1
|
Song F, Kovac V, Mohammadi B, Littau JL, Scharfenberg F, Matamoros Angles A, Vanni I, Shafiq M, Orge L, Galliciotti G, Djakkani S, Linsenmeier L, Černilec M, Hartman K, Jung S, Tatzelt J, Neumann JE, Damme M, Tschirner SK, Lichtenthaler SF, Ricklefs FL, Sauvigny T, Schmitz M, Zerr I, Puig B, Tolosa E, Ferrer I, Magnus T, Rupnik MS, Sepulveda-Falla D, Matschke J, Šmid LM, Bresjanac M, Andreoletti O, Krasemann S, Foliaki ST, Nonno R, Becker-Pauly C, Monzo C, Crozet C, Haigh CL, Glatzel M, Curin Serbec V, Altmeppen HC. Cleavage site-directed antibodies reveal the prion protein in humans is shed by ADAM10 at Y226 and associates with misfolded protein deposits in neurodegenerative diseases. Acta Neuropathol 2024; 148:2. [PMID: 38980441 PMCID: PMC11233397 DOI: 10.1007/s00401-024-02763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Proteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far. In this study, cleavage site prediction and generation (plus detailed characterization) of sPrP-specific antibodies enabled us to identify PrP cleaved at tyrosin 226 as the physiological and apparently strictly ADAM10-dependent shed form in humans. Using cell lines, neural stem cells and brain organoids, we show that shedding of human PrP can be stimulated by PrP-binding ligands without targeting the protease, which may open novel therapeutic perspectives. Site-specific antibodies directed against human sPrP also detect the shed form in brains of cattle, sheep and deer, hence in all most relevant species naturally affected by fatal and transmissible prion diseases. In human and animal prion diseases, but also in patients with Alzheimer`s disease, sPrP relocalizes from a physiological diffuse tissue pattern to intimately associate with extracellular aggregated deposits of misfolded proteins characteristic for the respective pathological condition. Findings and research tools presented here will accelerate novel insight into the roles of PrP shedding (as a process) and sPrP (as a released factor) in neurodegeneration and beyond.
Collapse
Affiliation(s)
- Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Valerija Kovac
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jessica L Littau
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Andreu Matamoros Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Leonor Orge
- National Institute for Agricultural and Veterinary Research (INIAV), Oeiras, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Salma Djakkani
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maja Černilec
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Katrina Hartman
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Sebastian Jung
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Sarah K Tschirner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University Munich, 81675, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University Munich, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), UKE, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| | - Tim Magnus
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), UKE, Hamburg, Germany
| | - Marjan S Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lojze M Šmid
- LNPR, Institute of Pathophysiology and Prion Laboratory, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mara Bresjanac
- LNPR, Institute of Pathophysiology and Prion Laboratory, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Olivier Andreoletti
- UMR INRAE ENVT 1225, Interactions Hôtes-Agents Pathogènes, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Simote T Foliaki
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Romolo Nonno
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Cecile Monzo
- Institute for Regenerative Medicine and Biotherapies (IRMB), Neural Stem Cell, MSC and Neurodegenerative Diseases, INSERM, Montpellier, France
| | - Carole Crozet
- Institute for Regenerative Medicine and Biotherapies (IRMB), Neural Stem Cell, MSC and Neurodegenerative Diseases, INSERM, Montpellier, France
| | - Cathryn L Haigh
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Vladka Curin Serbec
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia.
