1
|
Voorn RA, Sternbach M, Jarysta A, Rankovic V, Tarchini B, Wolf F, Vogl C. Slow kinesin-dependent microtubular transport facilitates ribbon synapse assembly in developing cochlear inner hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589153. [PMID: 38659872 PMCID: PMC11042220 DOI: 10.1101/2024.04.12.589153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Sensory synapses are characterized by electron-dense presynaptic specializations, so-called synaptic ribbons. In cochlear inner hair cells (IHCs), ribbons play an essential role as core active zone (AZ) organizers, where they tether synaptic vesicles, cluster calcium channels and facilitate the temporally-precise release of primed vesicles. While a multitude of studies aimed to elucidate the molecular composition and function of IHC ribbon synapses, the developmental formation of these signalling complexes remains largely elusive to date. To address this shortcoming, we performed long-term live-cell imaging of fluorescently-labelled ribbon precursors in young postnatal IHCs to track ribbon precursor motion. We show that ribbon precursors utilize the apico-basal microtubular (MT) cytoskeleton for targeted trafficking to the presynapse, in a process reminiscent of slow axonal transport in neurons. During translocation, precursor volume regulation is achieved by highly dynamic structural plasticity - characterized by regularly-occurring fusion and fission events. Pharmacological MT destabilization negatively impacted on precursor translocation and attenuated structural plasticity, whereas genetic disruption of the anterograde molecular motor Kif1a impaired ribbon volume accumulation during developmental maturation. Combined, our data thus indicate an essential role of the MT cytoskeleton and Kif1a in adequate ribbon synapse formation and structural maintenance.
Collapse
Affiliation(s)
- Roos Anouk Voorn
- Presynaptogenesis and Intracellular Transport in Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Centre Goettingen, 37075 Goettingen, Germany
- Göttingen Graduate Centre for Neurosciences, Biophysics and Molecular Biosciences, 37075 Goettingen, Germany
- Collaborative Research Centre 889 ‘Cellular Mechanisms of Sensory Processing’, 37075 Goettingen, Germany
- Auditory Neuroscience Group, Institute of Physiology, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Michael Sternbach
- Campus Institute for Dynamics of Biological Networks, 37073 Goettingen, Germany
- Bernstein Centre for Computational Neuroscience, 37073 Goettingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Goettingen, Germany
| | | | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
- Restorative Cochlear Genomics Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, 37075 Göttingen, Germany
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor ME, USA
- Tufts University School of Medicine, Boston MA, USA
| | - Fred Wolf
- Campus Institute for Dynamics of Biological Networks, 37073 Goettingen, Germany
- Bernstein Centre for Computational Neuroscience, 37073 Goettingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Goettingen, Germany
- Institute for Dynamics of Complex Systems Georg-August-University, 37077 Goettingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Christian Vogl
- Presynaptogenesis and Intracellular Transport in Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Centre Goettingen, 37075 Goettingen, Germany
- Collaborative Research Centre 889 ‘Cellular Mechanisms of Sensory Processing’, 37075 Goettingen, Germany
- Auditory Neuroscience Group, Institute of Physiology, Medical University Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Maiya R, Dey S, Ray K, Menon GI. The interplay of active and passive mechanisms in slow axonal transport. Biophys J 2023; 122:333-345. [PMID: 36502274 PMCID: PMC9892612 DOI: 10.1016/j.bpj.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/24/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
A combination of intermittent active movement of transient aggregates and a paused state that intervenes between periods of active transport has been proposed to underlie the slow, directed transport of soluble proteins in axons. A component of passive diffusion in the axoplasm may also contribute to slow axonal transport, although quantitative estimates of the relative contributions of diffusive and active movement in the slow transport of a soluble protein, and in particular how they might vary across developmental stages, are lacking. Here, we propose and study a model for slow axonal transport, addressing data from bleach recovery measurements on a small, soluble, protein, choline acetyltransferase, in thin axons of the lateral chordotonal (lch5) sensory neurons of Drosophila. Choline acetyltransferase is mainly present in soluble form in the axon and catalyzes the acetylation of choline at the synapse. It does not form particulate structures in axons and moves at rates characteristic of slow component b (≈ 1-10 mm/day or 0.01-0.1 μm/s). Using our model, which incorporates active transport with paused and/or diffusive states, we predict bleach recovery, transport rates, and cargo trajectories obtained through kymographs, comparing these with experimental observations at different developmental stages. We show that changes in the diffusive fraction of cargo during these developmental stages dominate bleach recovery and that a combination of active motion with a paused state alone cannot reproduce the data. We compared predictions of the model with results from photoactivation experiments. The importance of the diffusive state in reproducing the bleach recovery signal in the slow axonal transport of small soluble proteins is our central result.
