1
|
Yang L, Chen W. Insulin secretion assays in an engineered MIN6 cell line. MethodsX 2023; 10:102029. [PMID: 36718202 PMCID: PMC9883224 DOI: 10.1016/j.mex.2023.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Insulin secretion from pancreatic beta cells is crucial for maintaining glucose homeostasis. The murine insulinoma derived MIN6 cell line is commonly used as a model for insulin secretion studies. However, its glucose responsiveness wanes with passaging, and insulin secretion is traditionally measured by expensive and time-consuming RIA or ELISA. We have developed a MIN6 subclone (MIN6-6) that allows for high throughput assay of insulin secretion in both population and single cells. In addition, MIN6-6 also expresses Cas9, permitting genome wide CRISPR screen of insulin secretion using a pooled sgRNA library. Here we provide methods for assaying insulin secretion both in bulk and in single cells in MIN6-6 cells, as well as for CRISPR screen of insulin secretion.•A highly glucose responsive beta cell reporter line (MIN6-6) with multiple engineered functionalities.•Allows for CRISPR/Cas9 mutagenesis, quantification of bulk insulin secretion by a straightforward nanoLuc assay and visualization of intracellular insulin granules.•Allows for en masse quantification of insulin granule exocytosis in individual cells under multiple conditions.
Collapse
Affiliation(s)
- Liu Yang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Szulak F, Etcheverry Boneo L, Becu-Villalobos D, Fernandez MO, Sorianello E. Benzophenones alter autophagy and ER stress gene expression in pancreatic beta cells in vitro. In Vitro Cell Dev Biol Anim 2022; 58:936-956. [PMID: 36484879 DOI: 10.1007/s11626-022-00739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
Benzophenones (BPs) are endocrine disruptors frequently used in sunscreens and food packaging as UV blockers. Our goal was to assess the effect of benzophenone 2 (BP2) and 3 (BP3) on gene expression related to autophagy process and ER stress response in pancreatic beta cells. To that end, the mouse pancreatic beta cell line MIN6B1 was treated with 10 µM BP2 or BP3 in the presence or absence of the autophagy-inhibitor chloroquine (CQ, 10 µM) or the autophagy-inducer rapamycin (RAPA, 50 nM) during 24 h. BP3 inhibited the expression of the autophagic gene Ulk1, and additional effects were uncovered when autophagy was modified by CQ and RAPA. BP3 counteracted CQ-induced Lamp2 expression but did not compensate CQ-induced Sqstm1/p62 gene transcription, neither BP2. Nevertheless, the BPs did not alter the autophagic flux. In relation to ER stress, BP3 inhibited unspliced and spliced Xbp1 mRNA levels in the presence or absence of CQ, totally counteracted CQ-induced Chop gene expression, and partially reverted CQ-induced Grp78/Bip mRNA levels, while BP2 also partially inhibited Grp78/Bip mRNA induction by CQ. In conclusion, BPs, principally BP3, affect cellular adaptive responses related to autophagy, lysosomal biogenesis, and ER stress in pancreatic beta cells, indicating that BP exposure could lead to beta cell dysfunction.
Collapse
Affiliation(s)
- Florencia Szulak
- Laboratorio de Regulación Hipofisaria, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Luz Etcheverry Boneo
- Laboratorio de Regulación Hipofisaria, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Laboratorio de Regulación Hipofisaria, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Marina Olga Fernandez
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Eleonora Sorianello
- Laboratorio de Regulación Hipofisaria, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Xie B, Nguyen PM, Guček A, Thonig A, Barg S, Idevall-Hagren O. Plasma Membrane Phosphatidylinositol 4,5-Bisphosphate Regulates Ca(2+)-Influx and Insulin Secretion from Pancreatic β Cells. Cell Chem Biol 2017; 23:816-826. [PMID: 27447049 DOI: 10.1016/j.chembiol.2016.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Insulin secretion from pancreatic β cells is regulated by the blood glucose concentration and occurs through Ca(2+)-triggered exocytosis. The activities of multiple ion channels in the β cell plasma membrane are required to fine-tune insulin secretion in order to maintain normoglycemia. Phosphoinositide lipids in the plasma membrane often gate ion channels, and variations in the concentration of these lipids affect ion-channel open probability and conductance. Using light-regulated synthesis or depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2), we found that this lipid positively regulated both depolarization- and glucose-triggered Ca(2+) influx in a dose-dependent manner. Small reductions of PI(4,5)P2 caused by brief illumination resulted in partial suppression of Ca(2+) influx that followed the kinetics of the lipid, whereas depletion resulted in marked inhibition of both Ca(2+) influx and insulin secretion.
