1
|
Bailey BL, Nguyen W, Cowman AF, Sleebs BE. Chemo-proteomics in antimalarial target identification and engagement. Med Res Rev 2023; 43:2303-2351. [PMID: 37232495 PMCID: PMC10947479 DOI: 10.1002/med.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.
Collapse
Affiliation(s)
- Brodie L. Bailey
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
2
|
Ahorhorlu SY, Quashie NB, Jensen RW, Kudzi W, Nartey ET, Duah-Quashie NO, Zoiku F, Dzudzor B, Wang CW, Hansson H, Alifrangis M, Adjei GO. Assessment of artemisinin tolerance in Plasmodium falciparum clinical isolates in children with uncomplicated malaria in Ghana. Malar J 2023; 22:58. [PMID: 36803541 PMCID: PMC9938975 DOI: 10.1186/s12936-023-04482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/04/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) is the first-line treatment for uncomplicated malaria in Ghana. Artemisinin (ART) tolerance in Plasmodium falciparum has arisen in Southeast Asia and recently, in parts of East Africa. This is ascribed to the survival of ring-stage parasites post treatment. The present study sought to assess and characterize correlates of potential ART tolerance based on post-treatment parasite clearance, ex vivo and in vitro drug sensitivity, and molecular markers of drug resistance in P. falciparum isolates from children with uncomplicated malaria in Ghana. METHODS Six months to fourteen years old children presenting with acute uncomplicated malaria (n = 115) were enrolled in two hospitals and a Health Centre in Ghana's Greater Accra region and treated with artemether-lumefantrine (AL) according to body weight. Pre- and post-treatment parasitaemia (day 0 and day 3) was confirmed by microscopy. The ex vivo ring-stage survival assay (RSA) was used to detect percent ring survival while the 72 h SYBR Green I assay was used to measure the 50% inhibition concentration (IC50s) of ART and its derivatives and partner drugs. Genetic markers of drug tolerance /resistance were evaluated using selective whole genome sequencing. RESULTS Of the total of 115 participants, 85 were successfully followed up on day 3 post-treatment and 2/85 (2.4%) had parasitaemia. The IC50 values of ART, artesunate (AS), artemether (AM), dihydroartemisinin (DHA), amodiaquine (AQ), and lumefantrine (LUM) were not indicative of drug tolerance. However, 7/90 (7.8%) pre-treatment isolates had > 10% ring survival rates against DHA. Of the four isolates (2 RSA positive and 2 RSA negative) with high genomic coverage, P. falciparum (Pf) kelch 13 K188* and Pfcoronin V424I mutations were only present in the two RSA positive isolates with > 10% ring survival rates. CONCLUSIONS The observed low proportion of participants with day-3 post-treatment parasitaemia is consistent with rapid ART clearance. However, the increased rates of survival observed in the ex vivo RSA against DHA, maybe a pointer of an early start of ART tolerance. Furthermore, the role of two novel mutations in PfK13 and Pfcoronin genes, harboured by the two RSA positive isolates that had high ring survival in the present study, remains to be elucidated.
Collapse
Affiliation(s)
- Samuel Yao Ahorhorlu
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Neils Ben Quashie
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Rasmus Weisel Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - William Kudzi
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana
| | - Edmund Tetteh Nartey
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana
| | - Nancy Odurowah Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Felix Zoiku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Bartholomew Dzudzor
- Department of Medical Biochemistry, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Christian William Wang
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Helle Hansson
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - George Obeng Adjei
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana.
