1
|
Brewis HT, Wang AY, Gaub A, Lau JJ, Stirling PC, Kobor MS. What makes a histone variant a variant: Changing H2A to become H2A.Z. PLoS Genet 2021; 17:e1009950. [PMID: 34871303 PMCID: PMC8675926 DOI: 10.1371/journal.pgen.1009950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/16/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Chromatin structure and underlying DNA accessibility is modulated by the incorporation of histone variants. H2A.Z, a variant of the H2A core histone family, plays a distinct and essential role in a diverse set of biological functions including gene regulation and maintenance of heterochromatin-euchromatin boundaries. Although it is currently unclear how the replacement of H2A with H2A.Z can regulate gene expression, the variance in their amino acid sequence likely contributes to their functional differences. To tease apart regions of H2A.Z that confer its unique identity, a set of plasmids expressing H2A-H2A.Z hybrids from the native H2A.Z promoter were examined for their ability to recapitulate H2A.Z function. First, we found that the H2A.Z M6 region was necessary and sufficient for interaction with the SWR1-C chromatin remodeler. Remarkably, the combination of only 9 amino acid changes, the H2A.Z M6 region, K79 and L81 (two amino acids in the α2-helix), were sufficient to fully rescue growth phenotypes of the htz1Δ mutant. Furthermore, combining three unique H2A.Z regions (K79 and L81, M6, C-terminal tail) was sufficient for expression of H2A.Z-dependent heterochromatin-proximal genes and GAL1 derepression. Surprisingly, hybrid constructs that restored the transcription of H2A.Z-dependent genes, did not fully recapitulate patterns of H2A.Z-specific enrichment at the tested loci. This suggested that H2A.Z function in transcription regulation may be at least partially independent of its specific localization in chromatin. Together, this work has identified three regions that can confer specific H2A.Z-identity to replicative H2A, furthering our understanding of what makes a histone variant a variant.
Collapse
Affiliation(s)
- Hilary T. Brewis
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Alice Y. Wang
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Aline Gaub
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Justine J. Lau
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Peter C. Stirling
- Terry Fox Laboratory, BC Cancer, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Du K, Luo Q, Yin L, Wu J, Liu Y, Gan J, Dong A, Shen WH. OsChz1 acts as a histone chaperone in modulating chromatin organization and genome function in rice. Nat Commun 2020; 11:5717. [PMID: 33177521 PMCID: PMC7658359 DOI: 10.1038/s41467-020-19586-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
While the yeast Chz1 acts as a specific histone-chaperone for H2A.Z, functions of CHZ-domain proteins in multicellular eukaryotes remain obscure. Here, we report on the functional characterization of OsChz1, a sole CHZ-domain protein identified in rice. OsChz1 interacts with both the canonical H2A-H2B dimer and the variant H2A.Z-H2B dimer. Within crystal structure the C-terminal region of OsChz1 binds H2A-H2B via an acidic region, pointing to a previously unknown recognition mechanism. Knockout of OsChz1 leads to multiple plant developmental defects. At genome-wide level, loss of OsChz1 causes mis-regulations of thousands of genes and broad alterations of nucleosome occupancy as well as reductions of H2A.Z-enrichment. While OsChz1 associates with chromatin regions enriched of repressive histone marks (H3K27me3 and H3K4me2), its loss does not affect the genome landscape of DNA methylation. Taken together, it is emerging that OsChz1 functions as an important H2A/H2A.Z-H2B chaperone in dynamic regulation of chromatin for higher eukaryote development. Function of CHZ-domain proteins in multicellular eukaryotes remains unclear. Here, the authors characterize the sole CHZ-domain protein identified in rice and show that it functions as an H2A/H2A.Z-H2B chaperone in dynamic regulation of chromatin organization and genome function.