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
2
|
Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso KB, Guo Z. Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction. Chemistry 2024; 30:e202303047. [PMID: 37966101 PMCID: PMC10922586 DOI: 10.1002/chem.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Vanni I, Iacobone F, D’Agostino C, Giovannelli M, Pirisinu L, Altmeppen HC, Castilla J, Torres JM, Agrimi U, Nonno R. An optimized Western blot assay provides a comprehensive assessment of the physiological endoproteolytic processing of the prion protein. J Biol Chem 2022; 299:102823. [PMID: 36565989 PMCID: PMC9867980 DOI: 10.1016/j.jbc.2022.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
The prion protein (PrPC) is subjected to several conserved endoproteolytic events producing bioactive fragments that are of increasing interest for their physiological functions and their implication in the pathogenesis of prion diseases and other neurodegenerative diseases. However, systematic and comprehensive investigations on the full spectrum of PrPC proteoforms have been hampered by the lack of methods able to identify all PrPC-derived proteoforms. Building on previous knowledge of PrPC endoproteolytic processing, we thus developed an optimized Western blot assay able to obtain the maximum information about PrPC constitutive processing and the relative abundance of PrPC proteoforms in a complex biological sample. This approach led to the concurrent identification of the whole spectrum of known endoproteolytic-derived PrPC proteoforms in brain homogenates, including C-terminal, N-terminal and, most importantly, shed PrPC-derived fragments. Endoproteolytic processing of PrPC was remarkably similar in the brain of widely used wild type and transgenic rodent models, with α-cleavage-derived C1 representing the most abundant proteoform and ADAM10-mediated shedding being an unexpectedly prominent proteolytic event. Interestingly, the relative amount of shed PrPC was higher in WT mice than in most other models. Our results indicate that constitutive endoproteolytic processing of PrPC is not affected by PrPC overexpression or host factors other than PrPC but can be impacted by PrPC primary structure. Finally, this method represents a crucial step in gaining insight into pathophysiological roles, biomarker suitability, and therapeutic potential of shed PrPC and for a comprehensive appraisal of PrPC proteoforms in therapies, drug screening, or in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Floriana Iacobone
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia D’Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Giovannelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Joaquin Castilla
- Basque Research and Technology Alliance (BRTA) - CIC BioGUNE & IKERBasque, Bizkaia, Spain,Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
4
|
Jo T, Nho K, Bice P, Saykin AJ. Deep learning-based identification of genetic variants: application to Alzheimer's disease classification. Brief Bioinform 2022; 23:bbac022. [PMID: 35183061 PMCID: PMC8921609 DOI: 10.1093/bib/bbac022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/29/2023] Open
Abstract
Deep learning is a promising tool that uses nonlinear transformations to extract features from high-dimensional data. Deep learning is challenging in genome-wide association studies (GWAS) with high-dimensional genomic data. Here we propose a novel three-step approach (SWAT-CNN) for identification of genetic variants using deep learning to identify phenotype-related single nucleotide polymorphisms (SNPs) that can be applied to develop accurate disease classification models. In the first step, we divided the whole genome into nonoverlapping fragments of an optimal size and then ran convolutional neural network (CNN) on each fragment to select phenotype-associated fragments. In the second step, using a Sliding Window Association Test (SWAT), we ran CNN on the selected fragments to calculate phenotype influence scores (PIS) and identify phenotype-associated SNPs based on PIS. In the third step, we ran CNN on all identified SNPs to develop a classification model. We tested our approach using GWAS data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) including (N = 981; cognitively normal older adults (CN) = 650 and AD = 331). Our approach identified the well-known APOE region as the most significant genetic locus for AD. Our classification model achieved an area under the curve (AUC) of 0.82, which was compatible with traditional machine learning approaches, random forest and XGBoost. SWAT-CNN, a novel deep learning-based genome-wide approach, identified AD-associated SNPs and a classification model for AD and may hold promise for a range of biomedical applications.
Collapse
Affiliation(s)
- Taeho Jo
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula Bice
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
5
|
Mohammadi B, Song F, Matamoros-Angles A, Shafiq M, Damme M, Puig B, Glatzel M, Altmeppen HC. Anchorless risk or released benefit? An updated view on the ADAM10-mediated shedding of the prion protein. Cell Tissue Res 2022; 392:215-234. [PMID: 35084572 PMCID: PMC10113312 DOI: 10.1007/s00441-022-03582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
The prion protein (PrP) is a broadly expressed glycoprotein linked with a multitude of (suggested) biological and pathological implications. Some of these roles seem to be due to constitutively generated proteolytic fragments of the protein. Among them is a soluble PrP form, which is released from the surface of neurons and other cell types by action of the metalloprotease ADAM10 in a process termed 'shedding'. The latter aspect is the focus of this review, which aims to provide a comprehensive overview on (i) the relevance of proteolytic processing in regulating cellular PrP functions, (ii) currently described involvement of shed PrP in neurodegenerative diseases (including prion diseases and Alzheimer's disease), (iii) shed PrP's expected roles in intercellular communication in many more (patho)physiological conditions (such as stroke, cancer or immune responses), (iv) and the need for improved research tools in respective (future) studies. Deeper mechanistic insight into roles played by PrP shedding and its resulting fragment may pave the way for improved diagnostics and future therapeutic approaches in diseases of the brain and beyond.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Working Group for Interdisciplinary Neurobiology and Immunology (INI Research), Hamburg, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Andreu Matamoros-Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | |
Collapse
|
6
|
Kovač V, Čurin Šerbec V. Prion Protein: The Molecule of Many Forms and Faces. Int J Mol Sci 2022; 23:ijms23031232. [PMID: 35163156 PMCID: PMC8835406 DOI: 10.3390/ijms23031232] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored protein most abundantly found in the outer membrane of neurons. Due to structural characteristics (a flexible tail and structured core), PrPC interacts with a wide range of partners. Although PrPC has been proposed to be involved in many physiological functions, only peripheral nerve myelination homeostasis has been confirmed as a bona fide function thus far. PrPC misfolding causes prion diseases and PrPC has been shown to mediate β-rich oligomer-induced neurotoxicity in Alzheimer’s and Parkinson’s disease as well as neuroprotection in ischemia. Upon proteolytic cleavage, PrPC is transformed into released and attached forms of PrP that can, depending on the contained structural characteristics of PrPC, display protective or toxic properties. In this review, we will outline prion protein and prion protein fragment properties as well as overview their involvement with interacting partners and signal pathways in myelination, neuroprotection and neurodegenerative diseases.
