on rat and human epithelial sodium channel (ENaC) in Xenopus laevis oocytes. Pflugers Arch 2020; 472:461-471. [PMID: 32221667 PMCID: PMC7165155 DOI: 10.1007/s00424-020-02365-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 01/20/2023]
Abstract
Syntaxins are SNARE proteins and may play a role in epithelial sodium channel (ENaC) trafficking. The aim of the present study was to investigate the effects of syntaxin 2 (STX2), syntaxin 3 (STX3), and syntaxin 4 (STX4) on rat (rENaC) and human ENaC (hENaC). Co-expression of rENaC and STX3 or STX4 in Xenopus laevis oocytes increased amiloride-sensitive whole-cell currents (ΔIami) on average by 50% and 135%, respectively, compared to oocytes expressing rENaC alone. In contrast, STX2 had no significant effect on rENaC. Similar to its effect on rENaC, STX3 stimulated hENaC by 48%. In contrast, STX2 and STX4 inhibited hENaC by 51% and 44%, respectively. Using rENaC carrying a FLAG tag in the extracellular loop of the β-subunit, we demonstrated that the stimulatory effects of STX3 and STX4 on ΔIami were associated with an increased expression of the channel at the cell surface. Co-expression of STX3 or STX4 did not significantly alter the degree of proteolytic channel activation by chymotrypsin. STX3 had no effect on the inhibition of rENaC by brefeldin A, and the stimulatory effect of STX3 was preserved in the presence of dominant negative Rab11. This indicates that the stimulatory effect of STX3 is not mediated by inhibiting channel retrieval or by stimulating fusion of recycling endosomes. Our results suggest that the effects of syntaxins on ENaC are isoform and species dependent. Furthermore, our results demonstrate that STX3 increases ENaC expression at the cell surface, probably by enhancing insertion of vesicles carrying newly synthesized channels.
Collapse
|
18
|
Ware AW, Rasulov SR, Cheung TT, Lott JS, McDonald FJ. Membrane trafficking pathways regulating the epithelial Na + channel. Am J Physiol Renal Physiol 2019; 318:F1-F13. [PMID: 31657249 DOI: 10.1152/ajprenal.00277.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Renal Na+ reabsorption, facilitated by the epithelial Na+ channel (ENaC), is subject to multiple forms of control to ensure optimal body blood volume and pressure through altering both the ENaC population and activity at the cell surface. Here, the focus is on regulating the number of ENaCs present in the apical membrane domain through pathways of ENaC synthesis and targeting to the apical membrane as well as ENaC removal, recycling, and degradation. Finally, the mechanisms by which ENaC trafficking pathways are regulated are summarized.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sahib R Rasulov
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - J Shaun Lott
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Casini S, Albesa M, Wang Z, Portero V, Ross-Kaschitza D, Rougier JS, Marchal GA, Chung WK, Bezzina CR, Abriel H, Remme CA. Functional Consequences of the SCN5A-p.Y1977N Mutation within the PY Ubiquitylation Motif: Discrepancy between HEK293 Cells and Transgenic Mice. Int J Mol Sci 2019; 20:ijms20205033. [PMID: 31614475 PMCID: PMC6829230 DOI: 10.3390/ijms20205033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 01/25/2023] Open
Abstract
Dysfunction of the cardiac sodium channel Nav1.5 (encoded by the SCN5A gene) is associated with arrhythmias and sudden cardiac death. SCN5A mutations associated with long QT syndrome type 3 (LQT3) lead to enhanced late sodium current and consequent action potential (AP) prolongation. Internalization and degradation of Nav1.5 is regulated by ubiquitylation, a post-translational mechanism that involves binding of the ubiquitin ligase Nedd4-2 to a proline-proline-serine-tyrosine sequence of Nav1.5, designated the PY-motif. We investigated the biophysical properties of the LQT3-associated SCN5A-p.Y1977N mutation located in the Nav1.5 PY-motif, both in HEK293 cells as well as in newly generated mice harboring the mouse homolog mutation Scn5a-p.Y1981N. We found that in HEK293 cells, the SCN5A-p.Y1977N mutation abolished the interaction between Nav1.5 and Nedd4-2, suppressed PY-motif-dependent ubiquitylation of Nav1.5, and consequently abrogated Nedd4-2 induced sodium current (INa) decrease. Nevertheless, homozygous mice harboring the Scn5a-p.Y1981N mutation showed no electrophysiological alterations nor changes in AP or (late) INa properties, questioning the in vivo relevance of the PY-motif. Our findings suggest the presence of compensatory mechanisms, with additional, as yet unknown, factors likely required to reduce the “ubiquitylation reserve” of Nav1.5. Future identification of such modulatory factors may identify potential triggers for arrhythmias and sudden cardiac death in the setting of LQT3 mutations.
Collapse
Affiliation(s)
- Simona Casini
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| | - Maxime Albesa
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Zizun Wang
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Vincent Portero
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| | - Daniela Ross-Kaschitza
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Jean-Sébastien Rougier
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Gerard A Marchal
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| | - Wendy K Chung
- Departments of Pediatrics & Medicine, Columbia University Medical Center, 1150 St Nicholas Avenue, New York, NY 10032, USA.
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| | - Hugues Abriel
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Mironova E, Suliman F, Stockand JD. Renal Na + excretion consequent to pharmacogenetic activation of G q-DREADD in principal cells. Am J Physiol Renal Physiol 2019; 316:F758-F767. [PMID: 30724104 PMCID: PMC6483033 DOI: 10.1152/ajprenal.00612.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Stimulation of metabotropic Gq-coupled purinergic P2Y2 receptors decreases activity of the epithelial Na+ channel (ENaC) in renal principal cells of the distal nephron. The physiological consequences of P2Y2 receptor signaling disruption in the P2Y2 receptor knockout mouse are decreased Na+ excretion and increased arterial blood pressure. However, because of the global nature of this knockout model, the quantitative contribution of ENaC and distal nephron compared with that of upstream renal vascular and tubular elements to changes in urinary excretion and arterial blood pressure is obscure. Moreover, it is uncertain whether stimulation of P2Y2 receptor inhibition of ENaC is sufficient to drive renal (urinary) Na+ excretion (UNaV). Here, using a pharmacogenetic approach and selective agonism of the P2Y2 receptor, we test the sufficiency of targeted stimulation of Gq signaling in principal cells of the distal nephron and P2Y2 receptors to increase UNaV. Selective stimulation of the P2Y2 receptor with the ligand MRS2768 decreased ENaC activity in freshly isolated tubules (as assessed by patch-clamp electrophysiology) and increased UNaV (as assessed in metabolic cages). Similarly, selective agonism of hM3Dq-designer receptors exclusively activated by designer drugs (DREADD) restrictively expressed in principal cells of the distal nephron with clozapine- N-oxide decreased ENaC activity and, consequently, increased UNaV. Clozapine- N-oxide, when applied to control littermates, failed to affect ENaC and UNaV. This study represents the first use of pharmacogenetic (DREADD) technology in the renal tubule and demonstrated that selective activation of the P2Y2 receptor and Gq signaling in principal cells is sufficient to promote renal salt excretion.