Collapse
Affiliation(s)
- Kangxi Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qiang Luo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiabing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jianhua Gan
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, Cédex, France.
| |
Collapse
|
3
|
Ashraf K, Nabeel-Shah S, Garg J, Saettone A, Derynck J, Gingras AC, Lambert JP, Pearlman RE, Fillingham J. Proteomic Analysis of Histones H2A/H2B and Variant Hv1 in Tetrahymena thermophila Reveals an Ancient Network of Chaperones. Mol Biol Evol 2019; 36:1037-1055. [PMID: 30796450 PMCID: PMC6502085 DOI: 10.1093/molbev/msz039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epigenetic information, which can be passed on independently of the DNA sequence, is stored in part in the form of histone posttranslational modifications and specific histone variants. Although complexes necessary for deposition have been identified for canonical and variant histones, information regarding the chromatin assembly pathways outside of the Opisthokonts remains limited. Tetrahymena thermophila, a ciliated protozoan, is particularly suitable to study and unravel the chromatin regulatory layers due to its unique physical separation of chromatin states in the form of two distinct nuclei present within the same cell. Using a functional proteomics pipeline, we carried out affinity purification followed by mass spectrometry of endogenously tagged T. thermophila histones H2A, H2B and variant Hv1.We identified a set of interacting proteins shared among the three analyzed histones that includes the FACT-complex, as well as H2A- or Hv1-specific chaperones. We find that putative subunits of T. thermophila versions of SWR- and INO80-complexes, as well as transcription-related histone chaperone Spt6Tt specifically copurify with Hv1. We also identified importin β6 and the T. thermophila ortholog of nucleoplasmin 1 (cNpl1Tt) as H2A–H2B interacting partners. Our results further implicate Poly [ADP-ribose] polymerases in histone metabolism. Molecular evolutionary analysis, reciprocal affinity purification coupled to mass spectrometry experiments, and indirect immunofluorescence studies using endogenously tagged Spt16Tt (FACT-complex subunit), cNpl1Tt, and PARP6Tt underscore the validity of our approach and offer mechanistic insights. Our results reveal a highly conserved regulatory network for H2A (Hv1)–H2B concerning their nuclear import and assembly into chromatin.
Collapse
Affiliation(s)
- Kanwal Ashraf
- Department of Biology, York University, Toronto, ON, Canada
| | - Syed Nabeel-Shah
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jyoti Garg
- Department of Biology, York University, Toronto, ON, Canada
| | - Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Joanna Derynck
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Québec, QC, Canada.,CHU de Québec Research Center, CHUL, Québec, QC, Canada
| | | | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
4
|
Wang Y, Liu S, Sun L, Xu N, Shan S, Wu F, Liang X, Huang Y, Luk E, Wu C, Zhou Z. Structural insights into histone chaperone Chz1-mediated H2A.Z recognition and histone replacement. PLoS Biol 2019; 17:e3000277. [PMID: 31107867 PMCID: PMC6544321 DOI: 10.1371/journal.pbio.3000277] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/31/2019] [Accepted: 05/03/2019] [Indexed: 12/03/2022] Open
Abstract
Chz1 is a specific chaperone for the histone variant H2A.Z in budding yeast. The ternary complex formed by Chz1 and H2A.Z-H2B dimer is the major in vivo substrate of Swi2/snif2-related 1 (SWR1), the ATP-dependent chromatin remodeling enzyme that deposits H2A.Z into chromatin. However, the structural basis for the binding preference of Chz1 for H2A.Z over H2A and the mechanism by which Chz1 modulates the histone replacement remain elusive. Here, we show that Chz1 utilizes 2 distinct structural domains to engage the H2A.Z-H2B dimer for optimal and specific recognition of H2A.Z. The middle region of Chz1 (Chz1-M) directly interacts with 2 highly conserved H2A.Z-specific residues (Gly98 and Ala57) and dictates a modest preference for H2A.Z-H2B. In addition, structural and biochemical analysis show that the C-terminal region of Chz1 (Chz1-C) harbors a conserved DEF/Y motif, which reflects the consecutive D/E residues followed by a single aromatic residue, to engage an arginine finger and a hydrophobic pocket in H2A.Z-H2B, enhancing the binding preference for H2A.Z-H2B. Furthermore, Chz1 facilitates SWR1-mediated H2A.Z deposition by alleviating inhibition caused by aggregation of excess free histones, providing insights into how Chz1 controls the bioavailability of H2A.Z to assist SWR1 in promoter-specific installation of a histone mark. Our study elucidates a novel H2A.Z-recognition mechanism and uncovers a molecular rationale for binding of free histone by specialized histone chaperones in vivo. The variant histone H2A.Z is essential for the viability of metazoans. The structure of H2A.Z-H2B histone dimer in complex with the chaperone Chz1 reveals the basis of Chz1’s specificity for recognising H2A.Z. In vitro studies show that Chz1 facilitates H2A.Z deposition by relieving the inhibitory effects of excess free histone dimers.