Collapse
Affiliation(s)
- Reshma Maiya
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Swagata Dey
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, India; Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
| | - Krishanu Ray
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, India; Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India.
| | - Gautam I Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India; Department of Physics, Ashoka University, Sonepat, India; Department of Biology, Ashoka University, Sonepat, India.
| |
Collapse
|
3
|
Kumari D, Ray K. Phosphoregulation of Kinesins Involved in Long-Range Intracellular Transport. Front Cell Dev Biol 2022; 10:873164. [PMID: 35721476 PMCID: PMC9203973 DOI: 10.3389/fcell.2022.873164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/29/2022] [Indexed: 12/28/2022] Open
Abstract
Kinesins, the microtubule-dependent mechanochemical enzymes, power a variety of intracellular movements. Regulation of Kinesin activity and Kinesin-Cargo interactions determine the direction, timing and flux of various intracellular transports. This review examines how phosphorylation of Kinesin subunits and adaptors influence the traffic driven by Kinesin-1, -2, and -3 family motors. Each family of Kinesins are phosphorylated by a partially overlapping set of serine/threonine kinases, and each event produces a unique outcome. For example, phosphorylation of the motor domain inhibits motility, and that of the stalk and tail domains induces cargo loading and unloading effects according to the residue and context. Also, the association of accessory subunits with cargo and adaptor proteins with the motor, respectively, is disrupted by phosphorylation. In some instances, phosphorylation by the same kinase on different Kinesins elicited opposite outcomes. We discuss how this diverse range of effects could manage the logistics of Kinesin-dependent, long-range intracellular transport.
Collapse
|
4
|
Abstract
The polarized morphology of neurons necessitates the delivery of proteins synthesized in the soma along the length of the axon to distal synapses; critical for sustaining communication between neurons. This constitutive and dynamic process of protein transport along axons termed "axonal transport" was initially characterized by classic pulse-chase radiolabeling studies which identified two major rate components: a fast component and a slow component. Early radiolabeling studies indicated "cohesive co-transport" of slow transport cargos. However, this approach could not be used to visualize or provide mechanistic insights on this highly dynamic process. The advent of fluorescent and photoactivatable imaging probes have now enabled real-time imaging of axonal transport. Conventional fluorescent probes have helped visualize and characterize the molecular mechanisms of transport of vesicular proteins. These proteins typically move in the fast component of axonal transport and appear as "punctate structures" along axons. However, a large majority of transported proteins that move in the slow component of transport, typically show a "uniform diffusive glow" along axons when tagged to conventional fluorescent probes. This makes it challenging to unequivocally track them in real time. Our lab has used photoactivatable fluorescent probes to tag three individual cytosolic proteins moving in the slow component of axonal transport, and identified three distinct modes of transport along axons. Our data from these experiments argue against the prevailing hypothesis based on classic radiolabeling studies, which suggested that all slow-transport proteins may move along the axon as one large macromolecular protein complex. Although other labs have started using photoactivation to study axonal transport of cytosolic proteins, this technique remains largely under-utilized. Here, we describe the detailed protocols to image and analyze axonal transport of three typical slow-component cargoes along axons of cultured hippocampal neurons.
Collapse
Affiliation(s)
- Archan Ganguly
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Subhojit Roy
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Roy S. Finding order in slow axonal transport. Curr Opin Neurobiol 2020; 63:87-94. [PMID: 32361600 DOI: 10.1016/j.conb.2020.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 11/18/2022]
Abstract
Slow axonal transport conveys cytosolic and cytoskeletal proteins into axons and synapses at overall velocities that are several orders of magnitude slower than the fast transport of membranous organelles such as vesicles and mitochondria. The phenomenon of slow transport was characterized by in vivo pulse-chase radiolabeling studies done decades ago, and proposed models emphasized an orderly cargo-movement, with apparent cohesive transport of multiple proteins and subcellular structures along axons over weeks to months. However, visualization of cytosolic and cytoskeletal cargoes in cultured neurons at much higher temporal and spatial resolution has revealed an unexpected diversity in movement - ranging from a diffusion-like biased motion, to intermittent cargo dynamics and unusual polymerization-based transport paradigms. This review provides an updated view of slow axonal transport and explores emergent mechanistic themes in this enigmatic rate-class.