Collapse
|
7
|
Dexter E, Kong Q. Neuroprotective effect and potential of cellular prion protein and its cleavage products for treatment of neurodegenerative disorders part II: strategies for therapeutics development. Expert Rev Neurother 2021; 21:983-991. [PMID: 34470554 DOI: 10.1080/14737175.2021.1965882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The cellular prion protein (PrPC), some of its derivatives (especially PrP N-terminal N1 peptide and shed PrP), and PrPC-containing exosomes have strong neuroprotective activities, which have been reviewed in the companion article (Part I) and are briefly summarized here.Areas covered: We propose that elevating the extracellular levels of a protective PrP form using gene therapy and other approaches is a very promising novel avenue for prophylactic and therapeutic treatments against prion disease, Alzheimer's disease, and several other neurodegenerative diseases. We will dissect the pros and cons of various potential PrP-based treatment options and propose a few strategies that are more likely to succeed. The cited references were obtained from extensive PubMed searches of recent literature, including peer-reviewed original articles and review articles.Expert opinion: Concurrent knockdown of celllular PrP expression and elevation of the extracellular levels of a neuroprotective PrP N-terminal peptide via optimized gene therapy vectors is a highly promising broad-spectrum prophylactic and therapeutic strategy against several neurodegenerative diseases, including prion diseases, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Emily Dexter
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
8
|
Dexter E, Kong Q. Neuroprotective effect and potential of cellular prion protein and its cleavage products for treatment of neurodegenerative disorders part I. a literature review. Expert Rev Neurother 2021; 21:969-982. [PMID: 34470561 DOI: 10.1080/14737175.2021.1965881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The cellular prion protein (PrPC) is well known for its pathogenic roles in prion diseases, several other neurodegenerative diseases (such as Alzheimer's disease), and multiple types of cancer, but the beneficial aspects of PrPC and its cleavage products received much less attention. AREAS COVERED Here the authors will systematically review the literatures on the negative as well as protective aspects of PrPC and its derivatives (especially PrP N-terminal N1 peptide and shed PrP). The authors will dissect the current findings on N1 and shed PrP, including evidence for their neuroprotective effects, the categories of PrPC cleavage, and numerous cleavage enzymes involved. The authors will also discuss the protective effects and therapeutic potentials of PrPC-rich exosomes. The cited articles were obtained from extensive PubMed searches of recent literature, including peer-reviewed original articles and review articles. EXPERT OPINION PrP and its N-terminal fragments have strong neuroprotective activities that should be explored for therapeutics and prophylactics development against prion disease, Alzheimer's disease and a few other neurodegenerative diseases. The strategies to develop PrP-based therapeutics and prophylactics for these neurodegenerative diseases will be discussed in a companion article (Part II).
Collapse
Affiliation(s)
- Emily Dexter
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, USA.,Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, USA
| |
Collapse
|
9
|
Vieira N, Rito T, Correia-Neves M, Sousa N. Sorting Out Sorting Nexins Functions in the Nervous System in Health and Disease. Mol Neurobiol 2021; 58:4070-4106. [PMID: 33931804 PMCID: PMC8280035 DOI: 10.1007/s12035-021-02388-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Endocytosis is a fundamental process that controls protein/lipid composition of the plasma membrane, thereby shaping cellular metabolism, sensing, adhesion, signaling, and nutrient uptake. Endocytosis is essential for the cell to adapt to its surrounding environment, and a tight regulation of the endocytic mechanisms is required to maintain cell function and survival. This is particularly significant in the central nervous system (CNS), where composition of neuronal cell surface is crucial for synaptic functioning. In fact, distinct pathologies of the CNS are tightly linked to abnormal endolysosomal function, and several genome wide association analysis (GWAS) and biochemical studies have identified intracellular trafficking regulators as genetic risk factors for such pathologies. The sorting nexins (SNXs) are a family of proteins involved in protein trafficking regulation and signaling. SNXs dysregulation occurs in patients with Alzheimer’s disease (AD), Down’s syndrome (DS), schizophrenia, ataxia and epilepsy, among others, establishing clear roles for this protein family in pathology. Interestingly, restoration of SNXs levels has been shown to trigger synaptic plasticity recovery in a DS mouse model. This review encompasses an historical and evolutionary overview of SNXs protein family, focusing on its organization, phyla conservation, and evolution throughout the development of the nervous system during speciation. We will also survey SNXs molecular interactions and highlight how defects on SNXs underlie distinct pathologies of the CNS. Ultimately, we discuss possible strategies of intervention, surveying how our knowledge about the fundamental processes regulated by SNXs can be applied to the identification of novel therapeutic avenues for SNXs-related disorders.