Collapse
Affiliation(s)
- Yunyun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Liu
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Lu Sun
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Ning Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shan Shan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fei Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoping Liang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingzi Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Zheng Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
5
|
Li S, Dong Z, Yang S, Feng J, Li Q. Chaperoning RPA during DNA metabolism. Curr Genet 2019; 65:857-864. [PMID: 30796471 DOI: 10.1007/s00294-019-00945-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/17/2022]
Abstract
Single-stranded DNA (ssDNA) is widely generated during DNA metabolisms including DNA replication, repair and recombination and is susceptible to digestion by nucleases and secondary structure formation. It is vital for DNA metabolism and genome stability that ssDNA is protected and stabilized, which are performed by the major ssDNA-binding protein, and replication protein A (RPA) in these processes. In addition, RPA-coated ssDNA also serves as a protein-protein-binding platform for coordinating multiple events during DNA metabolisms. However, little is known about whether and how the formation of RPA-ssDNA platform is regulated. Here we highlight our recent study of a novel RPA-binding protein, Regulator of Ty1 transposition 105 (Rtt105) in Saccharomyces cerevisiae, which regulates the RPA-ssDNA platform assembly at replication forks. We propose that Rtt105 functions as an "RPA chaperone" during DNA replication, likely also promoting the assembly of RPA-ssDNA platform in other processes in which RPA plays a critical role.
Collapse
Affiliation(s)
- Shuqi Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Laboratory of Host-Pathogen Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Ziqi Dong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Shuangshuang Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Li S, Xu Z, Xu J, Zuo L, Yu C, Zheng P, Gan H, Wang X, Li L, Sharma S, Chabes A, Li D, Wang S, Zheng S, Li J, Chen X, Sun Y, Xu D, Han J, Chan K, Qi Z, Feng J, Li Q. Rtt105 functions as a chaperone for replication protein A to preserve genome stability. EMBO J 2018; 37:embj.201899154. [PMID: 30065069 DOI: 10.15252/embj.201899154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
Generation of single-stranded DNA (ssDNA) is required for the template strand formation during DNA replication. Replication Protein A (RPA) is an ssDNA-binding protein essential for protecting ssDNA at replication forks in eukaryotic cells. While significant progress has been made in characterizing the role of the RPA-ssDNA complex, how RPA is loaded at replication forks remains poorly explored. Here, we show that the Saccharomyces cerevisiae protein regulator of Ty1 transposition 105 (Rtt105) binds RPA and helps load it at replication forks. Cells lacking Rtt105 exhibit a dramatic reduction in RPA loading at replication forks, compromised DNA synthesis under replication stress, and increased genome instability. Mechanistically, we show that Rtt105 mediates the RPA-importin interaction and also promotes RPA binding to ssDNA directly in vitro, but is not present in the final RPA-ssDNA complex. Single-molecule studies reveal that Rtt105 affects the binding mode of RPA to ssDNA These results support a model in which Rtt105 functions as an RPA chaperone that escorts RPA to the nucleus and facilitates its loading onto ssDNA at replication forks.