| |
Collapse
|
3
|
Haase S, Condron M, Miller D, Cherkaoui D, Jordan S, Gulbis JM, Baum J. Identification and characterisation of a phospholipid scramblase in the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2021; 243:111374. [PMID: 33974939 PMCID: PMC8202325 DOI: 10.1016/j.molbiopara.2021.111374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Recent studies highlight the emerging role of lipids as important messengers in malaria parasite biology. In an attempt to identify interacting proteins and regulators of these dynamic and versatile molecules, we hypothesised the involvement of phospholipid translocases and their substrates in the infection of the host erythrocyte by the malaria parasite Plasmodium spp. Here, using a data base searching approach of the Plasmodium Genomics Resources (www.plasmodb.org), we have identified a putative phospholipid (PL) scramblase in P. falciparum (PfPLSCR) that is conserved across the genus and in closely related unicellular algae. By reconstituting recombinant PfPLSCR into liposomes, we demonstrate metal ion dependent PL translocase activity and substrate preference, confirming PfPLSCR as a bona fide scramblase. We show that PfPLSCR is expressed during asexual and sexual parasite development, localising to different membranous compartments of the parasite throughout the intra-erythrocytic life cycle. Two different gene knockout approaches, however, suggest that PfPLSCR is not essential for erythrocyte invasion and asexual parasite development, pointing towards a possible role in other stages of the parasite life cycle.
Collapse
Affiliation(s)
- Silvia Haase
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK.
| | - Melanie Condron
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - David Miller
- Division of Structural Biology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Dounia Cherkaoui
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Sarah Jordan
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Jacqueline M Gulbis
- Division of Structural Biology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK.
| |
Collapse
|
4
|
Mentrup T, Cabrera-Cabrera F, Fluhrer R, Schröder B. Physiological functions of SPP/SPPL intramembrane proteases. Cell Mol Life Sci 2020; 77:2959-2979. [PMID: 32052089 PMCID: PMC7366577 DOI: 10.1007/s00018-020-03470-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 01/07/2023]
Abstract
Intramembrane proteolysis describes the cleavage of substrate proteins within their hydrophobic transmembrane segments. Several families of intramembrane proteases have been identified including the aspartyl proteases Signal peptide peptidase (SPP) and its homologues, the SPP-like (SPPL) proteases SPPL2a, SPPL2b, SPPL2c and SPPL3. As presenilin homologues, they employ a similar catalytic mechanism as the well-studied γ-secretase. However, SPP/SPPL proteases cleave transmembrane proteins with a type II topology. The characterisation of SPP/SPPL-deficient mouse models has highlighted a still growing spectrum of biological functions and also promoted the substrate discovery of these proteases. In this review, we will summarise the current hypotheses how phenotypes of these mouse models are linked to the molecular function of the enzymes. At the cellular level, SPP/SPPL-mediated cleavage events rather provide specific regulatory switches than unspecific bulk proteolysis. By this means, a plethora of different cell biological pathways is influenced including signal transduction, membrane trafficking and protein glycosylation.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute for Physiological Chemistry, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Florencia Cabrera-Cabrera
- Institute for Physiological Chemistry, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Faculty of Medicine, University of Augsburg, Universitätsstraße 2, 86135, Augsburg, Germany
- Biomedizinisches Centrum (BMC), Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 17, 81377, Munich, Germany
- DZNE-German Center for Neurodegenerative Diseases, Munich, Feodor-Lynen-Strasse 17, 81377, Munich, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany.
| |
Collapse
|
5
|
Nasamu AS, Polino AJ, Istvan ES, Goldberg DE. Malaria parasite plasmepsins: More than just plain old degradative pepsins. J Biol Chem 2020; 295:8425-8441. [PMID: 32366462 PMCID: PMC7307202 DOI: 10.1074/jbc.rev120.009309] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmepsins are a group of diverse aspartic proteases in the malaria parasite Plasmodium Their functions are strikingly multifaceted, ranging from hemoglobin degradation to secretory organelle protein processing for egress, invasion, and effector export. Some, particularly the digestive vacuole plasmepsins, have been extensively characterized, whereas others, such as the transmission-stage plasmepsins, are minimally understood. Some (e.g. plasmepsin V) have exquisite cleavage sequence specificity; others are fairly promiscuous. Some have canonical pepsin-like aspartic protease features, whereas others have unusual attributes, including the nepenthesin loop of plasmepsin V and a histidine in place of a catalytic aspartate in plasmepsin III. We have learned much about the functioning of these enzymes, but more remains to be discovered about their cellular roles and even their mechanisms of action. Their importance in many key aspects of parasite biology makes them intriguing targets for antimalarial chemotherapy. Further consideration of their characteristics suggests that some are more viable drug targets than others. Indeed, inhibitors of invasion and egress offer hope for a desperately needed new drug to combat this nefarious organism.