Collapse
Affiliation(s)
- Beichen Xie
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Husargatan 3, Box 571, 75123 Uppsala, Sweden
| | - Phuoc My Nguyen
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Husargatan 3, Box 571, 75123 Uppsala, Sweden
| | - Alenka Guček
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Husargatan 3, Box 571, 75123 Uppsala, Sweden
| | - Antje Thonig
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Husargatan 3, Box 571, 75123 Uppsala, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Husargatan 3, Box 571, 75123 Uppsala, Sweden
| | - Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Husargatan 3, Box 571, 75123 Uppsala, Sweden.
| |
Collapse
|
4
|
Abstract
Type 2 diabetes is a complex disease. It results from a failure of the body to maintain energy homoeostasis. Multicellular organisms have evolved complex strategies to preserve a relatively stable internal nutrient environment, despite fluctuations in external nutrient availability. This complex strategy involves the co-ordinated responses of multiple organs to promote storage or mobilization of energy sources according to the availability of nutrients and cellular bioenergetics needs. The endocrine pancreas plays a central role in these processes by secreting insulin and glucagon. When this co-ordinated effort fails, hyperglycaemia and hyperlipidaemia develops, characterizing a state of metabolic imbalance and ultimately overt diabetes. Although diabetes is most likely a collection of diseases, scientists are starting to identify genetic components and environmental triggers. Genome-wide association studies revealed that by and large, gene variants associated with type 2 diabetes are implicated in pancreatic β-cell function, suggesting that the β-cell may be the weakest link in the chain of events that results in diabetes. Thus, it is critical to understand how environmental cues affect the β-cell. Phosphoinositides are important 'decoders' of environmental cues. As such, these lipids have been implicated in cellular responses to a wide range of growth factors, hormones, stress agents, nutrients and metabolites. Here we will review some of the well-established and potential new roles for phosphoinositides in β-cell function/dysfunction and discuss how our knowledge of phosphoinositide signalling could aid in the identification of potential strategies for treating or preventing type 2 diabetes.
Collapse
Affiliation(s)
- Lucia E Rameh
- Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, U.S.A.
| | - Jude T Deeney
- Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, U.S.A
| |
Collapse
|
5
|
Arous C, Halban PA. The skeleton in the closet: actin cytoskeletal remodeling in β-cell function. Am J Physiol Endocrinol Metab 2015; 309:E611-20. [PMID: 26286869 DOI: 10.1152/ajpendo.00268.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/11/2015] [Indexed: 01/13/2023]
Abstract
Over the last few decades, biomedical research has considered not only the function of single cells but also the importance of the physical environment within a whole tissue, including cell-cell and cell-extracellular matrix interactions. Cytoskeleton organization and focal adhesions are crucial sensors for cells that enable them to rapidly communicate with the physical extracellular environment in response to extracellular stimuli, ensuring proper function and adaptation. The involvement of the microtubular-microfilamentous cytoskeleton in secretion mechanisms was proposed almost 50 years ago, since when the evolution of ever more sensitive and sophisticated methods in microscopy and in cell and molecular biology have led us to become aware of the importance of cytoskeleton remodeling for cell shape regulation and its crucial link with signaling pathways leading to β-cell function. Emerging evidence suggests that dysfunction of cytoskeletal components or extracellular matrix modification influences a number of disorders through potential actin cytoskeleton disruption that could be involved in the initiation of multiple cellular functions. Perturbation of β-cell actin cytoskeleton remodeling could arise secondarily to islet inflammation and fibrosis, possibly accounting in part for impaired β-cell function in type 2 diabetes. This review focuses on the role of actin remodeling in insulin secretion mechanisms and its close relationship with focal adhesions and myosin II.