Collapse
Affiliation(s)
- Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Faroug Suliman
- Division of Nephrology, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
21
|
Zhang Z, Heidary DK, Richards CI. High resolution measurement of membrane receptor endocytosis. J Biol Methods 2018; 5:e105. [PMID: 31453255 PMCID: PMC6706155 DOI: 10.14440/jbm.2018.266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 01/29/2023] Open
Abstract
We present a new approach to quantify the half-life of membrane proteins on the cell surface, through tagging the protein with the photoconvertible fluorescent protein, Dendra2. Upon exposure to 405 nm light, Dendra2 is photoconverted from green to red emission. Total internal reflection fluorescence microscopy (TIRF) is applied to limit visualization of fluorescence to proteins located on the plasma membrane. Conversion of Dendra2 works as a pulse chase experiment through monitoring only the population of protein that has been photoconverted. As the protein is endocytosed the red emission decreases due to the protein leaving the TIRF field of view. This method is not impacted by the insertion of new protein into the plasma membrane as newly synthesized protein only exhibits green emission. We used this approach to determine the half-life of ENaC on the plasma membrane illustrating the high temporal resolution capability of this technique compared to current methods.
Collapse
|
22
|
Todaro DR, Augustus-Wallace AC, Klein JM, Haas AL. Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly. J Biol Chem 2018; 293:18192-18206. [PMID: 30287686 DOI: 10.1074/jbc.ra118.003716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/19/2018] [Indexed: 01/09/2023] Open
Abstract
The NEDD4-2 (neural precursor cell-expressed developmentally down-regulated 4-2) HECT ligase catalyzes polyubiquitin chain assembly by an ordered two-step mechanism requiring two functionally distinct E2∼ubiquitin-binding sites, analogous to the trimeric E6AP/UBE3A HECT ligase. This conserved catalytic mechanism suggests that NEDD4-2, and presumably all HECT ligases, requires oligomerization to catalyze polyubiquitin chain assembly. To explore this hypothesis, we examined the catalytic mechanism of NEDD4-2 through the use of biochemically defined kinetic assays examining rates of 125I-labeled polyubiquitin chain assembly and biophysical techniques. The results from gel filtration chromatography and dynamic light-scattering analyses demonstrate for the first time that active NEDD4-2 is a trimer. Homology modeling to E6AP revealed that the predicted intersubunit interface has an absolutely conserved Phe-823, substitution of which destabilized the trimer and resulted in a ≥104-fold decrease in k cat for polyubiquitin chain assembly. The small-molecule Phe-823 mimic, N-acetylphenylalanyl-amide, acted as a noncompetitive inhibitor (Ki = 8 ± 1.2 mm) of polyubiquitin chain elongation by destabilizing the active trimer, suggesting a mechanism for therapeutically targeting HECT ligases. Additional kinetic experiments indicated that monomeric NEDD4-2 catalyzes only HECT∼ubiquitin thioester formation and monoubiquitination, whereas polyubiquitin chain assembly requires NEDD4-2 oligomerization. These results provide evidence that the previously identified sites 1 and 2 of NEDD4-2 function in trans to support chain elongation, explicating the requirement for oligomerization. Finally, we identified a conserved catalytic ensemble comprising Glu-646 and Arg-604 that supports HECT-ubiquitin thioester exchange and isopeptide bond formation at the active-site Cys-922 of NEDD4-2.
Collapse
Affiliation(s)
- Dustin R Todaro
- From the Department of Biochemistry and Molecular Biology and
| | | | | | - Arthur L Haas
- From the Department of Biochemistry and Molecular Biology and; the Stanley S. Scott Cancer Center, Louisiana State University School of Medicine, New Orleans, Louisiana 70112.
| |
Collapse
|
23
|
Ware AW, Cheung TT, Rasulov S, Burstein E, McDonald FJ. Epithelial Na + Channel: Reciprocal Control by COMMD10 and Nedd4-2. Front Physiol 2018; 9:793. [PMID: 29997525 PMCID: PMC6028986 DOI: 10.3389/fphys.2018.00793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/06/2018] [Indexed: 11/25/2022] Open
Abstract
Optimal function of the epithelial sodium channel (ENaC) in the distal nephron is key to the kidney’s long-term control of salt homeostasis and blood pressure. Multiple pathways alter ENaC cell surface populations, including correct processing and trafficking in the secretory pathway to the cell surface, and retrieval from the cell surface through ubiquitination by the ubiquitin ligase Nedd4-2, clathrin-mediated endocytosis, and sorting in the endosomal system. Members of the Copper Metabolism Murr1 Domain containing (COMMD) family of 10 proteins are known to interact with ENaC. COMMD1, 3 and 9 have been shown to down-regulate ENaC, most likely through Nedd4-2, however, the other COMMD family members remain uncharacterized. To investigate the effects of the COMMD10 protein on ENaC trafficking and function, the interaction of ENaC and COMMD10 was confirmed. Stable COMMD10 knockdown in Fischer rat thyroid epithelia decreased ENaC current and this decreased current was associated with increased Nedd4-2 protein, a known negative regulator of ENaC. However, inhibition of Nedd4-2’s ubiquitination of ENaC was only able to partially rescue the observed reduction in current. Stable COMMD10 knockdown results in defects both in endocytosis and recycling of transferrin suggesting COMMD10 likely interacts with multiple pathways to regulate ENaC and therefore could be involved in the long-term control of blood pressure.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sahib Rasulov
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ezra Burstein
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
The phosphorylation site T613 in the β-subunit of rat epithelial Na+ channel (ENaC) modulates channel inhibition by Nedd4-2. Pflugers Arch 2018; 470:649-660. [DOI: 10.1007/s00424-018-2115-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
|
25
|
Seidel E, Scholl UI. Genetic mechanisms of human hypertension and their implications for blood pressure physiology. Physiol Genomics 2017; 49:630-652. [PMID: 28887369 DOI: 10.1152/physiolgenomics.00032.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hypertension, or elevated blood pressure, constitutes a major public health burden that affects more than 1 billion people worldwide and contributes to ~9 million deaths annually. Hereditary factors are thought to contribute to up to 50% of interindividual blood pressure variability. Blood pressure in the general population approximately shows a normal distribution and is thought to be a polygenic trait. In rare cases, early-onset hypertension or hypotension are inherited as Mendelian traits. The identification of the underlying Mendelian genes and variants has contributed to our understanding of the physiology of blood pressure regulation, emphasizing renal salt handling and the renin angiotensin aldosterone system as players in the determination of blood pressure. Genome-wide association studies (GWAS) have revealed more than 100 variants that are associated with blood pressure, typically with small effect sizes, which cumulatively explain ~3.5% of blood pressure trait variability. Several GWAS associations point to a role of the vasculature in the pathogenesis of hypertension. Despite these advances, the majority of the genetic contributors to blood pressure regulation are currently unknown; whether large-scale exome or genome sequencing studies will unravel these factors remains to be determined.