Collapse
Affiliation(s)
- Armiyaw S Nasamu
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander J Polino
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eva S Istvan
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Marapana DS, Dagley LF, Sandow JJ, Nebl T, Triglia T, Pasternak M, Dickerman BK, Crabb BS, Gilson PR, Webb AI, Boddey JA, Cowman AF. Plasmepsin V cleaves malaria effector proteins in a distinct endoplasmic reticulum translocation interactome for export to the erythrocyte. Nat Microbiol 2018; 3:1010-1022. [DOI: 10.1038/s41564-018-0219-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/13/2018] [Indexed: 01/10/2023]
|
7
|
Lyth O, Vizcay-Barrena G, Wright KE, Haase S, Mohring F, Najer A, Henshall IG, Ashdown GW, Bannister LH, Drew DR, Beeson JG, Fleck RA, Moon RW, Wilson DW, Baum J. Cellular dissection of malaria parasite invasion of human erythrocytes using viable Plasmodium knowlesi merozoites. Sci Rep 2018; 8:10165. [PMID: 29976932 PMCID: PMC6033891 DOI: 10.1038/s41598-018-28457-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
Plasmodium knowlesi, a zoonotic parasite causing severe-to-lethal malaria disease in humans, has only recently been adapted to continuous culture with human red blood cells (RBCs). In comparison with the most virulent human malaria, Plasmodium falciparum, there are, however, few cellular tools available to study its biology, in particular direct investigation of RBC invasion by blood-stage P. knowlesi merozoites. This leaves our current understanding of biological differences across pathogenic Plasmodium spp. incomplete. Here, we report a robust method for isolating viable and invasive P. knowlesi merozoites to high purity and yield. Using this approach, we present detailed comparative dissection of merozoite invasion (using a variety of microscopy platforms) and direct assessment of kinetic differences between knowlesi and falciparum merozoites. We go on to assess the inhibitory potential of molecules targeting discrete steps of invasion in either species via a quantitative invasion inhibition assay, identifying a class of polysulfonate polymer able to efficiently inhibit invasion in both, providing a foundation for pan-Plasmodium merozoite inhibitor development. Given the close evolutionary relationship between P. knowlesi and P. vivax, the second leading cause of malaria-related morbidity, this study paves the way for inter-specific dissection of invasion by all three major pathogenic malaria species.
Collapse
Affiliation(s)
- Oliver Lyth
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, UK
| | - Katherine E Wright
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Silvia Haase
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Franziska Mohring
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Adrian Najer
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Isabelle G Henshall
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - George W Ashdown
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Lawrence H Bannister
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, UK
| | - Damien R Drew
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Victoria, Australia
| | - James G Beeson
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Victoria, Australia
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, UK
| | - Robert W Moon
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, Australia. .,Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia.
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK.
| |
Collapse
|
8
|
Sharma R, Sharma B, Gupta A, Dhar SK. Identification of a novel trafficking pathway exporting a replication protein, Orc2 to nucleus via classical secretory pathway in Plasmodium falciparum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018. [PMID: 29524523 DOI: 10.1016/j.bbamcr.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Malaria parasites use an extensive secretory pathway to traffic a number of proteins within itself and beyond. In higher eukaryotes, Endoplasmic Reticulum (ER) membrane bound transcription factors such as SREBP are reported to get processed en route and migrate to nucleus under the influence of specific cues. However, a protein constitutively trafficked to the nucleus via classical secretory pathway has not been reported. Herein, we report the presence of a novel trafficking pathway in an apicomplexan, Plasmodium falciparum where a homologue of an Origin Recognition Complex 2 (Orc2) goes to the nucleus following its association with the ER. Our work highlights the unconventional role of ER in protein trafficking and reports for the first time an ORC homologue getting trafficked through such a pathway to the nucleus where it may be involved in DNA replication and other ancillary functions. Such trafficking pathways may have a profound impact on the cell biology of a malaria parasite and have significant implications in strategizing new antimalarials.