Collapse
Affiliation(s)
- Caroline Arous
- Department of Genetic Medicine and Development, University of Geneva Medical Center, Geneva, Switzerland
| | - Philippe A Halban
- Department of Genetic Medicine and Development, University of Geneva Medical Center, Geneva, Switzerland
| |
Collapse
|
6
|
Fractalkine (CX3CL1), a new factor protecting β-cells against TNFα. Mol Metab 2014; 3:731-41. [PMID: 25353001 PMCID: PMC4209359 DOI: 10.1016/j.molmet.2014.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/10/2014] [Accepted: 07/16/2014] [Indexed: 01/04/2023] Open
Abstract
Objective We have previously shown the existence of a muscle–pancreas intercommunication axis in which CX3CL1 (fractalkine), a CX3C chemokine produced by skeletal muscle cells, could be implicated. It has recently been shown that the fractalkine system modulates murine β-cell function. However, the impact of CX3CL1 on human islet cells especially regarding a protective role against cytokine-induced apoptosis remains to be investigated. Methods Gene expression was determined using RNA sequencing in human islets, sorted β- and non-β-cells. Glucose-stimulated insulin secretion (GSIS) and glucagon secretion from human islets was measured following 24 h exposure to 1–50 ng/ml CX3CL1. GSIS and specific protein phosphorylation were measured in rat sorted β-cells exposed to CX3CL1 for 48 h alone or in the presence of TNFα (20 ng/ml). Rat and human β-cell apoptosis (TUNEL) and rat β-cell proliferation (BrdU incorporation) were assessed after 24 h treatment with increasing concentrations of CX3CL1. Results Both CX3CL1 and its receptor CX3CR1 are expressed in human islets. However, CX3CL1 is more expressed in non-β-cells than in β-cells while its receptor is more expressed in β-cells. CX3CL1 decreased human (but not rat) β-cell apoptosis. CX3CL1 inhibited human islet glucagon secretion stimulated by low glucose but did not impact human islet and rat sorted β-cell GSIS. However, CX3CL1 completely prevented the adverse effect of TNFα on GSIS and on molecular mechanisms involved in insulin granule trafficking by restoring the phosphorylation (Akt, AS160, paxillin) and expression (IRS2, ICAM-1, Sorcin, PCSK1) of key proteins involved in these processes. Conclusions We demonstrate for the first time that human islets express and secrete CX3CL1 and CX3CL1 impacts them by decreasing glucagon secretion without affecting insulin secretion. Moreover, CX3CL1 decreases basal apoptosis of human β-cells. We further demonstrate that CX3CL1 protects β-cells from the adverse effects of TNFα on their function by restoring the expression and phosphorylation of key proteins of the insulin secretion pathway.
Collapse
|
7
|
Abstract
The failure of pancreatic β‐cells to supply insulin in quantities sufficient to maintain euglycemia is a hallmark of type 2 diabetes. Perturbation of β‐cell cholesterol homeostasis, culminating in elevated intracellular cholesterol levels, impairs insulin secretion and has therefore been proposed as a mechanism contributing to β‐cell dysfunction. The manner in which this occurs, however, is unclear. Cholesterol is an essential lipid, as well as a major component of membrane rafts, and numerous proteins critical for the regulation of insulin secretion have been reported to associate with these domains. Although this suggests that alterations in membrane rafts could partially account for the reduction in insulin secretion observed when β‐cell cholesterol accumulates, this has not yet been demonstrated. In this review, we provide a brief overview of recent work implicating membrane rafts in some of the basic molecular mechanisms of insulin secretion, and discuss the insight it provides into the β‐cell dysfunction characteristic of type 2 diabetes. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2012.00200.x, 2012)
Collapse
Affiliation(s)
- Ronald Dirkx
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic "Carl Gustav Carus", Dresden University of Technology
| | - Michele Solimena
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic "Carl Gustav Carus", Dresden University of Technology ; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
8
|
Khatri N, Sagar A, Peddada N, Choudhary V, Chopra BS, Garg V, Garg R. Plasma gelsolin levels decrease in diabetic state and increase upon treatment with F-actin depolymerizing versions of gelsolin. J Diabetes Res 2014; 2014:152075. [PMID: 25478578 PMCID: PMC4247973 DOI: 10.1155/2014/152075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 11/17/2022] Open
Abstract
The study aims to map plasma gelsolin (pGSN) levels in diabetic humans and mice models of type II diabetes and to evaluate the efficacy of gelsolin therapy in improvement of diabetes in mice. We report that pGSN values decrease by a factor of 0.45 to 0.5 in the blood of type II diabetic humans and mice models. Oral glucose tolerance test in mice models showed that subcutaneous administration of recombinant pGSN and its F-actin depolymerizing competent versions brought down blood sugar levels comparable to Sitagliptin, a drug used to manage hyperglycemic condition. Further, daily dose of pGSN or its truncated versions to diabetic mice for a week kept sugar levels close to normal values. Also, diabetic mice treated with Sitagliptin for 7 days, showed increase in their pGSN values with the decrease in blood glucose as compared to their levels at the start of treatment. Gelsolin helped in improving glycemic control in diabetic mice. We propose that gelsolin level monitoring and replacement of F-actin severing capable gelsolin(s) should be considered in diabetic care.