Collapse
Affiliation(s)
- Shuqi Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhiyun Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jiawei Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Linyu Zuo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chuanhe Yu
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Pu Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Haiyun Gan
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Xuezheng Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Longtu Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sushma Sharma
- Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Di Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sheng Wang
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Sihao Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Jinbao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Junhong Han
- Division of Abdominal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and National Collaborative Center for Biotherapy, Chengdu, China
| | - Kuiming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhi Qi
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jianxun Feng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China .,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Qing Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China .,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Dronamraju R, Ramachandran S, Jha DK, Adams AT, DiFiore JV, Parra MA, Dokholyan NV, Strahl BD. Redundant Functions for Nap1 and Chz1 in H2A.Z Deposition. Sci Rep 2017; 7:10791. [PMID: 28883625 PMCID: PMC5589762 DOI: 10.1038/s41598-017-11003-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/17/2017] [Indexed: 11/22/2022] Open
Abstract
H2A.Z is a histone H2A variant that contributes to transcriptional regulation, DNA damage response and limits heterochromatin spreading. In Saccharomyces cerevisiae, H2A.Z is deposited by the SWR-C complex, which relies on several histone chaperones including Nap1 and Chz1 to deliver H2A.Z-H2B dimers to SWR-C. However, the mechanisms by which Nap1 and Chz1 cooperate to bind H2A.Z and their contribution to H2A.Z deposition in chromatin is not well understood. Using structural modeling and molecular dynamics simulations, we identify a series of H2A.Z residues that form a chaperone-specific binding surface. Mutation of these residues revealed different surface requirements for Nap1 and Chz1 interaction with H2A.Z. Consistent with this result, we found that loss of Nap1 or Chz1 individually resulted in mild defects in H2A.Z deposition, but that deletion of both Nap1 and Chz1 resulted in a significant reduction of H2A.Z deposition at promoters and led to heterochromatin spreading. Together, our findings reveal unique H2A.Z surface dependences for Nap1 and Chz1 and a redundant role for these chaperones in H2A.Z deposition.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Deepak K Jha
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Division of Hematology/Oncology, Department of Medicine, Children's Hospital Boston, Boston, MA, USA
| | - Alexander T Adams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Julia V DiFiore
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael A Parra
- Department Susquehanna University, Selinsgrove, PA, 17870, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
8
|
Liu C, Wang T, Bai Y, Wang J. Electrostatic forces govern the binding mechanism of intrinsically disordered histone chaperones. PLoS One 2017; 12:e0178405. [PMID: 28552960 PMCID: PMC5446181 DOI: 10.1371/journal.pone.0178405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/14/2017] [Indexed: 11/18/2022] Open
Abstract
A unified picture to understand the protein recognition and function must include the native binding complex structure ensembles and the underlying binding mechanisms involved in specific biological processes. However, quantifications of both binding complex structures and dynamical mechanisms are still challenging for IDP. In this study, we have investigated the underlying molecular mechanism of the chaperone Chz1 and histone H2A.Z-H2B association by equilibrium and kinetic stopped-flow fluorescence spectroscopy. The dependence of free energy and kinetic rate constant on electrolyte mean activity coefficient and urea concentration are uncovered. Our results indicate a previous unseen binding kinetic intermediate. An initial conformation selection step of Chz1 is also revealed before the formation of this intermediate state. Based on these observations, a mixed mechanism of three steps including both conformation selection and induced fit is proposed. By combination of the ion- and denaturant-induced experiments, we demonstrate that electrostatic forces play a dominant role in the recognition of bipolar charged intrinsically disordered protein Chz1 to its preferred partner H2A.Z-H2B. Both the intra-chain and inter-chain electrostatic interactions have direct impacts on the native collapsed structure and binding mechanism.
Collapse
Affiliation(s)
- Chuanbo Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P.R. China, 130022
- University of Chinese Academy of Sciences, Beijing, P.R. China, 130022
| | - Tianshu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P.R. China, 130022
- College of Physics, Jilin University, Chuangchun, Jilin, P. R. China, 130012
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 20892
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P.R. China, 130022
- College of Physics, Jilin University, Chuangchun, Jilin, P. R. China, 130012
- Department of Chemistry and Physics, State University of New York, Stony Brook, New York, United States of America, 11794-3400
- * E-mail:
| |
Collapse
|
9
|
Hammond CM, Strømme CB, Huang H, Patel DJ, Groth A. Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol 2017; 18:141-158. [PMID: 28053344 DOI: 10.1038/nrm.2016.159] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.
Collapse
Affiliation(s)
- Colin M Hammond
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Caroline B Strømme
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
10
|
Mattiroli F, D'Arcy S, Luger K. The right place at the right time: chaperoning core histone variants. EMBO Rep 2015; 16:1454-66. [PMID: 26459557 DOI: 10.15252/embr.201540840] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022] Open
Abstract
Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics.