Collapse
Affiliation(s)
- Rahul Sharma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bhumika Sharma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashish Gupta
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Rocamora F, Zhu L, Liong KY, Dondorp A, Miotto O, Mok S, Bozdech Z. Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites. PLoS Pathog 2018; 14:e1006930. [PMID: 29538461 PMCID: PMC5868857 DOI: 10.1371/journal.ppat.1006930] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/26/2018] [Accepted: 02/08/2018] [Indexed: 12/16/2022] Open
Abstract
Due to their remarkable parasitocidal activity, artemisinins represent the key components of first-line therapies against Plasmodium falciparum malaria. However, the decline in efficacy of artemisinin-based drugs jeopardizes global efforts to control and ultimately eradicate the disease. To better understand the resistance phenotype, artemisinin-resistant parasite lines were derived from two clones of the 3D7 strain of P. falciparum using a selection regimen that mimics how parasites interact with the drug within patients. This long term in vitro selection induced profound stage-specific resistance to artemisinin and its relative compounds. Chemosensitivity and transcriptional profiling of artemisinin-resistant parasites indicate that enhanced adaptive responses against oxidative stress and protein damage are associated with decreased artemisinin susceptibility. This corroborates our previous findings implicating these cellular functions in artemisinin resistance in natural infections. Genomic characterization of the two derived parasite lines revealed a spectrum of sequence and copy number polymorphisms that could play a role in regulating artemisinin response, but did not include mutations in pfk13, the main marker of artemisinin resistance in Southeast Asia. Taken together, here we present a functional in vitro model of artemisinin resistance that is underlined by a new set of genetic polymorphisms as potential genetic markers.
Collapse
Affiliation(s)
- Frances Rocamora
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kek Yee Liong
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Olivo Miotto
- Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, United Kingdom
| | - Sachel Mok
- Columbia University Medical Center, New York, New York, United States of America
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
10
|
Green JL, Wall RJ, Vahokoski J, Yusuf NA, Ridzuan MAM, Stanway RR, Stock J, Knuepfer E, Brady D, Martin SR, Howell SA, Pires IP, Moon RW, Molloy JE, Kursula I, Tewari R, Holder AA. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility. J Biol Chem 2017; 292:17857-17875. [PMID: 28893907 PMCID: PMC5663884 DOI: 10.1074/jbc.m117.802769] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/04/2017] [Indexed: 11/06/2022] Open
Abstract
Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain-interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion.
Collapse
Affiliation(s)
| | - Richard J Wall
- the School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Juha Vahokoski
- the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | | | | - Rebecca R Stanway
- the Institute of Cell Biology, University of Bern, Bern, Switzerland, and
| | - Jessica Stock
- the School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | | - Declan Brady
- the School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | | | | - Isa P Pires
- the Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | | | - Justin E Molloy
- Single Molecule Enzymology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Inari Kursula
- the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.,the Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Rita Tewari
- the School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | |
Collapse
|
11
|
Deu E. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS J 2017; 284:2604-2628. [PMID: 28599096 PMCID: PMC5575534 DOI: 10.1111/febs.14130] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/29/2017] [Accepted: 06/06/2017] [Indexed: 01/17/2023]
Abstract
Malaria is a devastating parasitic disease affecting half of the world's population. The rapid emergence of resistance against new antimalarial drugs, including artemisinin-based therapies, has made the development of drugs with novel mechanisms of action extremely urgent. Proteases are enzymes proven to be well suited for target-based drug development due to our knowledge of their enzymatic mechanisms and active site structures. More importantly, Plasmodium proteases have been shown to be involved in a variety of pathways that are essential for parasite survival. However, pharmacological rather than target-based approaches have dominated the field of antimalarial drug development, in part due to the challenge of robustly validating Plasmodium targets at the genetic level. Fortunately, over the last few years there has been significant progress in the development of efficient genetic methods to modify the parasite, including several conditional approaches. This progress is finally allowing us not only to validate essential genes genetically, but also to study their molecular functions. In this review, I present our current understanding of the biological role proteases play in the malaria parasite life cycle. I also discuss how the recent advances in Plasmodium genetics, the improvement of protease-oriented chemical biology approaches, and the development of malaria-focused pharmacological assays, can be combined to achieve a robust biological, chemical and therapeutic validation of Plasmodium proteases as viable drug targets.