Collapse
Affiliation(s)
- Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Teresa Rito
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Vincent B. Regulation of the α-secretase ADAM10 at transcriptional, translational and post-translational levels. Brain Res Bull 2016; 126:154-169. [PMID: 27060611 DOI: 10.1016/j.brainresbull.2016.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/19/2022]
Abstract
A tremendous gain of interest in the biology of ADAM10 emerged during the past 15 years when it has first been shown that this protease was able to target the α-site of the β-amyloid precursor protein (βAPP) and later confirmed as the main physiological α-secretase activity. However, beside its well-established implication in the so-called non-amyloidogenic processing of βAPP and its probable protective role against Alzheimer's disease (AD), this metalloprotease also cleaves many other substrates, thereby being implicated in various physiological as well as pathological processes such as cancer and inflammation. Thus, in view of possible effective therapeutic interventions, a full comprehension of how ADAM10 is up and down regulated is required. This review discusses our current knowledge concerning the implication of this enzyme in AD as well as its more recently established roles in other brain disorders and provides a detailed up-date on its various transcriptional, translational and post-translational modulations.
Collapse
Affiliation(s)
- Bruno Vincent
- Mahidol University, Institute of Molecular Biosciences, Nakhon Pathom 73170, Thailand; Centre National de la Recherche Scientifique, 2 rue Michel Ange, 75016 Paris, France.
| |
Collapse
|
11
|
Milisav I, Šuput D, Ribarič S. Unfolded Protein Response and Macroautophagy in Alzheimer's, Parkinson's and Prion Diseases. Molecules 2015; 20:22718-56. [PMID: 26694349 PMCID: PMC6332363 DOI: 10.3390/molecules201219865] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Proteostasis are integrated biological pathways within cells that control synthesis, folding, trafficking and degradation of proteins. The absence of cell division makes brain proteostasis susceptible to age-related changes and neurodegeneration. Two key processes involved in sustaining normal brain proteostasis are the unfolded protein response and autophagy. Alzheimer’s disease (AD), Parkinson’s disease (PD) and prion diseases (PrDs) have different clinical manifestations of neurodegeneration, however, all share an accumulation of misfolded pathological proteins associated with perturbations in unfolded protein response and macroautophagy. While both the unfolded protein response and macroautophagy play an important role in the prevention and attenuation of AD and PD progression, only macroautophagy seems to play an important role in the development of PrDs. Macroautophagy and unfolded protein response can be modulated by pharmacological interventions. However, further research is necessary to better understand the regulatory pathways of both processes in health and neurodegeneration to be able to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
- Faculty of Health Sciences, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenija.
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
| | - Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
12
|
Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet 2015; 47:528-34. [PMID: 25848753 PMCID: PMC4414867 DOI: 10.1038/ng.3256] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/02/2015] [Indexed: 12/14/2022]
Abstract
Pediatric-onset ataxias often present clinically as developmental delay and intellectual disability, with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a new clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia, coarsened facial features and intellectual disability, due to truncating mutations in the sorting nexin gene SNX14, encoding a ubiquitously expressed modular PX domain-containing sorting factor. We found SNX14 localized to lysosomes and associated with phosphatidylinositol (3,5)-bisphosphate, a key component of late endosomes/lysosomes. Patient-derived cells showed engorged lysosomes and a slower autophagosome clearance rate upon autophagy induction by starvation. Zebrafish morphants for snx14 showed dramatic loss of cerebellar parenchyma, accumulation of autophagosomes and activation of apoptosis. Our results characterize a unique ataxia syndrome due to biallelic SNX14 mutations leading to lysosome-autophagosome dysfunction.