Collapse
Affiliation(s)
- Francesca Mattiroli
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| | - Sheena D'Arcy
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| | - Karolin Luger
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
11
|
Abstract
Histone variant Htz1 substitution for H2A plays important roles in diverse DNA transactions. Histone chaperones Chz1 and Nap1 (nucleosome assembly protein 1) are important for the deposition Htz1 into nucleosomes. In literatures, it was suggested that Chz1 is a Htz1–H2B-specific chaperone, and it is relatively unstructured in solution but it becomes structured in complex with the Htz1–H2B histone dimer. Nap1 (nucleosome assembly protein 1) can bind (H3–H4)2 tetramers, H2A–H2B dimers and Htz1–H2B dimers. Nap1 can bind H2A–H2B dimer in the cytoplasm and shuttles the dimer into the nucleus. Moreover, Nap1 functions in nucleosome assembly by competitively interacting with non-nucleosomal histone–DNA. However, the exact roles of these chaperones in assembling Htz1-containing nucleosome remain largely unknown. In this paper, we revealed that Chz1 does not show a physical interaction with chromatin. In contrast, Nap1 binds exactly at the genomic DNA that contains Htz1. Nap1 and Htz1 show a preferential interaction with AG-rich DNA sequences. Deletion of chz1 results in a significantly decreased binding of Htz1 in chromatin, whereas deletion of nap1 dramatically increases the association of Htz1 with chromatin. Furthermore, genome-wide nucleosome-mapping analysis revealed that nucleosome occupancy for Htz1p-bound genes decreases upon deleting htz1 or chz1, suggesting that Htz1 is required for nucleosome structure at the specific genome loci. All together, these results define the distinct roles for histone chaperones Chz1 and Nap1 to regulate Htz1 incorporation into chromatin.
Collapse
|
12
|
Histone chaperones Nap1 and Vps75 regulate histone acetylation during transcription elongation. Mol Cell Biol 2013; 33:1645-56. [PMID: 23401858 DOI: 10.1128/mcb.01121-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone chaperones function in chromatin assembly and disassembly, suggesting they have important regulatory roles in transcription elongation. The Saccharomyces cerevisiae proteins Nap1 and Vps75 are structurally related, evolutionarily conserved histone chaperones. We showed that Nap1 genetically interacts with several transcription elongation factors and that both Nap1 and Vps75 interact with the RNA polymerase II kinase, CTK1. Loss of NAP1 or VPS75 suppressed cryptic transcription within the open reading frame (ORF) observed when strains are deleted for the kinase CTK1. Loss of the histone acetyltransferase Rtt109 also suppressed ctk1-dependent cryptic transcription. Vps75 regulates Rtt109 function, suggesting that they function together in this process. Histone H3 K9 was found to be the important lysine that is acetylated by Rtt109 during ctk1-dependent cryptic transcription. We showed that both Vps75 and Nap1 regulate the relative level of H3 K9 acetylation in the STE11 ORF. This supports a model in which Nap1, like Vps75, directly regulates Rtt109 activity or regulates the assembly of acetylated chromatin. Although Nap1 and Vps75 share many similarities, due to their distinct interactions with SET2, Nap1 and Vps75 may also play separate roles during transcription elongation. This work sheds further light on the importance of histone chaperones as general regulators of transcription elongation.
Collapse
|
13
|
Burgess RJ, Zhang Z. Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 2013; 20:14-22. [PMID: 23288364 PMCID: PMC4004355 DOI: 10.1038/nsmb.2461] [Citation(s) in RCA: 283] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/30/2012] [Indexed: 12/22/2022]
Abstract
Nucleosome assembly following DNA replication, DNA repair and gene transcription is critical for the maintenance of genome stability and epigenetic information. Nucleosomes are assembled by replication-coupled or replication-independent pathways with the aid of histone chaperone proteins. How these different nucleosome assembly pathways are regulated remains relatively unclear. Recent studies have provided insight into the mechanisms and the roles of histone chaperones in regulating nucleosome assembly. Alterations or mutations in factors involved in nucleosome assembly have also been implicated in cancer and other human diseases. This review highlights the recent progress and outlines future challenges in the field.