Collapse
Affiliation(s)
- Edgar Deu
- Chemical Biology Approaches to Malaria LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
12
|
Mentrup T, Fluhrer R, Schröder B. Latest emerging functions of SPP/SPPL intramembrane proteases. Eur J Cell Biol 2017; 96:372-382. [DOI: 10.1016/j.ejcb.2017.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022] Open
|
13
|
Signal peptide peptidase and SPP-like proteases - Possible therapeutic targets? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28624439 DOI: 10.1016/j.bbamcr.2017.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signal peptide peptidase (SPP) and the four homologous SPP-like proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 are GxGD-type intramembrane-cleaving proteases (I-CLIPs). In addition to divergent subcellular localisations, distinct differences in the mechanistic properties and substrate requirements of individual family members have been unravelled. SPP/SPPL proteases employ a catalytic mechanism related to that of the γ-secretase complex. Nevertheless, differential targeting of SPP/SPPL proteases and γ-secretase by inhibitors has been demonstrated. Furthermore, also within the SPP/SPPL family significant differences in the sensitivity to currently available inhibitory compounds have been reported. Though far from complete, our knowledge on pathophysiological functions of SPP/SPPL proteases, in particular based on studies in mice, has been significantly increased over the last years. Based on this, inhibition of distinct SPP/SPPL proteases has been proposed as a novel therapeutic concept e.g. for the treatment of autoimmunity and viral or protozoal infections, as we will discuss in this review. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
|
14
|
Koussis K, Goulielmaki E, Chalari A, Withers-Martinez C, Siden-Kiamos I, Matuschewski K, Loukeris TG. Targeted Deletion of a Plasmodium Site-2 Protease Impairs Life Cycle Progression in the Mammalian Host. PLoS One 2017; 12:e0170260. [PMID: 28107409 PMCID: PMC5249076 DOI: 10.1371/journal.pone.0170260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/01/2017] [Indexed: 12/26/2022] Open
Abstract
Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane–bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo.
Collapse
Affiliation(s)
- Konstantinos Koussis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- * E-mail:
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Anna Chalari
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | | | - Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Thanasis G. Loukeris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| |
Collapse
|
15
|
Gilson PR, Chisholm SA, Crabb BS, de Koning-Ward TF. Host cell remodelling in malaria parasites: a new pool of potential drug targets. Int J Parasitol 2016; 47:119-127. [PMID: 27368610 DOI: 10.1016/j.ijpara.2016.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 12/01/2022]
Abstract
When in their human hosts, malaria parasites spend most of their time housed within vacuoles inside erythrocytes and hepatocytes. The parasites extensively modify their host cells to obtain nutrients, prevent host cell breakdown and avoid the immune system. To perform these modifications, malaria parasites export hundreds of effector proteins into their host cells and this process is best understood in the most lethal species to infect humans, Plasmodium falciparum. The effector proteins are synthesized within the parasite and following a proteolytic cleavage event in the endoplasmic reticulum and sorting of mature proteins into the correct vesicular trafficking pathway, they are transported to the parasite surface and released into the vacuole. The effector proteins are then unfolded before extrusion across the vacuole membrane by a unique translocon complex called Plasmodium translocon of exported proteins. After gaining access to the erythrocyte cytoplasm many effector proteins continue their journey to the erythrocyte surface by utilising various membranous structures established by the parasite. This complex trafficking pathway and a large number of the effector proteins are unique to Plasmodium parasites. This pathway could, therefore, be developed as new drug targets given that protein export and the functional role of these proteins are essential for parasite survival. This review explores known and potential drug targetable steps in the protein export pathway and strategies for discovering novel drug targets.