Collapse
Affiliation(s)
- Eric Seidel
- Department of Nephrology, Medical School, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ute I Scholl
- Department of Nephrology, Medical School, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
26
|
Al-Qusairi L, Basquin D, Roy A, Rajaram RD, Maillard MP, Subramanya AR, Staub O. Renal Tubular Ubiquitin-Protein Ligase NEDD4-2 Is Required for Renal Adaptation during Long-Term Potassium Depletion. J Am Soc Nephrol 2017; 28:2431-2442. [PMID: 28289184 DOI: 10.1681/asn.2016070732] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/01/2017] [Indexed: 11/03/2022] Open
Abstract
Adaptation of the organism to potassium (K+) deficiency requires precise coordination among organs involved in K+ homeostasis, including muscle, liver, and kidney. How the latter performs functional and molecular changes to ensure K+ retention is not well understood. Here, we investigated the role of ubiquitin-protein ligase NEDD4-2, which negatively regulates the epithelial sodium channel (ENaC), Na+/Cl- cotransporter (NCC), and with no-lysine-kinase 1 (WNK1). After dietary K+ restriction for 2 weeks, compared with control littermates, inducible renal tubular NEDD4-2 knockout (Nedd4LPax8/LC1 ) mice exhibited severe hypokalemia and urinary K+ wasting. Notably, expression of the ROMK K+ channel did not change in the distal convoluted tubule and decreased slightly in the cortical/medullary collecting duct, whereas BK channel abundance increased in principal cells of the connecting tubule/collecting ducts. However, K+ restriction also enhanced ENaC expression in Nedd4LPax8/LC1 mice, and treatment with the ENaC inhibitor, benzamil, reversed excessive K+ wasting. Moreover, K+ restriction increased WNK1 and WNK4 expression and enhanced SPAK-mediated NCC phosphorylation in Nedd4LPax8/LC1 mice, with no change in total NCC. We propose a mechanism in which NEDD4-2 deficiency exacerbates hypokalemia during dietary K+ restriction primarily through direct upregulation of ENaC, whereas increased BK channel expression has a less significant role. These changes outweigh the compensatory antikaliuretic effects of diminished ROMK expression, increased NCC phosphorylation, and enhanced WNK pathway activity in the distal convoluted tubule. Thus, NEDD4-2 has a crucial role in K+ conservation through direct and indirect effects on ENaC, distal nephron K+ channels, and WNK signaling.
Collapse
Affiliation(s)
- Lama Al-Qusairi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.ch", Zurich, Switzerland
| | - Denis Basquin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.ch", Zurich, Switzerland
| | - Ankita Roy
- Department of Medicine, University of Pittsburgh School of Medicine and VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania; and
| | - Renuga Devi Rajaram
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.ch", Zurich, Switzerland
| | - Marc P Maillard
- Service of Nephrology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh School of Medicine and VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania; and
| | - Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; .,National Centre of Competence in Research "Kidney.ch", Zurich, Switzerland
| |
Collapse
|
27
|
Jiang C, Kawabe H, Rotin D. The Ubiquitin Ligase Nedd4L Regulates the Na/K/2Cl Co-transporter NKCC1/SLC12A2 in the Colon. J Biol Chem 2017; 292:3137-3145. [PMID: 28087701 DOI: 10.1074/jbc.m116.770065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/03/2017] [Indexed: 01/06/2023] Open
Abstract
The ubiquitin ligase Nedd4-like (Nedd4L, or Nedd4-2) binds to and regulates stability of the epithelial Na+ channel (ENaC) in salt-absorbing epithelia in the kidney, lung, and other tissues. Its role in the distal colon, which also absorbs salt and fluid and expresses ENaC, is unknown. Using a conditional knock-out approach to knock out Nedd4L in mice intestinal epithelium (Nedd4Lf/f ;Vil-CreERT2 ) we show here that Nedd4L depletion leads to a higher steady-state short circuit current (Isc) in mouse distal colon tissue relative to controls. This higher Isc was partially reduced by the addition of apical amiloride and strongly reduced by basolateral bumetanide as well as by depletion of basolateral Cl-, suggesting that Na+/K+/2Cl- (NKCC1/SLC12A2) co-transporter and ENaC are targets of Nedd4L in the colon. In accordance, NKCC1 (and γENaC) protein abundance in the colon of the Nedd4L knock-out animals was increased, indicating that Nedd4L normally suppresses these proteins. However, we did not observe co-immunoprecipitation between Nedd4L and NKCC1, suggesting that Nedd4L indirectly suppresses NKCC1 expression. Low salt diet resulted in a strong increase in β and γ (but not α) ENaC mRNA and protein expression and ENaC activity. Although salt restriction also increased NKCC1 protein and mRNA abundance, it did not lead to its elevated activity (Isc). These results identify NKCC1 as a novel target for Nedd4L-mediated down-regulation in vivo, which modulates ion and fluid transport in the distal colon together with ENaC.
Collapse
Affiliation(s)
- Chong Jiang
- Hospital for Sick Children and University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3D, 37075 Goettingen, Germany
| | - Daniela Rotin
- Hospital for Sick Children and University of Toronto, Toronto, Ontario M5G 0A4, Canada.
| |
Collapse
|
28
|
Sun A, Wei J, Childress C, Shaw JH, Peng K, Shao G, Yang W, Lin Q. The E3 ubiquitin ligase NEDD4 is an LC3-interactive protein and regulates autophagy. Autophagy 2017; 13:522-537. [PMID: 28085563 DOI: 10.1080/15548627.2016.1268301] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The MAP1LC3/LC3 family plays an essential role in autophagosomal biogenesis and transport. In this report, we show that the HECT family E3 ubiquitin ligase NEDD4 interacts with LC3 and is involved in autophagosomal biogenesis. NEDD4 binds to LC3 through a conserved WXXL LC3-binding motif in a region between the C2 and the WW2 domains. Knockdown of NEDD4 impaired starvation- or rapamycin-induced activation of autophagy and autophagosomal biogenesis and caused aggregates of the LC3 puncta colocalized with endoplasmic reticulum membrane markers. Electron microscopy observed gigantic deformed mitochondria in NEDD4 knockdown cells, suggesting that NEDD4 might function in mitophagy. Furthermore, SQSTM1 is ubiquitinated by NEDD4 while LC3 functions as an activator of NEDD4 ligase activity. Taken together, our studies define an important role of NEDD4 in regulation of autophagy.