Collapse
Affiliation(s)
- Rebecca J Burgess
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | |
Collapse
|
14
|
A combination of H2A.Z and H4 acetylation recruits Brd2 to chromatin during transcriptional activation. PLoS Genet 2012; 8:e1003047. [PMID: 23144632 PMCID: PMC3493454 DOI: 10.1371/journal.pgen.1003047] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
H2A.Z is an essential histone variant that has been implicated to have multiple chromosomal functions. To understand how H2A.Z participates in such diverse activities, we sought to identify downstream effector proteins that are recruited to chromatin via H2A.Z. For this purpose, we developed a nucleosome purification method to isolate H2A.Z-containing nucleosomes from human cells and used mass spectrometry to identify the co-purified nuclear proteins. Through stringent filtering, we identified the top 21 candidates, many of which have conserved structural motifs that bind post-translationally modified histones. We further validated the biological significance of one such candidate, Brd2, which is a double-bromodomain-containing protein known to function in transcriptional activation. We found that Brd2's preference for H2A.Z nucleosomes is mediated through a combination of hyperacetylated H4 on these nucleosomes, as well as additional features on H2A.Z itself. In addition, comparison of nucleosomes containing either H2A.Z-1 or H2A.Z-2 isoforms showed that significantly more Brd2 co-purifies with the former, suggesting these two isoforms engage different downstream effector proteins. Consistent with these biochemical analyses, we found that Brd2 is recruited to AR–regulated genes in an H2A.Z-dependent manner and that chemical inhibition of Brd2 recruitment greatly inhibits AR–regulated gene expression. Taken together, we propose that Brd2 is a key downstream mediator that links H2A.Z and transcriptional activation of AR–regulated genes. Moreover, this study validates the approach of using proteomics to identify nucleosome-interacting proteins in order to elucidate downstream mechanistic functions associated with the histone variant H2A.Z. Within the cell's nucleus, DNA closely associates with histone proteins, forming a structure known as chromatin. Packaging DNA into chromatin allows for efficient storage of the genome, and it also provides an additional means of regulating processes, such as gene expression, that require access to DNA. Two copies each of the four core histones (H2A, H2B, H3, H4) associate with approximately 150 base pairs of DNA to make up the basic unit of chromatin, the nucleosome. In addition to the core histones, variants exist that have specialized functions within chromatin. One such variant is H2A.Z, which is essential for cell viability. Here, we describe an approach by which to characterize proteins that interact with H2A.Z-containing nucleosomes. Our findings reveal that many of the identified proteins may interact with H2A.Z nucleosomes by recognizing specific chemical modifications uniquely present on H2A.Z nucleosomes. One such protein, Brd2, interacted in a manner dependent on recognition of acetylated histone residues that are enriched on H2A.Z nucleosomes. Furthermore, this interaction is required for expression of hormone-responsive genes in prostate cancer cells. By this approach, we uncovered a key mediator linking H2A.Z to transcriptional regulation and found a potentially targetable step to regulate prostate cell proliferation.
Collapse
|
15
|
Keck KM, Pemberton LF. Histone chaperones link histone nuclear import and chromatin assembly. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:277-89. [PMID: 22015777 PMCID: PMC3272145 DOI: 10.1016/j.bbagrm.2011.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/08/2011] [Accepted: 09/12/2011] [Indexed: 12/12/2022]
Abstract
Histone chaperones are proteins that shield histones from nonspecific interactions until they are assembled into chromatin. After their synthesis in the cytoplasm, histones are bound by different histone chaperones, subjected to a series of posttranslational modifications and imported into the nucleus. These evolutionarily conserved modifications, including acetylation and methylation, can occur in the cytoplasm, but their role in regulating import is not well understood. As part of histone import complexes, histone chaperones may serve to protect the histones during transport, or they may be using histones to promote their own nuclear localization. In addition, there is evidence that histone chaperones can play an active role in the import of histones. Histone chaperones have also been shown to regulate the localization of important chromatin modifying enzymes. This review is focused on the role histone chaperones play in the early biogenesis of histones, the distinct cytoplasmic subcomplexes in which histone chaperones have been found in both yeast and mammalian cells and the importins/karyopherins and nuclear localization signals that mediate the nuclear import of histones. We also address the role that histone chaperone localization plays in human disease. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.
Collapse
Affiliation(s)
- Kristin M. Keck
- Center for Cell Signaling, Department of Microbiology, Immunology and Cancer Biology University of Virginia, Charlottesville, VA 22908, USA
| | - Lucy F. Pemberton
- Center for Cell Signaling, Department of Microbiology, Immunology and Cancer Biology University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
16
|
Piatti P, Zeilner A, Lusser A. ATP-dependent chromatin remodeling factors and their roles in affecting nucleosome fiber composition. Int J Mol Sci 2011; 12:6544-65. [PMID: 22072904 PMCID: PMC3210995 DOI: 10.3390/ijms12106544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/20/2011] [Accepted: 09/28/2011] [Indexed: 01/03/2023] Open
Abstract
ATP-dependent chromatin remodeling factors of the SNF2 family are key components of the cellular machineries that shape and regulate chromatin structure and function. Members of this group of proteins have broad and heterogeneous functions ranging from controlling gene activity, facilitating DNA damage repair, promoting homologous recombination to maintaining genomic stability. Several chromatin remodeling factors are critical components of nucleosome assembly processes, and recent reports have identified specific functions of distinct chromatin remodeling factors in the assembly of variant histones into chromatin. In this review we will discuss the specific roles of ATP-dependent chromatin remodeling factors in determining nucleosome composition and, thus, chromatin fiber properties.