Collapse
Affiliation(s)
- Paul R Gilson
- Burnet Institute, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia.
| | | | - Brendan S Crabb
- Burnet Institute, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia; University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
16
|
Wilson DW, Goodman CD, Sleebs BE, Weiss GE, de Jong NW, Angrisano F, Langer C, Baum J, Crabb BS, Gilson PR, McFadden GI, Beeson JG. Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum. BMC Biol 2015; 13:52. [PMID: 26187647 PMCID: PMC4506589 DOI: 10.1186/s12915-015-0162-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria invasion of red blood cells involves multiple parasite-specific targets that are easily accessible to inhibitory compounds, making it an attractive target for antimalarial development. However, no current antimalarial agents act against host cell invasion. RESULTS Here, we demonstrate that the clinically used macrolide antibiotic azithromycin, which is known to kill human malaria asexual blood-stage parasites by blocking protein synthesis in their apicoplast, is also a rapid inhibitor of red blood cell invasion in human (Plasmodium falciparum) and rodent (P. berghei) malarias. Multiple lines of evidence demonstrate that the action of azithromycin in inhibiting parasite invasion of red blood cells is independent of its inhibition of protein synthesis in the parasite apicoplast, opening up a new strategy to develop a single drug with multiple parasite targets. We identified derivatives of azithromycin and erythromycin that are better invasion inhibitors than parent compounds, offering promise for development of this novel antimalarial strategy. CONCLUSIONS Safe and effective macrolide antibiotics with dual modalities could be developed to combat malaria and reduce the parasite's options for resistance.
Collapse
Affiliation(s)
- Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia. .,Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3050, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia. .,Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia.
| | - Christopher D Goodman
- Plant Cell Biology Research Centre, School of Biosciences, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Brad E Sleebs
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3050, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia.
| | - Greta E Weiss
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia.
| | - Nienke Wm de Jong
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia.
| | - Fiona Angrisano
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3050, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia. .,Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - Christine Langer
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia.
| | - Jake Baum
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3050, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia. .,Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - Brendan S Crabb
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia. .,Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia. .,Department of Immunology, Monash University, Clayton, Victoria, 3800, Australia.
| | - Paul R Gilson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia. .,Department of Immunology, Monash University, Clayton, Victoria, 3800, Australia.
| | - Geoffrey I McFadden
- Plant Cell Biology Research Centre, School of Biosciences, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - James G Beeson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3050, Australia. .,Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia. .,Department of Microbiology, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
17
|
Ran Y, Ladd GZ, Ceballos-Diaz C, Jung JI, Greenbaum D, Felsenstein KM, Golde TE. Differential Inhibition of Signal Peptide Peptidase Family Members by Established γ-Secretase Inhibitors. PLoS One 2015; 10:e0128619. [PMID: 26046535 PMCID: PMC4457840 DOI: 10.1371/journal.pone.0128619] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
The signal peptide peptidases (SPPs) are biomedically important proteases implicated as therapeutic targets for hepatitis C (human SPP, (hSPP)), plasmodium (Plasmodium SPP (pSPP)), and B-cell immunomodulation and neoplasia (signal peptide peptidase like 2a, (SPPL2a)). To date, no drug-like, selective inhibitors have been reported. We use a recombinant substrate based on the amino-terminus of BRI2 fused to amyloid β 1-25 (Aβ1-25) (FBA) to develop facile, cost-effective SPP/SPPL protease assays. Co-transfection of expression plasmids expressing the FBA substrate with SPP/SPPLs were conducted to evaluate cleavage, which was monitored by ELISA, Western Blot and immunoprecipitation/MALDI-TOF Mass spectrometry (IP/MS). No cleavage is detected in the absence of SPP/SPPL overexpression. Multiple γ-secretase inhibitors (GSIs) and (Z-LL)2 ketone differentially inhibited SPP/SPPL activity; for example, IC50 of LY-411,575 varied from 51±79 nM (on SPPL2a) to 5499±122 nM (on SPPL2b), while Compound E showed inhibition only on hSPP with IC50 of 1465±93 nM. Data generated were predictive of effects observed for endogenous SPPL2a cleavage of CD74 in a murine B-Cell line. Thus, it is possible to differentially inhibit SPP family members. These SPP/SPPL cleavage assays will expedite the search for selective inhibitors. The data also reinforce similarities between SPP family member cleavage and cleavage catalyzed by γ-secretase.