Collapse
MESH Headings
- Actins/metabolism
- Adult
- Animals
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Case-Control Studies
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/diagnosis
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Diet, High-Fat
- Down-Regulation
- Female
- Gelsolin/blood
- Gelsolin/pharmacology
- Humans
- Hypoglycemic Agents/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Peptide Fragments/pharmacology
- Polymerization
- Pyrazines/pharmacology
- Recombinant Proteins/pharmacology
- Sitagliptin Phosphate
- Streptozocin
- Time Factors
- Triazoles/pharmacology
Collapse
Affiliation(s)
- Neeraj Khatri
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Amin Sagar
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Nagesh Peddada
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Vikas Choudhary
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | | | - Veena Garg
- Department of Bioscience and Biotechnology, Banasthali University, Rajasthan 304022, India
| | - Renu Garg
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
9
|
Chen PC, Kryukova YN, Shyng SL. Leptin regulates KATP channel trafficking in pancreatic β-cells by a signaling mechanism involving AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). J Biol Chem 2013; 288:34098-34109. [PMID: 24100028 DOI: 10.1074/jbc.m113.516880] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pancreatic β-cells secrete insulin in response to metabolic and hormonal signals to maintain glucose homeostasis. Insulin secretion is under the control of ATP-sensitive potassium (KATP) channels that play key roles in setting β-cell membrane potential. Leptin, a hormone secreted by adipocytes, inhibits insulin secretion by increasing KATP channel conductance in β-cells. We investigated the mechanism by which leptin increases KATP channel conductance. We show that leptin causes a transient increase in surface expression of KATP channels without affecting channel gating properties. This increase results primarily from increased channel trafficking to the plasma membrane rather than reduced endocytosis of surface channels. The effect of leptin on KATP channels is dependent on the protein kinases AMP-activated protein kinase (AMPK) and PKA. Activation of AMPK or PKA mimics and inhibition of AMPK or PKA abrogates the effect of leptin. Leptin activates AMPK directly by increasing AMPK phosphorylation at threonine 172. Activation of PKA leads to increased channel surface expression even in the presence of AMPK inhibitors, suggesting AMPK lies upstream of PKA in the leptin signaling pathway. Leptin signaling also leads to F-actin depolymerization. Stabilization of F-actin pharmacologically occludes, whereas destabilization of F-actin simulates, the effect of leptin on KATP channel trafficking, indicating that leptin-induced actin reorganization underlies enhanced channel trafficking to the plasma membrane. Our study uncovers the signaling and cellular mechanism by which leptin regulates KATP channel trafficking to modulate β-cell function and insulin secretion.
Collapse
Affiliation(s)
- Pei-Chun Chen
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Yelena N Kryukova
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239.
| |
Collapse
|
10
|
Abstract
The pancreatic islet β cell senses circulating levels of calorigenic nutrients to secrete insulin according to the needs of the organism. Altered insulin secretion is linked to various disorders such as diabetes, hypoglycemic states, and cardiometabolic diseases. Fuel stimuli, including glucose, free fatty acids, and amino acids, promote insulin granule exocytosis primarily via their metabolism in β cells and the production of key signaling metabolites. This paper reviews our current knowledge of the pathways involved in both positive and negative metabolic signaling for insulin secretion and assesses the role of established and candidate metabolic coupling factors, keeping recent developments in focus.