Collapse
Affiliation(s)
- Paolo Piatti
- Division of Molecular Biology, Innsbruck Medical University, Biocenter, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria; E-Mails: (P.P.); (A.Z.)
| | | | | |
Collapse
|
17
|
Knijnenburg TA, Roda O, Wan Y, Nolan GP, Aitchison JD, Shmulevich I. A regression model approach to enable cell morphology correction in high-throughput flow cytometry. Mol Syst Biol 2011; 7:531. [PMID: 21952134 PMCID: PMC3202802 DOI: 10.1038/msb.2011.64] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/25/2011] [Indexed: 11/09/2022] Open
Abstract
Cells exposed to stimuli exhibit a wide range of responses ensuring phenotypic variability across the population. Such single cell behavior is often examined by flow cytometry; however, gating procedures typically employed to select a small subpopulation of cells with similar morphological characteristics make it difficult, even impossible, to quantitatively compare cells across a large variety of experimental conditions because these conditions can lead to profound morphological variations. To overcome these limitations, we developed a regression approach to correct for variability in fluorescence intensity due to differences in cell size and granularity without discarding any of the cells, which gating ipso facto does. This approach enables quantitative studies of cellular heterogeneity and transcriptional noise in high-throughput experiments involving thousands of samples. We used this approach to analyze a library of yeast knockout strains and reveal genes required for the population to establish a bimodal response to oleic acid induction. We identify a group of epigenetic regulators and nucleoporins that, by maintaining an 'unresponsive population,' may provide the population with the advantage of diversified bet hedging.
Collapse
Affiliation(s)
- Theo A Knijnenburg
- Institute for Systems Biology, 401 Terry Avenue North, 1441 North 34th Street, Seattle, WA 98109-5234, USA
| | | | | | | | | | | |
Collapse
|
18
|
Keck KM, Pemberton LF. Interaction with the histone chaperone Vps75 promotes nuclear localization and HAT activity of Rtt109 in vivo. Traffic 2011; 12:826-39. [PMID: 21463458 DOI: 10.1111/j.1600-0854.2011.01202.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Modification of histones is critical for the regulation of all chromatin-templated processes. Yeast Rtt109 is a histone acetyltransferase (HAT) that acetylates H3 lysines 9, 27 and 56. Rtt109 associates with and is stabilized by Nap1 family histone chaperone Vps75. Our data suggest Vps75 and Nap1 have some overlapping functions despite their different cellular localization and histone binding specificity. We determined that Vps75 contains a classical nuclear localization signal and is imported by Kap60-Kap95. Rtt109 nuclear localization depends on Vps75, and nuclear localization of the Vps75-Rtt109 complex is not critical for Rtt109-dependent functions, suggesting Rtt109 may be able to acetylate nascent histones before nuclear import. To date, the effects of VPS75 deletion on Rtt109 function had not been separated from the resulting Rtt109 degradation; thus, we used an Rtt109 mutant lacking the Vps75-interaction domain that is stable without Vps75. Our data show that in addition to promoting Rtt109 stability, Vps75 binding is necessary for Rtt109 acetylation of the H3 tail. Direct interaction of Vps75 with H3 likely allows Rtt109 access to the histone tail. Furthermore, our genetic interaction data support the idea of Rtt109-independent functions of Vps75. In summary, our data suggest that Vps75 influences chromatin structure by regulating histone modification and through its histone chaperone functions.