Collapse
Affiliation(s)
- Subhojit Roy
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States; Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
6
|
Sabharwal V, Koushika SP. Crowd Control: Effects of Physical Crowding on Cargo Movement in Healthy and Diseased Neurons. Front Cell Neurosci 2019; 13:470. [PMID: 31708745 PMCID: PMC6823667 DOI: 10.3389/fncel.2019.00470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/02/2019] [Indexed: 01/22/2023] Open
Abstract
High concentration of cytoskeletal filaments, organelles, and proteins along with the space constraints due to the axon's narrow geometry lead inevitably to intracellular physical crowding along the axon of a neuron. Local cargo movement is essential for maintaining steady cargo transport in the axon, and this may be impeded by physical crowding. Molecular motors that mediate active transport share movement mechanisms that allow them to bypass physical crowding present on microtubule tracks. Many neurodegenerative diseases, irrespective of how they are initiated, show increased physical crowding owing to the greater number of stalled organelles and structural changes associated with the cytoskeleton. Increased physical crowding may be a significant factor in slowing cargo transport to synapses, contributing to disease progression and culminating in the dying back of the neuronal process. This review explores the idea that physical crowding can impede cargo movement along the neuronal process. We examine the sources of physical crowding and strategies used by molecular motors that might enable cargo to circumvent physically crowded locations. Finally, we describe sub-cellular changes in neurodegenerative diseases that may alter physical crowding and discuss the implications of such changes on cargo movement.
Collapse
Affiliation(s)
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
7
|
Pathak D, Thakur S, Mallik R. Fluorescence microscopy applied to intracellular transport by microtubule motors. J Biosci 2018; 43:437-445. [PMID: 30002263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Long-distance transport of many organelles inside eukaryotic cells is driven by the dynein and kinesin motors on microtubule filaments. More than 30 years since the discovery of these motors, unanswered questions include motor- organelle selectivity, structural determinants of processivity, collective behaviour of motors and track selection within the complex cytoskeletal architecture, to name a few. Fluorescence microscopy has been invaluable in addressing some of these questions. Here we present a review of some efforts to understand these sub-microscopic machines using fluorescence.
Collapse
Affiliation(s)
- Divya Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | | |
Collapse
|
8
|
|
9
|
Dey S, Ray K. Cholinergic activity is essential for maintaining the anterograde transport of Choline Acetyltransferase in Drosophila. Sci Rep 2018; 8:8028. [PMID: 29795337 PMCID: PMC5966444 DOI: 10.1038/s41598-018-26176-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Cholinergic activity is essential for cognitive functions and neuronal homeostasis. Choline Acetyltransferase (ChAT), a soluble protein that synthesizes acetylcholine at the presynaptic compartment, is transported in bulk in the axons by the heterotrimeric Kinesin-2 motor. Axonal transport of soluble proteins is described as a constitutive process assisted by occasional, non-specific interactions with moving vesicles and motor proteins. Here, we report that an increase in the influx of Kinesin-2 motor and association between ChAT and the motor during a specific developmental period enhances the axonal entry, as well as the anterograde flow of the protein, in the sensory neurons of intact Drosophila nervous system. Loss of cholinergic activity due to Hemicholinium and Bungarotoxin treatments, respectively, disrupts the interaction between ChAT and Kinesin-2 in the axon, and the episodic enhancement of axonal influx of the protein. Altogether, these observations highlight a phenomenon of synaptic activity-dependent, feedback regulation of a soluble protein transport in vivo, which could potentially define the quantum of its pre-synaptic influx.