Collapse
Affiliation(s)
- Aiqin Sun
- a School of Medicine, Jiangsu University , Zhenjiang , China
| | - Jing Wei
- a School of Medicine, Jiangsu University , Zhenjiang , China
| | - Chandra Childress
- b Department of Biology , Susquehanna University , Selinsgrove , PA , USA
| | - John H Shaw
- c Department of Pathology , Geisinger Clinic , Danville , PA , USA
| | - Ke Peng
- a School of Medicine, Jiangsu University , Zhenjiang , China
| | - Genbao Shao
- a School of Medicine, Jiangsu University , Zhenjiang , China
| | - Wannian Yang
- a School of Medicine, Jiangsu University , Zhenjiang , China
| | - Qiong Lin
- a School of Medicine, Jiangsu University , Zhenjiang , China
| |
Collapse
|
29
|
Bai J, Chow BKC. Secretin is involved in sodium conservation through the renin-angiotensin-aldosterone system. FASEB J 2017; 31:1689-1697. [PMID: 28082350 DOI: 10.1096/fj.201600911r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/03/2017] [Indexed: 01/22/2023]
Abstract
Secretin (SCT) and its receptor (SCTR) are important in fluid regulation at multiple levels via the modulation of expression and translocation of renal aquaporin 2 and functions of central angiotensin II (ANGII). The functional interaction of SCT with peripheral ANGII, however, remains unknown. As the ANGII-aldosterone axis dominates the regulation of renal epithelial sodium channel (ENaC) function, we therefore tested whether SCT/SCTR can regulate sodium homeostasis via the renin-angiotensin-aldosterone system. SCTR-knockout (SCTR-/-) mice showed impaired aldosterone synthase (CYP11B2) expression and, consequently, aldosterone release upon intraperitoneal injection of ANGII. Endogenous ANGII production induced by dietary sodium restriction was higher in SCTR-/- than in C57BL/6N [wild-type (WT)] mice, but CYP11B2 and aldosterone synthesis were not elevated. Reduced accumulation of cholesteryl ester-the precursor of aldosterone-was observed in adrenal glands of SCTR-/- mice that were fed a low-sodium diet. Absence of SCTR resulted in elevated basal transcript levels of adrenal CYP11B2 and renal ENaCs. Although transcript and protein levels of ENaCs were similar in WT and SCTR-/- mice under sodium restriction, ENaCs in SCTR-/- mice were less sensitive to amiloride hydrochloride. In summary, the SCT/SCTR axis is involved in aldosterone precursor uptake, and the knockout of SCTR results in defective aldosterone biosynthesis/release and altered sensitivity of ENaCs to amiloride.-Bai, J., Chow, B. K. C. Secretin is involved in sodium conservation through the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Juan Bai
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Billy K C Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Cui Y, Tong A, Jiang J, Wang F, Li C. Liddle syndrome: clinical and genetic profiles. J Clin Hypertens (Greenwich) 2016; 19:524-529. [PMID: 27896928 DOI: 10.1111/jch.12949] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/23/2016] [Accepted: 10/01/2016] [Indexed: 12/01/2022]
Abstract
Liddle syndrome is a rare autosomal dominant monogenic form of hypertension. The authors analyzed clinical and genetic features of 12 cases of Liddle syndrome, the largest sample size ever reported. Clinical data were studied retrospectively. The exon 13 of the β and γ subunits of the epithelial sodium channel were amplified and sequenced in the peripheral blood leukocytes of the patients. The onset age of the 12 patients was 15.5±3.3 years. Their blood pressures were poorly controlled, and serum potassium levels in most patients were <3.0 mmol/L. Upright plasma renin activity and plasma aldosterone concentration were suppressed in all patients. All patients were treated with triamterene, and blood pressures were well controlled and serum potassium levels returned to normal. The serum creatinine level rose to 124 and 161 μmol/L, respectively, in two patients upon triamterene treatment, and returned to normal soon after treatment was discontinued. Eight mutation alleles were identified, and three mutations were newly identified.
Collapse
Affiliation(s)
- Yunying Cui
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences, Beijing, China
| | - Anli Tong
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Jiang
- The Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fen Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences, Beijing, China
| | - Chunyan Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Murthy M, Kurz T, O'Shaughnessy KM. WNK signalling pathways in blood pressure regulation. Cell Mol Life Sci 2016; 74:1261-1280. [PMID: 27815594 PMCID: PMC5346417 DOI: 10.1007/s00018-016-2402-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 01/11/2023]
Abstract
Hypertension (high blood pressure) is a major public health problem affecting more than a billion people worldwide with complications, including stroke, heart failure and kidney failure. The regulation of blood pressure is multifactorial reflecting genetic susceptibility, in utero environment and external factors such as obesity and salt intake. In keeping with Arthur Guyton's hypothesis, the kidney plays a key role in blood pressure control and data from clinical studies; physiology and genetics have shown that hypertension is driven a failure of the kidney to excrete excess salt at normal levels of blood pressure. There is a number of rare Mendelian blood pressure syndromes, which have shed light on the molecular mechanisms involved in dysregulated ion transport in the distal kidney. One in particular is Familial hyperkalemic hypertension (FHHt), an autosomal dominant monogenic form of hypertension characterised by high blood pressure, hyperkalemia, hyperchloremic metabolic acidosis, and hypercalciuria. The clinical signs of FHHt are treated by low doses of thiazide diuretic, and it mirrors Gitelman syndrome which features the inverse phenotype of hypotension, hypokalemic metabolic alkalosis, and hypocalciuria. Gitelman syndrome is caused by loss of function mutations in the thiazide-sensitive Na/Cl cotransporter (NCC); however, FHHt patients do not have mutations in the SCL12A3 locus encoding NCC. Instead, mutations have been identified in genes that have revealed a key signalling pathway that regulates NCC and several other key transporters and ion channels in the kidney that are critical for BP regulation. This is the WNK kinase signalling pathway that is the subject of this review.
Collapse
Affiliation(s)
- Meena Murthy
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Thimo Kurz
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow, G12 8QQ, Scotland, UK
| | - Kevin M O'Shaughnessy
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
32
|
Liu C, Zhu LL, Xu SG, Ji HL, Li XM. ENaC/DEG in Tumor Development and Progression. J Cancer 2016; 7:1888-1891. [PMID: 27698929 PMCID: PMC5039373 DOI: 10.7150/jca.15693] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/29/2016] [Indexed: 11/05/2022] Open
Abstract
The epithelial Na+ channel/degenerin (ENaC/DEG) superfamily, including the acid-sensing ion channels (ASICs), is characterized by a high degree of similarity in structure but highly diverse in physiological functions. These ion channels have been shown to be important in several physiological functions of normal epithelial cells, including salt homeostasis, fluid transportation and cell mobility. There is increasing evidence suggesting that ENaC/DEG channels are critically engaged in cancer cell biology, such as proliferation, migration, invasion and apoptosis, playing a role in tumor development and progression. In this review, we will discuss recent studies showing the role of ENaC and ASIC channels in epithelial cells and its relationship to the oncogenesis.