Collapse
Affiliation(s)
- Marc Prentki
- Molecular Nutrition Unit, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, QC, Canada.
| | | | | |
Collapse
|
11
|
Ferdaoussi M, Bergeron V, Zarrouki B, Kolic J, Cantley J, Fielitz J, Olson EN, Prentki M, Biden T, MacDonald PE, Poitout V. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 2012; 55:2682-2692. [PMID: 22820510 PMCID: PMC3543464 DOI: 10.1007/s00125-012-2650-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS Activation of the G protein-coupled receptor (GPR)40 by long-chain fatty acids potentiates glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells, and GPR40 agonists are in clinical development for type 2 diabetes therapy. GPR40 couples to the G protein subunit Gα(q/11) but the signalling cascade activated downstream is unknown. This study aimed to determine the mechanisms of GPR40-dependent potentiation of GSIS by fatty acids. METHODS Insulin secretion in response to glucose, oleate or diacylglycerol (DAG) was assessed in dynamic perifusions and static incubations in islets from wild-type (WT) and Gpr40 (-/-) mice. Depolymerisation of filamentous actin (F-actin) was visualised by phalloidin staining and epifluorescence. Pharmacological and molecular approaches were used to ascertain the roles of protein kinase D (PKD) and protein kinase C delta in GPR40-mediated potentiation of GSIS. RESULTS Oleate potentiates the second phase of GSIS, and this effect is largely dependent upon GPR40. Accordingly, oleate induces rapid F-actin remodelling in WT but not in Gpr40 (-/-) islets. Exogenous DAG potentiates GSIS in both WT and Gpr40 (-/-) islets. Oleate induces PKD phosphorylation at residues Ser-744/748 and Ser-916 in WT but not Gpr40 (-/-) islets. Importantly, oleate-induced F-actin depolymerisation and potentiation of GSIS are lost upon pharmacological inhibition of PKD1 or deletion of Prkd1. CONCLUSIONS/INTERPRETATION We conclude that the signalling cascade downstream of GPR40 activation by fatty acids involves activation of PKD1, F-actin depolymerisation and potentiation of second-phase insulin secretion. These results provide important information on the mechanisms of action of GPR40, a novel drug target for type 2 diabetes.
Collapse
Affiliation(s)
- M Ferdaoussi
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - V Bergeron
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - B Zarrouki
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - J Kolic
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - J Cantley
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | - J Fielitz
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Medical Department, Division of Cardiology, Charité University, Campus Virchow-Klinikum, Berlin, Germany
| | - E N Olson
- Departments of Molecular Biology, Internal Medicine, and Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Prentki
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal, QC, Canada
| | - T Biden
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | - P E MacDonald
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - V Poitout
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4.
- Department of Medicine, University of Montreal, Montreal, QC, Canada.
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
12
|
Legate KR, Montag D, Böttcher RT, Takahashi S, Fässler R. Comparative phenotypic analysis of the two major splice isoforms of phosphatidylinositol phosphate kinase type Iγ in vivo. J Cell Sci 2012; 125:5636-46. [PMID: 22976293 DOI: 10.1242/jcs.102145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Localized production of polyphosphoinositides is critical for their signaling function. To examine the biological relevance of specific pools of phosphatidylinositol 4,5-bisphosphate we compared the consequences of genetically ablating all isoforms of phosphatidylinositol phosphate (PIP) kinase type Iγ (PIPKIγ), encoded by the gene Pip5k1c, versus ablation of a specific splice isoform, PIPKIγ_i2, with respect to three reported PIPKIγ functions. Ablation of PIPKIγ_i2 caused a neuron-specific endocytosis defect similar to that found in PIPKIγ(-/-) mice, while agonist-induced calcium signaling was reduced in PIPKIγ(-/-) cells, but was not affected in the absence of PIPKIγ_i2. A reported contribution of PIPKIγ to epithelial integrity was not evident in PIPKIγ(-/-) mice. Given that mice lacking PIPKIγ_i2 live a normal lifespan whereas PIPKIγ(-/-) mice die shortly after birth, we propose that PIPKIγ-mediated metabotropic calcium signaling may represent an essential function of PIPKIγ, whereas functions specific to the PIPKIγ_i2 splice isoform are not essential for survival.