Collapse
|
13
|
Altmeppen HC, Prox J, Krasemann S, Puig B, Kruszewski K, Dohler F, Bernreuther C, Hoxha A, Linsenmeier L, Sikorska B, Liberski PP, Bartsch U, Saftig P, Glatzel M. The sheddase ADAM10 is a potent modulator of prion disease. eLife 2015; 4. [PMID: 25654651 PMCID: PMC4346534 DOI: 10.7554/elife.04260] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/04/2015] [Indexed: 01/10/2023] Open
Abstract
The prion protein (PrPC) is highly expressed in the nervous system and critically involved in prion diseases where it misfolds into pathogenic PrPSc. Moreover, it has been suggested as a receptor mediating neurotoxicity in common neurodegenerative proteinopathies such as Alzheimer's disease. PrPC is shed at the plasma membrane by the metalloprotease ADAM10, yet the impact of this on prion disease remains enigmatic. Employing conditional knockout mice, we show that depletion of ADAM10 in forebrain neurons leads to posttranslational increase of PrPC levels. Upon prion infection of these mice, clinical, biochemical, and morphological data reveal that lack of ADAM10 significantly reduces incubation times and increases PrPSc formation. In contrast, spatiotemporal analysis indicates that absence of shedding impairs spread of prion pathology. Our data support a dual role for ADAM10-mediated shedding and highlight the role of proteolytic processing in prion disease. DOI:http://dx.doi.org/10.7554/eLife.04260.001 Prion proteins are anchored to the surface of brain cells called neurons. Normally, prion proteins are folded into a specific three-dimensional shape that enables them to carry out their normal roles in the brain. However, they can be misfolded into a different shape known as PrPSc, which can cause Creutzfeldt-Jakob disease and other serious conditions that affect brain function and ultimately lead to death. The PrPSc proteins can force normal prion proteins to change into the PrPSc form, so that over time this form accumulates in the brain. They are essential components of infectious particles termed ‘prions’ and this is why prion diseases are infectious: if prions from one individual enter the brain of another individual they can cause disease in the recipient. The UK outbreak of variant Creutzfeldt-Jakob disease in humans in the 1990s is thought to be due to the consumption of meat from cattle with a prion disease known as mad cow disease. An enzyme called ADAM10 can cut normal prion proteins from the surface of neurons. However, it is not clear whether ADAM10 can also target the PrPSc proteins and what impact this may have on the development of prion diseases. Here, Altmeppen et al. studied mutant mice that were missing ADAM10 in neurons in the front portion of their brain. These mice had a higher number of normal prion proteins on the surface of their neurons than normal mice did. When mice missing ADAM10 were infected with prions, more PrPSc accumulated in their brain and disease symptoms developed sooner than when normal mice were infected. This supports the view that mice with higher numbers of prion proteins are more vulnerable to prion disease. However, disease symptoms did not spread as quickly to other parts of the brain in the mice missing ADAM10. This suggests that by releasing prion proteins from the surface of neurons, ADAM10 helps PrPSc proteins to spread around the brain. Recently, it has been suggested that prion proteins may also play a role in Alzheimer's disease and other neurodegenerative conditions. Therefore, Altmeppen et al.'s findings may help to develop new therapies for other forms of dementia. The next challenge is to understand the precise details of how ADAM10 works. DOI:http://dx.doi.org/10.7554/eLife.04260.002
Collapse
Affiliation(s)
- Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Prox
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Kruszewski
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Dohler
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ana Hoxha
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University Lodz, Lodz, Poland
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University Lodz, Lodz, Poland
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Davidson L, Knight R. Neuropathogenesis of prion disease. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.13.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Although much is known about prion diseases (characterized by a post-translational misfolding of the prion protein [PrP]) and their neuropathology and molecular pathology, the fundamental cause of illness, the basic neuropathogenesis, remains uncertain. There are three broad considerations discussed in this review: the possible loss of normal PrP function, the possible direct toxicity of the abnormally folded PrP and a harmful interaction between the normal and abnormal protein. In considering these possibilities, there are difficulties, including the facts that the relevant normal functions of the PrP are somewhat uncertain and that there are a number of possible toxic species of abnormal protein. In addition to the possible interactions of normal and abnormal PrP in prion disease, PrP may play a role in the neuropathogenesis of other diseases (such as Alzheimer’s disease).
Collapse
Affiliation(s)
- Louise Davidson
- National Creutzfeldt–Jakob Disease Research & Surveillance Unit, University of Edinburgh, Edinburgh, UK
| | - Richard Knight
- National Creutzfeldt–Jakob Disease Research & Surveillance Unit, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Altmeppen HC, Prox J, Puig B, Dohler F, Falker C, Krasemann S, Glatzel M. Roles of endoproteolytic α-cleavage and shedding of the prion protein in neurodegeneration. FEBS J 2013; 280:4338-47. [DOI: 10.1111/febs.12196] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/25/2013] [Accepted: 02/14/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Hermann C. Altmeppen
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Johannes Prox
- Institute of Biochemistry; Christian Albrechts University; Kiel Germany
| | - Berta Puig
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Frank Dohler
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Clemens Falker
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Susanne Krasemann
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| | - Markus Glatzel
- Institute of Neuropathology; University Medical Center HH-Eppendorf; Hamburg Germany
| |
Collapse
|
16
|
Ma MPC, Chircop M. SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis. J Cell Sci 2012; 125:4372-82. [PMID: 22718350 DOI: 10.1242/jcs.105981] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitosis involves considerable membrane remodelling and vesicular trafficking to generate two independent cells. Consequently, endocytosis and endocytic proteins are required for efficient mitotic progression and completion. Several endocytic proteins also participate in mitosis in an endocytosis-independent manner. Here, we report that the sorting nexin 9 (SNX9) subfamily members - SNX9, SNX18 and SNX33 - are required for progression and completion of mitosis. Depletion of any one of these proteins using siRNA induces multinucleation, an indicator of cytokinesis failure, as well as an accumulation of cytokinetic cells. Time-lapse microscopy on siRNA-treated cells revealed a role for SNX9 subfamily members in progression through the ingression and abscission stages of cytokinesis. Depletion of these three proteins disrupted MRLC(S19) localization during ingression and recruitment of Rab11-positive recycling endosomes to the intracellular bridge between nascent daughter cells. SNX9 depletion also disrupted the localization of Golgi during cytokinesis. Endocytosis of transferrin was blocked during cytokinesis by depletion of the SNX9 subfamily members, suggesting that these proteins participate in cytokinesis in an endocytosis-dependent manner. In contrast, depletion of SNX9 did not block transferrin uptake during metaphase but did delay chromosome alignment and segregation, suggesting that SNX9 plays an additional non-endocytic role at early mitotic stages. We conclude that SNX9 subfamily members are required for mitosis through both endocytosis-dependent and -independent processes.