Collapse
Affiliation(s)
- Swagata Dey
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
10
|
Rai D, Dey S, Ray K. A method for estimating relative changes in the synaptic density in Drosophila central nervous system. BMC Neurosci 2018; 19:30. [PMID: 29769037 PMCID: PMC5956817 DOI: 10.1186/s12868-018-0430-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 05/02/2018] [Indexed: 12/16/2022] Open
Abstract
Background Synapse density is an essential indicator of development and functioning of the central nervous system. It is estimated indirectly through the accumulation of pre and postsynaptic proteins in tissue sections. 3D reconstruction of the electron microscopic images in serial sections is one of the most definitive means of estimating the formation of active synapses in the brain. It is tedious and highly skill-dependent. Confocal imaging of whole mounts or thick sections of the brain provides a natural alternative for rapid gross estimation of the synapse density in large areas. The optical resolution and other deep-tissue imaging aberrations limit the quantitative scope of this technique. Results Here we demonstrate a simple sample preparation method that could enhance the clarity of the confocal images of the neuropil regions of the ventral nerve cord of Drosophila larvae, providing a clear view of synapse distributions. We estimated the gross volume occupied by the synaptic junctions using 3D object counter plug-in of Fiji/ImageJ®. It gave us a proportional estimate of the number of synaptic junctions in the neuropil region. The method is corroborated by correlated super-resolution imaging analysis and through genetic perturbation of synaptogenesis in the larval brain. Conclusions The method provides a significant improvement in the relative estimate of region-specific synapse density in the central nervous system. Also, it reduced artifacts in the super-resolution images obtained using the stimulated emission depletion microscopy technique. Electronic supplementary material The online version of this article (10.1186/s12868-018-0430-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dipti Rai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Swagata Dey
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India.
| |
Collapse
|
11
|
Dey S, Banker G, Ray K. Anterograde Transport of Rab4-Associated Vesicles Regulates Synapse Organization in Drosophila. Cell Rep 2017; 18:2452-2463. [PMID: 28273459 DOI: 10.1016/j.celrep.2017.02.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 12/19/2016] [Accepted: 02/09/2017] [Indexed: 11/29/2022] Open
Abstract
Local endosomal recycling at synapses is essential to maintain neurotransmission. Rab4GTPase, found on sorting endosomes, is proposed to balance the flow of vesicles among endocytic, recycling, and degradative pathways in the presynaptic compartment. Here, we report that Rab4-associated vesicles move bidirectionally in Drosophila axons but with an anterograde bias, resulting in their moderate enrichment at the synaptic region of the larval ventral ganglion. Results from FK506 binding protein (FKBP) and FKBP-Rapamycin binding domain (FRB) conjugation assays in rat embryonic fibroblasts together with genetic analyses in Drosophila indicate that an association with Kinesin-2 (mediated by the tail domain of Kinesin-2α/KIF3A/KLP64D subunit) moves Rab4-associated vesicles toward the synapse. Reduction in the anterograde traffic of Rab4 causes an expansion of the volume of the synapse-bearing region in the ventral ganglion and increases the motility of Drosophila larvae. These results suggest that Rab4-dependent vesicular traffic toward the synapse plays a vital role in maintaining synaptic balance in this neuronal network.
Collapse
Affiliation(s)
- Swagata Dey
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| | - Gary Banker
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR 97239, USA
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| |
Collapse
|
12
|
Girotra M, Srivastava S, Kulkarni A, Barbora A, Bobra K, Ghosal D, Devan P, Aher A, Jain A, Panda D, Ray K. The C-terminal tails of heterotrimeric kinesin-2 motor subunits directly bind to α-tubulin1: Possible implications for cilia-specific tubulin entry. Traffic 2017; 18:123-133. [PMID: 27976831 DOI: 10.1111/tra.12461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 01/02/2023]
Abstract
The assembly of microtubule-based cytoskeleton propels the cilia and flagella growth. Previous studies have indicated that the kinesin-2 family motors transport tubulin into the cilia through intraflagellar transport. Here, we report a direct interaction between the C-terminal tail fragments of heterotrimeric kinesin-2 and α-tubulin1 isoforms in vitro. Blot overlay screen, affinity purification from tissue extracts, cosedimentation with subtilisin-treated microtubule and LC-ESI-MS/MS characterization of the tail-fragment-associated tubulin identified an association between the tail domains and α-tubulin1A/D isotype. The interaction was confirmed by Forster's resonance energy transfer assay in tissue-cultured cells. The overexpression of the recombinant tails in NIH3T3 cells affected the primary cilia growth, which was rescued by coexpression of a α-tubulin1 transgene. Furthermore, fluorescent recovery after photobleach analysis in the olfactory cilia of Drosophila indicated that tubulin is transported in a non-particulate form requiring kinesin-2. These results provide additional new insight into the mechanisms underlying selective tubulin isoform enrichment in the cilia.