Collapse
Affiliation(s)
- Kyle R Legate
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, 82152 Germany
| | | | | | | | | |
Collapse
|
13
|
Wen PJ, Osborne SL, Meunier FA. Phosphoinositides in neuroexocytosis and neuronal diseases. Curr Top Microbiol Immunol 2012; 362:87-98. [PMID: 23086414 DOI: 10.1007/978-94-007-5025-8_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phosphoinositides (PIs) are a family of phospholipids derived from phosphatidylinositol (PtdIns), whose location, synthesis, and degradation depend on specific PI kinases and phosphatases. PIs have emerged as fundamental regulators of secretory processes, such as neurotransmitter release, hormone secretion, and histamine release in allergic responses. In neurons and neuroendocrine cells, regulated secretion requires the calcium-dependent fusion of transmitter-containing vesicles with the plasma membrane. The role played by PIs in exocytosis is best exemplified by the Ca²⁺-dependent binding of vesicular Synaptotagmin1 to the plasma membrane PtdIns(4,5)P₂, and the recently demonstrated role of PtdIns(4,5)P₂ in the mobilization of secretory vesicles to the plasma membrane. New evidence has also recently emerged of an alternative PI pathway that can control exocytosis positively (via PtdIn3P) or negatively (via PtdIns(3,5)P₂). However, the positive or negative effectors for these pathways remain to be established. Reducing PtdIns(3,5)P₂ potentiates neuroexocytosis but leads to neuronal degeneration and has been linked to certain forms of Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. The goal of this review is to describe the role of PIs in neuroexocytosis and explore the current hypotheses linking these effects to human diseases.
Collapse
Affiliation(s)
- Peter J Wen
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | |
Collapse
|
14
|
Zhang L, Mao YS, Janmey PA, Yin HL. Phosphatidylinositol 4, 5 bisphosphate and the actin cytoskeleton. Subcell Biochem 2012; 59:177-215. [PMID: 22374091 DOI: 10.1007/978-94-007-3015-1_6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Dynamic changes in PM PIP(2) have been implicated in the regulation of many processes that are dependent on actin polymerization and remodeling. PIP(2) is synthesized primarily by the type I phosphatidylinositol 4 phosphate 5 kinases (PIP5Ks), and there are three major isoforms, called a, b and g. There is emerging evidence that these PIP5Ks have unique as well as overlapping functions. This review will focus on the isoform-specific roles of individual PIP5K as they relate to the regulation of the actin cytoskeleton. We will review recent advances that establish PIP(2) as a critical regulator of actin polymerization and cytoskeleton/membrane linkages, and show how binding of cytoskeletal proteins to membrane PIP(2) might alter lateral or transverse movement of lipids to affect raft formation or lipid asymmetry. The mechanisms for specifying localized increase in PIP(2) to regulate dynamic actin remodeling will also be discussed.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, 75390-9040, Dallas, TX, USA
| | | | | | | |
Collapse
|
15
|
Kalwat MA, Wiseman DA, Luo W, Wang Z, Thurmond DC. Gelsolin associates with the N terminus of syntaxin 4 to regulate insulin granule exocytosis. Mol Endocrinol 2011; 26:128-41. [PMID: 22108804 DOI: 10.1210/me.2011-1112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The plasma membrane soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein syntaxin (Syn)4 is required for biphasic insulin secretion, although how it regulates each phase remains unclear. In a screen to identify new Syn4-interacting factors, the calcium-activated F-actin-severing protein gelsolin was revealed. Gelsolin has been previously implicated as a positive effector of insulin secretion, although a molecular mechanism to underlie this function is lacking. Toward this, our in vitro binding studies showed the Syn4-gelsolin interaction to be direct and mediated by the N-terminal Ha domain (amino acid residues 39-70) of Syn4. Syn4-gelsolin complexes formed under basal conditions and dissociated upon acute glucose or KCl stimulation; nifedipine blocked dissociation. The dissociating action of secretagogues could be mimicked by expression of the N-terminal Ha domain of Syn4 fused to green fluorescent protein (GFP) (GFP-39-70). Furthermore, GFP-39-70 expression in isolated mouse islet and clonal MIN6 β-cells initiated insulin release in the absence of appropriate stimuli. Consistent with this, the inhibitory GFP-39-70 peptide also initiated Syn4 activation in the absence of stimuli. Moreover, although MIN6 β-cells expressing the GFP-39-70 peptide maintained normal calcium influx in response to KCl, KCl-stimulated insulin secretion and the triggering pathway of insulin secretion were significantly impaired. Taken together, these data support a mechanistic model for gelsolin's role in insulin exocytosis: gelsolin clamps unsolicited soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE)-regulated exocytosis through direct association with Syn4 in the absence of appropriate stimuli, which is relieved upon stimulus-induced calcium influx to activate gelsolin and induce its dissociation from Syn4 to facilitate insulin exocytosis.