Collapse
Affiliation(s)
- Maggie P C Ma
- Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | | |
Collapse
|
17
|
Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 2011; 441:39-59. [DOI: 10.1042/bj20111226] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mammalian genome encodes 49 proteins that possess a PX (phox-homology) domain, responsible for membrane attachment to organelles of the secretory and endocytic system via binding of phosphoinositide lipids. The PX domain proteins, most of which are classified as SNXs (sorting nexins), constitute an extremely diverse family of molecules that play varied roles in membrane trafficking, cell signalling, membrane remodelling and organelle motility. In the present review, we present an overview of the family, incorporating recent functional and structural insights, and propose an updated classification of the proteins into distinct subfamilies on the basis of these insights. Almost all PX domain proteins bind PtdIns3P and are recruited to early endosomal membranes. Although other specificities and localizations have been reported for a select few family members, the molecular basis for binding to other lipids is still not clear. The PX domain is also emerging as an important protein–protein interaction domain, binding endocytic and exocytic machinery, transmembrane proteins and many other molecules. A comprehensive survey of the molecular interactions governed by PX proteins highlights the functional diversity of the family as trafficking cargo adaptors and membrane-associated scaffolds regulating cell signalling. Finally, we examine the mounting evidence linking PX proteins to different disorders, in particular focusing on their emerging importance in both pathogen invasion and amyloid production in Alzheimer's disease.
Collapse
|
18
|
Qualmann B, Koch D, Kessels MM. Let's go bananas: revisiting the endocytic BAR code. EMBO J 2011; 30:3501-15. [PMID: 21878992 DOI: 10.1038/emboj.2011.266] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/15/2011] [Indexed: 12/27/2022] Open
Abstract
Against the odds of membrane resistance, members of the BIN/Amphiphysin/Rvs (BAR) domain superfamily shape membranes and their activity is indispensable for a plethora of life functions. While crystal structures of different BAR dimers advanced our understanding of membrane shaping by scaffolding and hydrophobic insertion mechanisms considerably, especially life-imaging techniques and loss-of-function studies of clathrin-mediated endocytosis with its gradually increasing curvature show that the initial idea that solely BAR domain curvatures determine their functions is oversimplified. Diagonal placing, lateral lipid-binding modes, additional lipid-binding modules, tilde shapes and formation of macromolecular lattices with different modes of organisation and arrangement increase versatility. A picture emerges, in which BAR domain proteins create macromolecular platforms, that recruit and connect different binding partners and ensure the connection and coordination of the different events during the endocytic process, such as membrane invagination, coat formation, actin nucleation, vesicle size control, fission, detachment and uncoating, in time and space, and may thereby offer mechanistic explanations for how coordination, directionality and effectiveness of a complex process with several steps and key players can be achieved.
Collapse
Affiliation(s)
- Britta Qualmann
- Institute for Biochemistry I, University Hospital Jena-Friedrich Schiller University Jena, Germany.
| | | | | |
Collapse
|
19
|
Specific amino acids in the BAR domain allow homodimerization and prevent heterodimerization of sorting nexin 33. Biochem J 2011; 433:75-83. [PMID: 20964629 DOI: 10.1042/bj20100709] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SNX33 (sorting nexin 33) is a homologue of the endocytic protein SNX9 and has been implicated in actin polymerization and the endocytosis of the amyloid precursor protein. SNX33 belongs to the large family of BAR (Bin/amphiphysin/Rvs) domain-containing proteins, which alter cellular protein trafficking by modulating cellular membranes and the cytoskeleton. Some BAR domains engage in homodimerization, whereas other BAR domains also mediate heterodimerization between different BAR domain-containing proteins. The molecular basis for this difference is not yet understood. Using co-immunoprecipitations we report that SNX33 forms homodimers, but not heterodimers, with other BAR domain-containing proteins, such as SNX9. Domain deletion analysis revealed that the BAR domain, but not the SH3 (Src homology 3) domain, was required for homodimerization of SNX33. Additionally, the BAR domain prevented the heterodimerization between SNX9 and SNX33, as determined by domain swap experiments. Molecular modelling of the SNX33 BAR domain structure revealed that key amino acids located at the BAR domain dimer interface of the SNX9 homodimer are not conserved in SNX33. Replacing these amino acids in SNX9 with the corresponding amino acids of SNX33 allowed the mutant SNX9 to heterodimerize with SNX33. Taken together, the present study identifies critical amino acids within the BAR domains of SNX9 and SNX33 as determinants for the specificity of BAR domain-mediated interactions and suggests that SNX9 and SNX33 have distinct molecular functions.