Collapse
Affiliation(s)
- Cui Liu
- School of Nursing, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
| | - Li-Li Zhu
- School of Nursing, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
| | - Si-Guang Xu
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
| | - Hong-Long Ji
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Xiu-Min Li
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
- Department Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Henan Province, P. R. China
| |
Collapse
|
33
|
Nesterov V, Krueger B, Bertog M, Dahlmann A, Palmisano R, Korbmacher C. In Liddle Syndrome, Epithelial Sodium Channel Is Hyperactive Mainly in the Early Part of the Aldosterone-Sensitive Distal Nephron. Hypertension 2016; 67:1256-62. [DOI: 10.1161/hypertensionaha.115.07061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/16/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Viatcheslav Nesterov
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bettina Krueger
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marko Bertog
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anke Dahlmann
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ralf Palmisano
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Korbmacher
- From the Institut für Zelluläre und Molekulare Physiologie (V.N., B.K., M.B., C.K.), Universitätsklinikum Erlangen, Medizinische Klinik 4–Nephrologie und Hypertensiologie (A.D.), and Optical Imaging Center Erlangen (OICE) (R.P.), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
34
|
Hanukoglu I, Hanukoglu A. Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 2016; 579:95-132. [PMID: 26772908 PMCID: PMC4756657 DOI: 10.1016/j.gene.2015.12.061] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 01/24/2023]
Abstract
The epithelial sodium channel (ENaC) is composed of three homologous subunits and allows the flow of Na(+) ions across high resistance epithelia, maintaining body salt and water homeostasis. ENaC dependent reabsorption of Na(+) in the kidney tubules regulates extracellular fluid (ECF) volume and blood pressure by modulating osmolarity. In multi-ciliated cells, ENaC is located in cilia and plays an essential role in the regulation of epithelial surface liquid volume necessary for cilial transport of mucus and gametes in the respiratory and reproductive tracts respectively. The subunits that form ENaC (named as alpha, beta, gamma and delta, encoded by genes SCNN1A, SCNN1B, SCNN1G, and SCNN1D) are members of the ENaC/Degenerin superfamily. The earliest appearance of ENaC orthologs is in the genomes of the most ancient vertebrate taxon, Cyclostomata (jawless vertebrates) including lampreys, followed by earliest representatives of Gnathostomata (jawed vertebrates) including cartilaginous sharks. Among Euteleostomi (bony vertebrates), Actinopterygii (ray finned-fishes) branch has lost ENaC genes. Yet, most animals in the Sarcopterygii (lobe-finned fish) branch including Tetrapoda, amphibians and amniotes (lizards, crocodiles, birds, and mammals), have four ENaC paralogs. We compared the sequences of ENaC orthologs from 20 species and established criteria for the identification of ENaC orthologs and paralogs, and their distinction from other members of the ENaC/Degenerin superfamily, especially ASIC family. Differences between ENaCs and ASICs are summarized in view of their physiological functions and tissue distributions. Structural motifs that are conserved throughout vertebrate ENaCs are highlighted. We also present a comparative overview of the genotype-phenotype relationships in inherited diseases associated with ENaC mutations, including multisystem pseudohypoaldosteronism (PHA1B), Liddle syndrome, cystic fibrosis-like disease and essential hypertension.
Collapse
Affiliation(s)
- Israel Hanukoglu
- Laboratory of Cell Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
| | - Aaron Hanukoglu
- Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Zhang W, Wu KP, Sartori MA, Kamadurai HB, Ordureau A, Jiang C, Mercredi PY, Murchie R, Hu J, Persaud A, Mukherjee M, Li N, Doye A, Walker JR, Sheng Y, Hao Z, Li Y, Brown KR, Lemichez E, Chen J, Tong Y, Harper JW, Moffat J, Rotin D, Schulman BA, Sidhu SS. System-Wide Modulation of HECT E3 Ligases with Selective Ubiquitin Variant Probes. Mol Cell 2016; 62:121-36. [PMID: 26949039 DOI: 10.1016/j.molcel.2016.02.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/23/2016] [Accepted: 02/03/2016] [Indexed: 11/20/2022]
Abstract
HECT-family E3 ligases ubiquitinate protein substrates to control virtually every eukaryotic process and are misregulated in numerous diseases. Nonetheless, understanding of HECT E3s is limited by a paucity of selective and potent modulators. To overcome this challenge, we systematically developed ubiquitin variants (UbVs) that inhibit or activate HECT E3s. Structural analysis of 6 HECT-UbV complexes revealed UbV inhibitors hijacking the E2-binding site and activators occupying a ubiquitin-binding exosite. Furthermore, UbVs unearthed distinct regulation mechanisms among NEDD4 subfamily HECTs and proved useful for modulating therapeutically relevant targets of HECT E3s in cells and intestinal organoids, and in a genetic screen that identified a role for NEDD4L in regulating cell migration. Our work demonstrates versatility of UbVs for modulating activity across an E3 family, defines mechanisms and provides a toolkit for probing functions of HECT E3s, and establishes a general strategy for systematic development of modulators targeting families of signaling proteins.
Collapse
Affiliation(s)
- Wei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Kuen-Phon Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maria A Sartori
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Hari B Kamadurai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Jiang
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Peter Y Mercredi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ryan Murchie
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Jicheng Hu
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G1L7, Canada
| | - Avinash Persaud
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Manjeet Mukherjee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Anne Doye
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Equipe Labellisée La Ligue Contre Le Cancer, Université de Nice-Sophia Antipolis, 151 Route St Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex, France
| | - John R Walker
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G1L7, Canada
| | - Yi Sheng
- Department of Biology, York University, Toronto, Ontario M3J1P3, Canada
| | - Zhenyue Hao
- Campbell Family Cancer Research Institute, University Health Network, Toronto, ON M5G2C1, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G1L7, Canada
| | - Kevin R Brown
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Emmanuel Lemichez
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Equipe Labellisée La Ligue Contre Le Cancer, Université de Nice-Sophia Antipolis, 151 Route St Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex, France
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G1L7, Canada
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Cir, Toronto, ON M5S1A8, Canada
| | - Daniela Rotin
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Cir, Toronto, ON M5S1A8, Canada.
| |
Collapse
|
36
|
Plasma membrane insertion of epithelial sodium channels occurs with dual kinetics. Pflugers Arch 2016; 468:859-70. [DOI: 10.1007/s00424-016-1799-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/05/2023]
|
37
|
Liu Z, Sneve M, Haroldson TA, Smith JP, Drewes LR. Regulation of Monocarboxylic Acid Transporter 1 Trafficking by the Canonical Wnt/β-Catenin Pathway in Rat Brain Endothelial Cells Requires Cross-talk with Notch Signaling. J Biol Chem 2016; 291:8059-69. [PMID: 26872974 DOI: 10.1074/jbc.m115.710277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/20/2022] Open
Abstract
The transport of monocarboxylate fuels such as lactate, pyruvate, and ketone bodies across brain endothelial cells is mediated by monocarboxylic acid transporter 1 (MCT1). Although the canonical Wnt/β-catenin pathway is required for rodent blood-brain barrier development and for the expression of associated nutrient transporters, the role of this pathway in the regulation of brain endothelial MCT1 is unknown. Here we report expression of nine members of the frizzled receptor family by the RBE4 rat brain endothelial cell line. Furthermore, activation of the canonical Wnt/β-catenin pathway in RBE4 cells via nuclear β-catenin signaling with LiCl does not alter brain endothelialMct1mRNA but increases the amount of MCT1 transporter protein. Plasma membrane biotinylation studies and confocal microscopic examination of mCherry-tagged MCT1 indicate that increased transporter results from reduced MCT1 trafficking from the plasma membrane via the endosomal/lysosomal pathway and is facilitated by decreased MCT1 ubiquitination following LiCl treatment. Inhibition of the Notch pathway by the γ-secretase inhibitorN-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycinet-butyl ester negated the up-regulation of MCT1 by LiCl, demonstrating a cross-talk between the canonical Wnt/β-catenin and Notch pathways. Our results are important because they show, for the first time, the regulation of MCT1 in cerebrovascular endothelial cells by the multifunctional canonical Wnt/β-catenin and Notch signaling pathways.