Collapse
Affiliation(s)
- Michael A Kalwat
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
16
|
Funakoshi Y, Hasegawa H, Kanaho Y. Regulation of PIP5K activity by Arf6 and its physiological significance. J Cell Physiol 2011; 226:888-95. [PMID: 20945365 DOI: 10.1002/jcp.22482] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The phospholipid kinase phosphatidylinositol 4-phosphate 5-kinase (PIP5K) catalyzes the phosphorylation of the membrane phospholipid phosphatidylinositol 4-phosphate to generate the pleiotropic phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2) ]. To date, three mammalian PIP5K isozymes, α, β, and γ, and several splicing variants of the γ isozyme have been identified. These PIP5K isozymes and PIP5Kγ variants play critical roles in various cellular functions through their product PI(4,5)P(2) . The small GTPase Arf6 is one of the key activators of PIP5K. Increasing evidence suggests that PIP5K functions as a downstream effector of Arf6 to regulate a wide variety of cellular functions, such as exocytosis, endocytosis, endosomal recycling, membrane ruffle formation, immune response, and bacterial invasion. In this review, we place our focus on the recent advances in Arf6/PIP5K signaling and its linkage to cellular functions.
Collapse
Affiliation(s)
- Yuji Funakoshi
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | |
Collapse
|
17
|
Lopez JP, Turner JR, Philipson LH. Glucose-induced ERM protein activation and translocation regulates insulin secretion. Am J Physiol Endocrinol Metab 2010; 299:E772-85. [PMID: 20739507 PMCID: PMC2980361 DOI: 10.1152/ajpendo.00199.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A key step in regulating insulin secretion is insulin granule trafficking to the plasma membrane. Using live-cell time-lapse confocal microscopy, we observed a dynamic association of insulin granules with filamentous actin and PIP2-enriched structures. We found that the scaffolding protein family ERM, comprising ezrin, radixin, and moesin, are expressed in β-cells and target both F-actin and PIP2. Furthermore, ERM proteins are activated via phosphorylation in a glucose- and calcium-dependent manner. This activation leads to a translocation of the ERM proteins to sites on the cell periphery enriched in insulin granules, the exocyst complex docking protein Exo70, and lipid rafts. ERM scaffolding proteins also participate in insulin granule trafficking and docking to the plasma membrane. Overexpression of a truncated dominant-negative ezrin construct that lacks the ERM F-actin binding domain leads to a reduction in insulin granules near the plasma membrane and impaired secretion. Conversely, overexpression of a constitutively active ezrin results in more granules near the cell periphery and an enhancement of insulin secretion. Diabetic mouse islets contain less active ERM, suggestive of a novel mechanism whereby impairment of insulin granule trafficking to the membrane through a complex containing F-actin, PIP2, Exo70, and ERM proteins contributes to defective insulin secretion.
Collapse
Affiliation(s)
- James P Lopez
- Dept. of Medicine, The Univ. of Chicago, IL 60637, USA
| | | | | |
Collapse
|