Collapse
|
20
|
Park J, Kim Y, Lee S, Park JJ, Park ZY, Sun W, Kim H, Chang S. SNX18 shares a redundant role with SNX9 and modulates endocytic trafficking at the plasma membrane. J Cell Sci 2010; 123:1742-50. [PMID: 20427313 DOI: 10.1242/jcs.064170] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
SNX18 and SNX9 are members of a subfamily of SNX (sorting nexin) proteins with the same domain structure. Although a recent report showed that SNX18 and SNX9 localize differently in cells and appear to function in different trafficking pathways, concrete evidence regarding whether they act together or separately in intracellular trafficking is still lacking. Here, we show that SNX18 has a similar role to SNX9 in endocytic trafficking at the plasma membrane, rather than having a distinct role. SNX18 and SNX9 are expressed together in most cell lines, but to a different extent. Like SNX9, SNX18 interacts with dynamin and stimulates the basal GTPase activity of dynamin. It also interacts with neuronal Wiskott-Aldrich syndrome protein (N-WASP) and synaptojanin, as does SNX9. SNX18 and SNX9 can form a heterodimer and colocalize in tubular membrane structures. Depletion of SNX18 by small hairpin RNA inhibited transferrin uptake. SNX18 successfully compensates for SNX9 deficiency during clathrin-mediated endocytosis and vice versa. Total internal reflection fluorescence microscopy in living cells shows that a transient burst of SNX18 recruitment to clathrin-coated pits coincides spatiotemporally with a burst of dynamin and SNX9. Taken together, our results suggest that SNX18 functions with SNX9 in multiple pathways of endocytosis at the plasma membrane and that they are functionally redundant.
Collapse
Affiliation(s)
- Joohyun Park
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul 110-799, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wendler F, Gillingham AK, Sinka R, Rosa-Ferreira C, Gordon DE, Franch-Marro X, Peden AA, Vincent JP, Munro S. A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway. EMBO J 2010; 29:304-14. [PMID: 19942856 PMCID: PMC2824459 DOI: 10.1038/emboj.2009.350] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/02/2009] [Indexed: 02/01/2023] Open
Abstract
Genetic screens in the yeast Saccharomyces cerevisiae have identified many proteins involved in the secretory pathway, most of which have orthologues in higher eukaryotes. To investigate whether there are additional proteins that are required for secretion in metazoans but are absent from yeast, we used genome-wide RNA interference (RNAi) to look for genes required for secretion of recombinant luciferase from Drosophila S2 cells. This identified two novel components of the secretory pathway that are conserved from humans to plants. Gryzun is distantly related to, but distinct from, the Trs130 subunit of the TRAPP complex but is absent from S. cerevisiae. RNAi of human Gryzun (C4orf41) blocks Golgi exit. Kish is a small membrane protein with a previously uncharacterised orthologue in yeast. The screen also identified Drosophila orthologues of almost 60% of the yeast genes essential for secretion. Given this coverage, the small number of novel components suggests that contrary to previous indications the number of essential core components of the secretory pathway is not much greater in metazoans than in yeasts.