Collapse
Affiliation(s)
- Zejian Liu
- From the Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota 55812 and
| | - Mary Sneve
- From the Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota 55812 and
| | - Thomas A Haroldson
- From the Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota 55812 and
| | - Jeffrey P Smith
- the Department of Biology, Colorado State University, Pueblo, Colorado 81001
| | - Lester R Drewes
- From the Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota 55812 and
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW NEDD4-2 is an ubiquitin-protein ligase that was originally identified as an interactor of the epithelial Na+ channel (ENaC); this interaction is defective in Liddle's syndrome, causing elevated ENaC activity and salt-sensitive hypertension. In this review we aim to highlight progress achieved in recent years demonstrating that NEDD4-2 is involved in the control of Na+ transporters that are different from ENaC, but which also play a role in salt-sensitive hypertension. RECENT FINDINGS It has been shown that NEDD4-2 interacts with ubiquitylates and negatively regulates the thiazide-sensitive NCC (Na+,Cl- -cotransporter), both in vitro and in vivo in inducible, nephron-specific Nedd4-2 knockout mice. Moreover, evidence has been provided that NEDD4-2 is also involved in the regulation of human NHE3 (Na+,H+-exchanger 3) and NKCC2 (Na+,K+,2Cl- -cotransporter 2). SUMMARY The emerging role of NEDD4-2 in the regulation of different Na+ transporters along the nephron and the identification of human polymorphisms in the NEDD4-2 gene (Nedd4L) related to salt-sensitive hypertension makes this ubiquitin-protein ligase an interesting target for the development of antihypertensive drugs.
Collapse
|
39
|
Butler PL, Staruschenko A, Snyder PM. Acetylation stimulates the epithelial sodium channel by reducing its ubiquitination and degradation. J Biol Chem 2015; 290:12497-503. [PMID: 25787079 DOI: 10.1074/jbc.m114.635540] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Indexed: 12/29/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) functions as a pathway for Na(+) absorption in the kidney and lung, where it is crucial for Na(+) homeostasis and blood pressure regulation. ENaC is regulated in part through signaling pathways that control the ubiquitination state of ENaC lysines. A defect in ubiquitination causes Liddle syndrome, an inherited form of hypertension. Here we determined that α-, β-, and γENaC are also substrates for lysine acetylation. Trichostatin A (TSA), a histone deacetylase inhibitor, enhanced ENaC acetylation and increased ENaC abundance in the total cell lysate and at the cell surface. Moreover, TSA increased ENaC current in Fischer rat thyroid and kidney collecting duct epithelia. We found that HDAC7 is expressed in the kidney collecting duct, supporting a potential role for this histone deacetylase in ENaC regulation. HDAC7 overexpression reduced ENaC abundance and ENaC current, whereas ENaC abundance and current were increased by silencing of HDAC7. ENaC and HDAC7 form a complex, as detected by coimmunoprecipitation. We observed a reciprocal relationship between acetylation and ubiquitination; TSA reduced ENaC ubiquitination, whereas HDAC7 increased ubiquitination. By reducing ENaC ubiquitination, TSA decreased the rate of ENaC degradation. Thus, acetylation increases epithelial Na(+) absorption by antagonizing ENaC ubiquitination. This stabilizes ENaC, and hence, increases its abundance at the cell surface.
Collapse
Affiliation(s)
- Phillip L Butler
- From the Departments of Internal Medicine and Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | | | - Peter M Snyder
- From the Departments of Internal Medicine and Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, the Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa 52246, and
| |
Collapse
|
40
|
Dodson EJ, Fishbain-Yoskovitz V, Rotem-Bamberger S, Schueler-Furman O. Versatile communication strategies among tandem WW domain repeats. Exp Biol Med (Maywood) 2015; 240:351-60. [PMID: 25710931 PMCID: PMC4436281 DOI: 10.1177/1535370214566558] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interactions mediated by short linear motifs in proteins play major roles in regulation of cellular homeostasis since their transient nature allows for easy modulation. We are still far from a full understanding and appreciation of the complex regulation patterns that can be, and are, achieved by this type of interaction. The fact that many linear-motif-binding domains occur in tandem repeats in proteins indicates that their mutual communication is used extensively to obtain complex integration of information toward regulatory decisions. This review is an attempt to overview, and classify, different ways by which two and more tandem repeats cooperate in binding to their targets, in the well-characterized family of WW domains and their corresponding polyproline ligands.
Collapse
Affiliation(s)
- Emma Joy Dodson
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada IMRIC, Faculty of Medicine, Ein Kerem Campus, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Vered Fishbain-Yoskovitz
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada IMRIC, Faculty of Medicine, Ein Kerem Campus, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Shahar Rotem-Bamberger
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada IMRIC, Faculty of Medicine, Ein Kerem Campus, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada IMRIC, Faculty of Medicine, Ein Kerem Campus, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| |
Collapse
|
41
|
Regulation of neuronal survival and morphology by the E3 ubiquitin ligase RNF157. Cell Death Differ 2014; 22:626-42. [PMID: 25342469 DOI: 10.1038/cdd.2014.163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/19/2014] [Accepted: 08/29/2014] [Indexed: 01/03/2023] Open
Abstract
Neuronal health is essential for the long-term integrity of the brain. In this study, we characterized the novel E3 ubiquitin ligase ring finger protein 157 (RNF157), which displays a brain-dominant expression in mouse. RNF157 is a homolog of the E3 ligase mahogunin ring finger-1, which has been previously implicated in spongiform neurodegeneration. We identified RNF157 as a regulator of survival in cultured neurons and established that the ligase activity of RNF157 is crucial for this process. We also uncovered that independently of its ligase activity, RNF157 regulates dendrite growth and maintenance. We further identified the adaptor protein APBB1 (amyloid beta precursor protein-binding, family B, member 1 or Fe65) as an interactor and proteolytic substrate of RNF157 in the control of neuronal survival. Here, the nuclear localization of Fe65 together with its interaction partner RNA-binding protein SART3 (squamous cell carcinoma antigen recognized by T cells 3 or Tip110) is crucial to trigger apoptosis. In summary, we described that the E3 ligase RNF157 regulates important aspects of neuronal development.
