Muresan V, Muresan Z. Unconventional functions of microtubule motors.
Arch Biochem Biophys 2012;
520:17-29. [PMID:
22306515 PMCID:
PMC3307959 DOI:
10.1016/j.abb.2011.12.029]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 11/21/2022]
Abstract
With the functional characterization of proteins advancing at fast pace, the notion that one protein performs different functions - often with no relation to each other - emerges as a novel principle of how cells work. Molecular motors are no exception to this new development. Here, we provide an account on recent findings revealing that microtubule motors are multifunctional proteins that regulate many cellular processes, in addition to their main function in transport. Some of these functions rely on their motor activity, but others are independent of it. Of the first category, we focus on the role of microtubule motors in organelle biogenesis, and in the remodeling of the cytoskeleton, especially through the regulation of microtubule dynamics. Of the second category, we discuss the function of microtubule motors as static anchors of the cargo at the destination, and their participation in regulating signaling cascades by modulating interactions between signaling proteins, including transcription factors. We also review atypical forms of transport, such as the cytoplasmic streaming in the oocyte, and the movement of cargo by microtubule fluctuations. Our goal is to provide an overview of these unexpected functions of microtubule motors, and to incite future research in this expanding field.
Collapse