Collapse
Affiliation(s)
- Franz Wendler
- MRC National Institute for Medical Research, London, UK
| | | | - Rita Sinka
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - David E Gordon
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Andrew A Peden
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
22
|
Taylor DR, Parkin ET, Cocklin SL, Ault JR, Ashcroft AE, Turner AJ, Hooper NM. Role of ADAMs in the ectodomain shedding and conformational conversion of the prion protein. J Biol Chem 2009; 284:22590-600. [PMID: 19564338 PMCID: PMC2755666 DOI: 10.1074/jbc.m109.032599] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The cellular prion protein (PrPC) is essential for the pathogenesis and transmission of prion diseases. PrPC is bound to the plasma membrane via a glycosylphosphatidylinositol anchor, although a secreted, soluble form has also been identified. Previously we reported that PrPC is subject to ectodomain shedding from the membrane by zinc metalloproteinases with a similar inhibition profile to those involved in shedding the amyloid precursor protein. Here we have used gain-of-function (overexpression) and loss-of-function (small interfering RNA knockdown) experiments in cells to identify the ADAMs (adisintegrin and metalloproteinases) involved in the ectodomain shedding of PrPC. These experiments revealed that ADAM9 and ADAM10, but not ADAM17, are involved in the shedding of PrPC and that ADAM9 exerts its effect on PrPC shedding via ADAM10. Using dominant negative, catalytically inactive mutants, we show that the catalytic activity of ADAM9 is required for its effect on ADAM10. Mass spectrometric analysis revealed that ADAM10, but not ADAM9, cleaved PrP between Gly228 and Arg229, three residues away from the site of glycosylphosphatidylinositol anchor attachment. The shedding of another membrane protein, the amyloid precursor protein β-secretase BACE1, by ADAM9 is also mediated via ADAM10. Furthermore, we show that pharmacological inhibition of PrPC shedding or activation of both PrPC and PrPSc shedding by ADAM10 overexpression in scrapie-infected neuroblastoma N2a cells does not alter the formation of proteinase K-resistant PrPSc. Collectively, these data indicate that although PrPC can be shed through the action of ADAM family members, modulation of PrPC or PrPSc ectodomain shedding does not regulate prion conversion.
Collapse
Affiliation(s)
- David R Taylor
- Proteolysis Research Group, Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang J, Zhang X, Guo Y, Xu L, Pei D. Sorting nexin 33 induces mammalian cell micronucleated phenotype and actin polymerization by interacting with Wiskott-Aldrich syndrome protein. J Biol Chem 2009; 284:21659-69. [PMID: 19487689 DOI: 10.1074/jbc.m109.007278] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sorting nexin 33 (SNX33) is a novel member of the sorting nexin superfamily with three predicted structural domains, SH3-PX-BAR. Very little is known about the cellular function of SNX33. In an effort to analyze its structure/function relationship, we attempted but failed to generate stable cell lines for short hairpin RNA or overexpression SNX33. Transient knockdown of SNX33 induces both HeLa and MCF7 cells to grow multiple long processes, delay the G(1)/M transition, and become more apoptotic, implying that SNX33 may control cell cycle process through influence the cytoskeleton. In vitro cell lineage analysis revealed that cells transfected with SNX33 failed to divide and became micronucleated, suggesting a specific defect in cytokinesis. Further analysis revealed that SNX33 induced the accumulation of actin at the perinuclear space, which might have disabled the cytokinetic machinery. However, SNX33 appears to mediate actin polymerization indirectly, as they do not interact with each other. SNX33 interacts with itself and SNX9. Interestingly, it also interacts with VCA domain of Wiskott-Aldrich syndrome protein (WASp), a protein known to be involved in actin polymerization. Indeed, cells overexpressing WASp failed to divide and form stable colonies as SNX33, consistent with the notion that SNX33 may interfere with cytokinesis. On the other hand, knockdown of WASp alleviates the phenotype induced by SNX33. Taken together, our results suggest that SNX33 plays a role in maintaining cell shape and cell cycle progression through its interaction with WASp.
Collapse
Affiliation(s)
- Juan Zhang
- Laboratory of Stem Cell Biology, Department of Biological Sciences and Biotechnology, Institute of Biomedicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
24
|
Heiseke A, Aguib Y, Riemer C, Baier M, Schätzl HM. Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy. J Neurochem 2009; 109:25-34. [PMID: 19183256 DOI: 10.1111/j.1471-4159.2009.05906.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lithium is used for several decades to treat manic-depressive illness (bipolar affective disorder). Recently, it was found that lithium induces autophagy, thereby promoting the clearance of mutant huntingtin and alpha-synucleins in experimental systems. We show here for the first time that lithium significantly reduces the amount of pathological prion protein (PrP(Sc)) in prion-infected neuronal and non-neuronal cultured cells by inducing autophagy. Treatment of prion-infected cells with 3-methyladenine, a potent inhibitor of autophagy, counteracted the anti-prion effect of lithium, demonstrating that induction of autophagy mediates degradation of PrP(Sc). Co-treatment with lithium and rapamycin, a drug widely used to induce autophagy, had an additive effect on PrP(Sc) clearance compared to treatment with either drug alone. In addition, we provide evidence that the ability to reduce PrP(Sc) and to induce autophagy is common for diverse lithium compounds, not only for the drug lithium chloride, usually administered in clinical therapy. Furthermore, we show here that besides reduction of PrP(Sc)-aggregates, lithium-induced autophagy also slightly reduces the levels of cellular prion protein. Limiting the substrate available for conversion of cellular prion protein into PrP(Sc) may provide an additional mechanism for reduction of PrP(Sc) by lithium-induced autophagy.
Collapse
Affiliation(s)
- Andreas Heiseke
- Institute of Virology, Technische Universität München, Munich, Germany
| | | | | | | | | |
Collapse
|