Collapse
Affiliation(s)
- Yong Ran
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
- * E-mail: (YR); (TG)
| | - Gabriela Z. Ladd
- College of Pharmacy, University of Florida, Gainesville, Florida, United States of America
| | - Carolina Ceballos-Diaz
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Joo In Jung
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Doron Greenbaum
- Pennsylvania Drug Discovery Institute, Philadelphia, Pennsylvania, United States of America
| | - Kevin M. Felsenstein
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Todd E. Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
- * E-mail: (YR); (TG)
| |
Collapse
|
18
|
Hill DL, Eriksson EM, Schofield L. High yield purification of Plasmodium falciparum merozoites for use in opsonizing antibody assays. J Vis Exp 2014. [PMID: 25078358 PMCID: PMC4217647 DOI: 10.3791/51590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Plasmodium falciparum merozoite antigens are under development as potential malaria vaccines. One aspect of immunity against malaria is the removal of free merozoites from the blood by phagocytic cells. However assessing the functional efficacy of merozoite specific opsonizing antibodies is challenging due to the short half-life of merozoites and the variability of primary phagocytic cells. Described in detail herein is a method for generating viable merozoites using the E64 protease inhibitor, and an assay of merozoite opsonin-dependent phagocytosis using the pro-monocytic cell line THP-1. E64 prevents schizont rupture while allowing the development of merozoites which are released by filtration of treated schizonts. Ethidium bromide labelled merozoites are opsonized with human plasma samples and added to THP-1 cells. Phagocytosis is assessed by a standardized high throughput protocol. Viable merozoites are a valuable resource for assessing numerous aspects of P. falciparum biology, including assessment of immune function. Antibody levels measured by this assay are associated with clinical immunity to malaria in naturally exposed individuals. The assay may also be of use for assessing vaccine induced antibodies.
Collapse
Affiliation(s)
- Danika L Hill
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology, University of Melbourne
| | - Emily M Eriksson
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology, University of Melbourne
| | - Louis Schofield
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology, University of Melbourne;
| |
Collapse
|
19
|
Baldwin M, Russo C, Li X, Chishti AH. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis. Biochem Biophys Res Commun 2014; 450:1427-32. [PMID: 25017910 DOI: 10.1016/j.bbrc.2014.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle.
Collapse
Affiliation(s)
- Michael Baldwin
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Crystal Russo
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Xuerong Li
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Athar H Chishti
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States; Sackler School of Graduate Biomedical Sciences, Programs in Physiology, Pharmacology, and Microbiology, Tufts University School of Medicine, Boston, MA 02111, United States.
| |
Collapse
|
20
|
Sibley LD. The roles of intramembrane proteases in protozoan parasites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2908-15. [PMID: 24099008 DOI: 10.1016/j.bbamem.2013.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/02/2013] [Accepted: 04/11/2013] [Indexed: 11/30/2022]
Abstract
Intramembrane proteolysis is widely conserved throughout different forms of life, with three major types of proteases being known for their ability to cleave peptide bonds directly within the transmembrane domains of their substrates. Although intramembrane proteases have been extensively studied in humans and model organisms, they have only more recently been investigated in protozoan parasites, where they turn out to play important and sometimes unexpected roles. Signal peptide peptidases are involved in endoplasmic reticulum (ER) quality control and signal peptide degradation from exported proteins. Recent studies suggest that repurposing inhibitors developed for blocking presenilins may be useful for inhibiting the growth of Plasmodium, and possibly other protozoan parasites, by blocking signal peptide peptidases. Rhomboid proteases, originally described in the fly, are also widespread in parasites, and are especially expanded in apicomplexans. Their study in parasites has revealed novel roles that expand our understanding of how these proteases function. Within this diverse group of parasites, rhomboid proteases contribute to processing of adhesins involved in attachment, invasion, intracellular replication, phagocytosis, and immune evasion, placing them at the vertex of host-parasite interactions. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Voss M, Schröder B, Fluhrer R. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2828-39. [PMID: 24099004 DOI: 10.1016/j.bbamem.2013.03.033] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/25/2013] [Accepted: 03/29/2013] [Indexed: 01/09/2023]