Collapse
Affiliation(s)
- Mukul Girotra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shalini Srivastava
- Department of Biosciences and Biotechnology, Indian Institute of Technology Bombay, Mumbai, India
| | - Anuttama Kulkarni
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ayan Barbora
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Kratika Bobra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Debnath Ghosal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Pavithra Devan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Amol Aher
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Akanksha Jain
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Dulal Panda
- Department of Biosciences and Biotechnology, Indian Institute of Technology Bombay, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
13
|
Kulkarni A, Khan Y, Ray K. Heterotrimeric kinesin-2, together with kinesin-1, steers vesicular acetylcholinesterase movements toward the synapse. FASEB J 2016; 31:965-974. [PMID: 27920150 DOI: 10.1096/fj.201600759rrr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022]
Abstract
Acetylcholinesterase (AChE), which is implicated in the pathophysiology of neurological disorders, is distributed along the axon and enriched at the presynaptic basal lamina. It hydrolyses the neurotransmitter acetylcholine, which inhibits synaptic transmission. Aberrant AChE activity and ectopic axonal accumulation of the enzyme are associated with neurodegenerative disorders, such as Alzheimer's disease. The molecular mechanism that underlies AChE transport is still unclear. Here, we show that expression of Drosophila AChE tagged with photoactivatable green fluorescent protein and m-Cherry (GPAC) in cholinergic neurons compensates for the RNA interference-mediated knockdown of endogenous AChE activity. GPAC-AChE, which is enriched in the neuropil region of the brain, moves in the apparently vesicular form in axons with an anterograde bias in Drosophila larvae. Two anterograde motors, kinesin-1 and -2, propel distinct aspects of GPAC-AChE movements. Total loss of kinesin-2 reduces the density of anterograde traffic and increases bidirectional movements of GPAC-AChE vesicles without altering their speed. A partial loss of kinesin-1 reduces both the density and speed of anterograde GPAC-AChE traffic and enhances the pool of stationary vesicles. Together, these results suggest that combining activity of a relatively weak kinesin-2 with that of a stronger kinesin-1 motor could steer AChE-containing vesicles toward synapse, and provides a molecular basis for the observed subcellular distribution of the enzyme.-Kulkarni, A., Khan, Y., Ray, K. Heterotrimeric kinesin-2, together with kinesin-1, steers vesicular acetylcholinesterase movements toward the synapse.
Collapse
Affiliation(s)
- Anuttama Kulkarni
- Sophia College, Mumbai, India.,Tata Institute of Fundamental Research, Mumbai, India
| | | | - Krishanu Ray
- Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
14
|
Sun J, Pan C, Chew T, Liang F, Burmeister M, Low B. BNIP-H Recruits the Cholinergic Machinery to Neurite Terminals to Promote Acetylcholine Signaling and Neuritogenesis. Dev Cell 2015; 34:555-68. [DOI: 10.1016/j.devcel.2015.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/13/2015] [Accepted: 08/10/2015] [Indexed: 12/19/2022]
|
15
|
Iacobucci GJ, Rahman NA, Valtueña AA, Nayak TK, Gunawardena S. Spatial and temporal characteristics of normal and perturbed vesicle transport. PLoS One 2014; 9:e97237. [PMID: 24878565 PMCID: PMC4039462 DOI: 10.1371/journal.pone.0097237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 04/16/2014] [Indexed: 11/19/2022] Open
Abstract
Efficient intracellular transport is essential for healthy cellular function and structural integrity, and problems in this pathway can lead to neuronal cell death and disease. To spatially and temporally evaluate how transport defects are initiated, we adapted a primary neuronal culture system from Drosophila larval brains to visualize the movement dynamics of several cargos/organelles along a 90 micron axonal neurite over time. All six vesicles/organelles imaged showed robust bi-directional motility at both day 1 and day 2. Reduction of motor proteins decreased the movement of vesicles/organelles with increased numbers of neurite blocks. Neuronal growth was also perturbed with reduction of motor proteins. Strikingly, we found that all blockages were not fixed, permanent blocks that impeded transport of vesicles as previously thought, but that some blocks were dynamic clusters of vesicles that resolved over time. Taken together, our findings suggest that non-resolving blocks may likely initiate deleterious pathways leading to death and degeneration, while resolving blocks may be benign. Therefore evaluating the spatial and temporal characteristics of vesicle transport has important implications for our understanding of how transport defects can affect other pathways to initiate death and degeneration.