Collapse
|
42
|
Chen MX, Gatfield K, Ward E, Downie D, Sneddon HF, Walsh S, Powell AJ, Laine D, Carr M, Trezise D. Validation and optimization of novel high-throughput assays for human epithelial sodium channels. ACTA ACUST UNITED AC 2014; 20:242-53. [PMID: 25278498 DOI: 10.1177/1087057114552399] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The epithelial sodium channel (ENaC) plays a crucial role in salt and water homeostasis and is primarily involved in sodium reabsorption in the kidney and lung. Modulators of ENaC function, particularly within lung epithelia, could offer potential treatments for a number of diseases. As a constitutively active sodium channel, ENaC expression at the cell membrane is highly regulated through rapid turnover. This short half-life of the channel at the membrane and cytotoxicity from overexpression pose a problem for reagent generation and assay development in drug discovery. We have generated an HEK293 stable cell line expressing ENaC β and γ subunits containing the PY motif trafficking mutations found in Liddle's syndrome to overcome rapid channel turnover at the membrane. A BacMam virus was used to transiently express the ENaC α subunit to reconstitute channel function to reduce the toxicity associated with long-term overexpression. We have configured a 384-well FLIPR membrane potential antagonist assay for high-throughput screening and an IonWorks Quattro electrophysiology antagonist assay that is predictive of potency values derived from primary lung epithelial cell short-circuit measurements. The triage strategy for compound screening and profiling against this target using these assays has resulted in the discovery of novel chemotypes.
Collapse
Affiliation(s)
- Mao Xiang Chen
- Biological Sciences, GlaxoSmithKline R&D, Stevenage, Herts, UK
| | - Kelly Gatfield
- Biological Sciences, GlaxoSmithKline R&D, Stevenage, Herts, UK
| | - Emma Ward
- Biological Sciences, GlaxoSmithKline R&D, Stevenage, Herts, UK
| | - David Downie
- Biological Sciences, GlaxoSmithKline R&D, Stevenage, Herts, UK
| | - Helen F Sneddon
- Green Chemistry Performance Unit, GlaxoSmithKline R&D, Stevenage, Herts, UK
| | - Stacey Walsh
- Target and Pathway Validation, GlaxoSmithKline R&D, Upper Providence, Philadelphia, PA, USA
| | - Andrew J Powell
- Biological Sciences, GlaxoSmithKline R&D, Stevenage, Herts, UK
| | - Dramane Laine
- Neurobiology DPU, GlaxoSmithKline R&D, Upper Merion, Philadelphia, PA, USA
| | - Michael Carr
- Neurobiology DPU, GlaxoSmithKline R&D, Upper Merion, Philadelphia, PA, USA
| | - Derek Trezise
- Biological Sciences, GlaxoSmithKline R&D, Stevenage, Herts, UK
| |
Collapse
|
43
|
Li H, Zhang X, Zeng S, Chen L, Li X, Lin C, Zhang M, Shu S, Xie S, He Y, Yang L, Tang S, Fu X. The cellular localization of Na(+)/H(+) exchanger 1, cystic fibrosis transmembrane conductance regulator, potassium channel, epithelial sodium channel γ and vacuolar-type H+-ATPase in human eccrine sweat glands. Acta Histochem 2014; 116:1237-43. [PMID: 25081942 DOI: 10.1016/j.acthis.2014.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 02/05/2023]
Abstract
The secretory portions of human eccrine sweat glands secrete isotonic fluid into the lumen and then the primary fluid is rendered hypotonic during its passage to the skin surface. During the processes of sweat secretion and absorption, many enzymes and proteins play important roles. In the study, the cellular localizations of Na(+)/H(+) exchanger 1 (NHE1), cystic fibrosis transmembrane conductance regulator (CFTR), potassium channel (KC), epithelial sodium channel γ (γENaC) and vacuolar-type H+-ATPase (V-ATPase) in human eccrine sweat glands and epidermis were detected using immunofluorescence labeling. The results revealed that in the secretory coils, the basolateral membranes showed evidence of CFTR, NHE1 and KC activities, the apical membranes showed the activities of KC and NHE1, and the nucleus showed γEaNC and V-ATPase activities; in the duct, the peripheral and luminal ductal cells showed evidence of CFTR, NHE1 and KC, the apical membranes showed the activities of CFTR and NHE1, and the nucleus showed γEaNC, V-ATPase and KC activities. The cellular localization of these proteins in eccrine sweat glands is helpful to better understand the mechanisms of sweat secretion and absorption.
Collapse
Affiliation(s)
- Haihong Li
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North DongXia Road, Shantou, Guangdong Province 515041, PR China; Research Center for Translational Medicine, Shantou University Medical College, North DongXia Road, Shantou, Guangdong Province 515041, PR China.
| | - Xiang Zhang
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North DongXia Road, Shantou, Guangdong Province 515041, PR China
| | - Shaopeng Zeng
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North DongXia Road, Shantou, Guangdong Province 515041, PR China
| | - Lu Chen
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North DongXia Road, Shantou, Guangdong Province 515041, PR China
| | - Xuexue Li
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North DongXia Road, Shantou, Guangdong Province 515041, PR China
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong Province 515041, PR China
| | - Mingjun Zhang
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North DongXia Road, Shantou, Guangdong Province 515041, PR China
| | - Shenyou Shu
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North DongXia Road, Shantou, Guangdong Province 515041, PR China
| | - Sitian Xie
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North DongXia Road, Shantou, Guangdong Province 515041, PR China
| | - Yunpu He
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North DongXia Road, Shantou, Guangdong Province 515041, PR China
| | - Lvjun Yang
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North DongXia Road, Shantou, Guangdong Province 515041, PR China; Research Center for Translational Medicine, Shantou University Medical College, North DongXia Road, Shantou, Guangdong Province 515041, PR China
| | - Shijie Tang
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North DongXia Road, Shantou, Guangdong Province 515041, PR China
| | - Xiaobing Fu
- Burns Institute, The First Affiliated Hospital, Chinese PLA General Hospital, Trauma Center of Postgraduate Medical School, 51 Fu Cheng Road, Beijing 100037, PR China
| |
Collapse
|
44
|
Ronzaud C, Staub O. Ubiquitylation and control of renal Na+ balance and blood pressure. Physiology (Bethesda) 2014; 29:16-26. [PMID: 24382868 DOI: 10.1152/physiol.00021.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ubiquitylation is crucial for regulating numerous cellular functions. In the kidney, ubiquitylation regulates the epithelial Na(+) channel ENaC. The importance of this process is highlighted in Liddle's syndrome, where mutations interfere with ENaC ubiquitylation, resulting in constitutive Na(+) reabsorption and hypertension. There is emerging evidence that NCC, involved in hypertensive diseases, is also regulated by ubiquitylation. Here, we discuss the current knowledge and recent findings in this field.