Collapse
Affiliation(s)
- Kristin M Keck
- Department of Microbiology, Center for Cell Signaling, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | |
Collapse
|
19
|
Gardner JM, Smoyer CJ, Stensrud ES, Alexander R, Gogol M, Wiegraebe W, Jaspersen SL. Targeting of the SUN protein Mps3 to the inner nuclear membrane by the histone variant H2A.Z. ACTA ACUST UNITED AC 2011; 193:489-507. [PMID: 21518795 PMCID: PMC3087001 DOI: 10.1083/jcb.201011017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Binding of histone H2A.Z to the SUN family member Mps3 is chromatin independent. Understanding the relationship between chromatin and proteins at the nuclear periphery, such as the conserved SUN family of inner nuclear membrane (INM) proteins, is necessary to elucidate how three-dimensional nuclear architecture is established and maintained. We found that the budding yeast SUN protein Mps3 directly binds to the histone variant H2A.Z but not other histones. Biochemical and genetic data indicate that the interaction between Mps3 and H2A.Z requires the Mps3 N-terminal acidic domain and unique sequences in the H2A.Z N terminus and histone-fold domain. Analysis of binding-defective mutants showed that the Mps3–H2A.Z interaction is not essential for any previously described role for either protein in nuclear organization, and multiple lines of evidence suggest that Mps3–H2A.Z binding occurs independently of H2A.Z incorporation into chromatin. We demonstrate that H2A.Z is required to target a soluble Mps3 fragment to the nucleus and to localize full-length Mps3 in the INM, indicating that H2A.Z has a novel chromatin-independent function in INM targeting of SUN proteins.
Collapse
|
20
|
Abstract
Background Nucleosome, the fundamental unit of chromatin, is formed by wrapping nearly 147bp of DNA around an octamer of histone proteins. This histone core has many variants that are different from each other by their biochemical compositions as well as biological functions. Although the deposition of histone variants onto chromatin has been implicated in many important biological processes, such as transcription and replication, the mechanisms of how they are deposited on target sites are still obscure. Results By analyzing genomic sequences of nucleosomes bearing different histone variants from human, including H2A.Z, H3.3 and both (H3.3/H2A.Z, so-called double variant histones), we found that genomic sequence contributes in part to determining target sites for different histone variants. Moreover, dinucleotides CA/TG are remarkably important in distinguishing target sites of H2A.Z-only nucleosomes with those of H3.3-containing (both H3.3-only and double variant) nucleosomes. Conclusions There exists a DNA-related mechanism regulating the deposition of different histone variants onto chromatin and biological outcomes thereof. This provides additional insights into epigenetic regulatory mechanisms of many important cellular processes.
Collapse
Affiliation(s)
- Ngoc Tu Le
- School of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan.
| | | | | |
Collapse
|
21
|
Mehta M, Braberg H, Wang S, Lozsa A, Shales M, Solache A, Krogan NJ, Keogh MC. Individual lysine acetylations on the N terminus of Saccharomyces cerevisiae H2A.Z are highly but not differentially regulated. J Biol Chem 2010; 285:39855-65. [PMID: 20952395 DOI: 10.1074/jbc.m110.185967] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The multi-functional histone variant Htz1 (Saccharomyces cerevisiae H2A.Z) is acetylated on up to four N-terminal lysines at positions 3, 8, 10, and 14. It has thus been posited that specific acetylated forms of the histone could regulate distinct roles. Antibodies against Htz1-K8(Ac), -K10(Ac), and -K14(Ac) show that all three modifications are added by Esa1 acetyltransferase and removed by Hda1 deacetylase. Completely unacetylatable htz1 alleles exhibit widespread interactions in genome scale genetic screening. However, singly mutated (e.g. htz1-K8R) or singly acetylable (e.g. the triple mutant htz1-K3R/K10R/K14R) alleles show no significant defects in these analyses. This suggests that the N-terminal acetylations on Htz1 are internally redundant. Further supporting this proposal, each acetylation decays with similar kinetics when Htz1 transcription is repressed, and proteomic screening did not find a single condition in which one Htz1(Ac) was differentially regulated. However, whereas the individual acetylations on Htz1 may be redundant, they are not dispensable. Completely unacetylatable htz1 alleles display genetic interactions and phenotypes in common with and distinct from htz1Δ. In addition, each Htz1 N-terminal lysine is deacetylated by Hda1 in response to benomyl and reacetylated when this agent is removed. Such active regulation suggests that acetylation plays a significant role in Htz1 function.
Collapse
Affiliation(s)
- Monika Mehta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|