Collapse
Affiliation(s)
- Gary J. Iacobucci
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Noura Abdel Rahman
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Aida Andrades Valtueña
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Tapan Kumar Nayak
- Department of Physiology and Biophysics, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Matsuo R, Kobayashi S, Wakiya K, Yamagishi M, Fukuoka M, Ito E. The cholinergic system in the olfactory center of the terrestrial slugLimax. J Comp Neurol 2014; 522:2951-66. [DOI: 10.1002/cne.23559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/10/2014] [Accepted: 02/04/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Ryota Matsuo
- International College of Arts and Sciences; Fukuoka Women's University; Fukuoka 813-8529 Japan
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Kagawa 769-2193 Japan
| | - Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Kagawa 769-2193 Japan
| | - Kyoko Wakiya
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Kagawa 769-2193 Japan
| | - Miki Yamagishi
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Kagawa 769-2193 Japan
| | - Masayuki Fukuoka
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Kagawa 769-2193 Japan
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Kagawa 769-2193 Japan
| |
Collapse
|
17
|
Abstract
Although it is known that cytosolic/soluble proteins synthesized in cell bodies are transported at much lower overall velocities than vesicles in fast axonal transport, the fundamental basis for this slow movement is unknown. Recently, we found that cytosolic proteins in axons of mouse cultured neurons are conveyed in a manner that superficially resembles diffusion, but with a slow anterograde bias that is energy- and motor-dependent (Scott et al., 2011). Here we show that slow axonal transport of synapsin, a prototypical member of this rate class, is dependent upon fast vesicle transport. Despite the distinct overall dynamics of slow and fast transport, experimentally induced and intrinsic variations in vesicle transport have analogous effects on slow transport of synapsin as well. Dynamic cotransport of vesicles and synapsin particles is also seen in axons, consistent with a model where higher-order assemblies of synapsin are conveyed by transient and probabilistic associations with vesicles moving in fast axonal transport. We posit that such dynamic associations generate the slow overall anterogradely biased flow of the population ("dynamic-recruitment model"). Our studies uncover the underlying kinetic basis for a classic cytosolic/soluble protein moving in slow axonal transport and reveal previously unknown links between slow and fast transport, offering a clearer conceptual picture of this curious phenomenon.
Collapse
|
18
|
Abstract
Axonal transport is the lifeline of axons and synapses. After synthesis in neuronal cell bodies, proteins are conveyed into axons in two distinct rate classes-fast and slow axonal transport. Whereas fast transport delivers vesicular cargoes, slow transport carries cytoskeletal and cytosolic (or soluble) proteins that have critical roles in neuronal structure and function. Although significant progress has been made in dissecting the molecular mechanisms of fast vesicle transport, mechanisms of slow axonal transport are less clear. Why is this so? Historically, conceptual advances in the axonal transport field have paralleled innovations in imaging the movement, and slow-transport cargoes are not as readily seen as motile vesicles. However, new ways of visualizing slow transport have reenergized the field, leading to fundamental insights that have changed our views on axonal transport, motor regulation, and intracellular trafficking in general. This review first summarizes classic studies that characterized axonal transport, and then discusses recent technical and conceptual advances in slow axonal transport that have provided insights into some long-standing mysteries.
Collapse
Affiliation(s)
- Subhojit Roy
- 1Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Scholey JM. Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu Rev Cell Dev Biol 2013; 29:443-69. [PMID: 23750925 DOI: 10.1146/annurev-cellbio-101512-122335] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kinesin-2 was first purified as a heterotrimeric, anterograde, microtubule-based motor consisting of two distinct kinesin-related subunits and a novel associated protein (KAP) that is currently best known for its role in intraflagellar transport and ciliogenesis. Subsequent work, however, has revealed diversity in the oligomeric state of different kinesin-2 motors owing to the combinatorial heterodimerization of its subunits and the coexistence of both heterotrimeric and homodimeric kinesin-2 motors in some cells. Although the functional significance of the homo- versus heteromeric organization of kinesin-2 motor subunits and the role of KAP remain uncertain, functional studies suggest that cooperation between different types of kinesin-2 motors or between kinesin-2 and a member of a different motor family can generate diverse patterns of anterograde intracellular transport. Moreover, despite being restricted to ciliated eukaryotes, kinesin-2 motors are now known to drive diverse transport events outside cilia. Here, I review the organization, assembly, phylogeny, biological functions, and motility mechanism of this diverse family of intracellular transport motors.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California, Davis, California 95616;
| |
Collapse
|