Collapse
Affiliation(s)
- Caroline Ronzaud
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
45
|
Molecular genetics of Liddle's syndrome. Clin Chim Acta 2014; 436:202-6. [PMID: 24882431 DOI: 10.1016/j.cca.2014.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/11/2014] [Accepted: 05/15/2014] [Indexed: 01/04/2023]
Abstract
Liddle's syndrome, an autosomal dominant form of monogenic hypertension, is characterized by salt-sensitive hypertension with early penetrance, hypokalemia, metabolic alkalosis, suppression of plasma rennin activity and aldosterone secretion, and a clear-cut response to epithelial sodium channel (ENaC) blockers but not spironolactone therapy. Our understanding of ENaCs and Na(+) transport defects has expanded greatly over the past two decades and provides detailed insight into the molecular basis of Liddle's syndrome. In this review, we offer an overview of recent advances in understanding the molecular genetics of Liddle's syndrome, involving mutation analysis, molecular mechanisms and genetic testing. The ENaC in the distal nephron is composed of α, β and γ subunits that share similar structures. Mutations associated with Liddle's syndrome are positioned in either β or γ subunits and disturb or truncate a conserved proline-rich sequence (i.e., PY motif), leading to constitutive activation of the ENaC. Genetic testing has made it possible to make accurate diagnoses and develop tailored therapies for mutation carriers.
Collapse
|
46
|
TGF-β directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury. Proc Natl Acad Sci U S A 2013; 111:E374-83. [PMID: 24324142 DOI: 10.1073/pnas.1306798111] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
TGF-β is a pathogenic factor in patients with acute respiratory distress syndrome (ARDS), a condition characterized by alveolar edema. A unique TGF-β pathway is described, which rapidly promoted internalization of the αβγ epithelial sodium channel (ENaC) complex from the alveolar epithelial cell surface, leading to persistence of pulmonary edema. TGF-β applied to the alveolar airspaces of live rabbits or isolated rabbit lungs blocked sodium transport and caused fluid retention, which--together with patch-clamp and flow cytometry studies--identified ENaC as the target of TGF-β. TGF-β rapidly and sequentially activated phospholipase D1, phosphatidylinositol-4-phosphate 5-kinase 1α, and NADPH oxidase 4 (NOX4) to produce reactive oxygen species, driving internalization of βENaC, the subunit responsible for cell-surface stability of the αβγENaC complex. ENaC internalization was dependent on oxidation of βENaC Cys(43). Treatment of alveolar epithelial cells with bronchoalveolar lavage fluids from ARDS patients drove βENaC internalization, which was inhibited by a TGF-β neutralizing antibody and a Tgfbr1 inhibitor. Pharmacological inhibition of TGF-β signaling in vivo in mice, and genetic ablation of the nox4 gene in mice, protected against perturbed lung fluid balance in a bleomycin model of lung injury, highlighting a role for both proximal and distal components of this unique ENaC regulatory pathway in lung fluid balance. These data describe a unique TGF-β-dependent mechanism that regulates ion and fluid transport in the lung, which is not only relevant to the pathological mechanisms of ARDS, but might also represent a physiological means of acutely regulating ENaC activity in the lung and other organs.
Collapse
|
47
|
Chanoux RA, Shubin CB, Robay A, Suaud L, Rubenstein RC. Hsc70 negatively regulates epithelial sodium channel trafficking at multiple sites in epithelial cells. Am J Physiol Cell Physiol 2013; 305:C776-87. [PMID: 23885065 DOI: 10.1152/ajpcell.00059.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epithelial sodium channel (ENaC) plays an important role in homeostasis of blood pressure and of the airway surface liquid, and excess function of ENaC results in refractory hypertension (in Liddle's syndrome) and impaired mucociliary clearance (in cystic fibrosis). The regulation of ENaC by molecular chaperones, such as the 70-kDa heat shock protein Hsc70, is not completely understood. Our previously published data suggest that Hsc70 negatively affects ENaC activity and surface expression in Xenopus oocytes; here we investigate the mechanism by which Hsc70 acts on ENaC in epithelial cells. In Madin-Darby canine kidney cells stably expressing epitope-tagged αβγ-ENaC and with tetracycline-inducible overexpression of Hsc70, treatment with 5 μg/ml doxycycline increased total Hsc70 expression 20%. This increase in Hsc70 expression led to a decrease in ENaC activity and surface expression that corresponded to an increased rate of functional ENaC retrieval from the cell surface. In addition, Hsc70 overexpression decreased the association of newly synthesized ENaC subunits. These data support the hypothesis that Hsc70 inhibits ENaC functional expression at the apical surface of epithelia by regulating ENaC biogenesis and ENaC trafficking at the cell surface.
Collapse
Affiliation(s)
- Rebecca A Chanoux
- Division of Pulmonary Medicine and Cystic Fibrosis Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | | | | | | | | |
Collapse
|
48
|
Yu L, Cai H, Yue Q, Alli AA, Wang D, Al-Khalili O, Bao HF, Eaton DC. WNK4 inhibition of ENaC is independent of Nedd4-2-mediated ENaC ubiquitination. Am J Physiol Renal Physiol 2013; 305:F31-41. [PMID: 23594824 DOI: 10.1152/ajprenal.00652.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A serine-threonine protein kinase, WNK4, reduces Na⁺ reabsorption and K⁺ secretion in the distal convoluted tubule by reducing trafficking of the thiazide-sensitive Na-Cl cotransporter to and enhancing renal outer medullary potassium channel retrieval from the apical membrane. Epithelial sodium channels (ENaC) in the distal nephron also play a role in regulating Na⁺ reabsorption and are also regulated by WNK4, but the mechanism is unclear. In A6 distal nephron cells, transepithelial current measurement and single channel recording show that WNK4 inhibits ENaC activity. Analysis of the number of channel per patch shows that WNK4 reduces channel number but has no effect on channel open probability. Western blots of apical and total ENaC provide additional evidence that WNK4 reduces apical as well as total ENaC expression. WNK4 enhances ENaC internalization independent of Nedd4-2-mediated ENaC ubiquitination. WNK4 also reduced the amount of ENaC available for recycling but has no effect on the rate of transepithelial current increase to forskolin. In contrast, Nedd4-2 not only reduced ENaC in the recycling pool but also decreased the rate of increase of current after forskolin. WNK4 associates with wild-type as well as Liddle's mutated ENaC, and WNK4 reduces both wild-type and mutated ENaC expressed in HEK293 cells.
Collapse
Affiliation(s)
- Ling Yu
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Zaydman MA, Silva JR, Cui J. Ion channel associated diseases: overview of molecular mechanisms. Chem Rev 2012; 112:6319-33. [PMID: 23151230 DOI: 10.1021/cr300360k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mark A Zaydman
- Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63130, United States
| | | | | |
Collapse
|