Abstract
Signal peptide peptidase (SPP) and the homologous SPP-like (SPPL) proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 belong to the family of GxGD intramembrane proteases. SPP/SPPLs selectively cleave transmembrane domains in type II orientation and do not require additional co-factors for proteolytic activity. Orthologues of SPP and SPPLs have been identified in other vertebrates, plants, and eukaryotes. In line with their diverse subcellular localisations ranging from the ER (SPP, SPPL2c), the Golgi (SPPL3), the plasma membrane (SPPL2b) to lysosomes/late endosomes (SPPL2a), the different members of the SPP/SPPL family seem to exhibit distinct functions. Here, we review the substrates of these proteases identified to date as well as the current state of knowledge about the physiological implications of these proteolytic events as deduced from in vivo studies. Furthermore, the present knowledge on the structure of intramembrane proteases of the SPP/SPPL family, their cleavage mechanism and their substrate requirements are summarised. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Matthias Voss
- Adolf Butenandt Institute for Biochemistry, Ludwig-Maximilians University Munich, Schillerstr. 44, 80336 Munich, Germany
| | | | | |
Collapse
|
22
|
Ngwa CJ, Scheuermayer M, Mair GR, Kern S, Brügl T, Wirth CC, Aminake MN, Wiesner J, Fischer R, Vilcinskas A, Pradel G. Changes in the transcriptome of the malaria parasite Plasmodium falciparum during the initial phase of transmission from the human to the mosquito. BMC Genomics 2013; 14:256. [PMID: 23586929 PMCID: PMC3640944 DOI: 10.1186/1471-2164-14-256] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 04/01/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by dormant sexual precursor cells, the gametocytes, which become activated in the mosquito midgut. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they play a crucial role in spreading the tropical disease. The human-to-mosquito transmission triggers important molecular changes in the gametocytes, which initiate gametogenesis and prepare the parasite for life-cycle progression in the insect vector. RESULTS To better understand gene regulations during the initial phase of malaria parasite transmission, we focused on the transcriptome changes that occur within the first half hour of parasite development in the mosquito. Comparison of mRNA levels of P. falciparum gametocytes before and 30 min following activation using suppression subtractive hybridization (SSH) identified 126 genes, which changed in expression during gametogenesis. Among these, 17.5% had putative functions in signaling, 14.3% were assigned to cell cycle and gene expression, 8.7% were linked to the cytoskeleton or inner membrane complex, 7.9% were involved in proteostasis and 6.4% in metabolism, 12.7% were cell surface-associated proteins, 11.9% were assigned to other functions, and 20.6% represented genes of unknown function. For 40% of the identified genes there has as yet not been any protein evidence.For a subset of 27 genes, transcript changes during gametogenesis were studied in detail by real-time RT-PCR. Of these, 22 genes were expressed in gametocytes, and for 15 genes transcript expression in gametocytes was increased compared to asexual blood stage parasites. Transcript levels of seven genes were particularly high in activated gametocytes, pointing at functions downstream of gametocyte transmission to the mosquito. For selected genes, a regulated expression during gametogenesis was confirmed on the protein level, using quantitative confocal microscopy. CONCLUSIONS The obtained transcriptome data demonstrate the regulations of gene expression immediately following malaria parasite transmission to the mosquito. Our findings support the identification of proteins important for sexual reproduction and further development of the mosquito midgut stages and provide insights into the genetic basis of the rapid adaption of Plasmodium to the insect vector.
Collapse
Affiliation(s)
- Che Julius Ngwa
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design. Proc Natl Acad Sci U S A 2012; 109:21486-91. [PMID: 23236186 DOI: 10.1073/pnas.1216016110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Early secretory and endoplasmic reticulum (ER)-localized proteins that are terminally misfolded or misassembled are degraded by a ubiquitin- and proteasome-mediated process known as ER-associated degradation (ERAD). Protozoan pathogens, including the causative agents of malaria, toxoplasmosis, trypanosomiasis, and leishmaniasis, contain a minimal ERAD network relative to higher eukaryotic cells, and, because of this, we observe that the malaria parasite Plasmodium falciparum is highly sensitive to the inhibition of components of this protein quality control system. Inhibitors that specifically target a putative protease component of ERAD, signal peptide peptidase (SPP), have high selectivity and potency for P. falciparum. By using a variety of methodologies, we validate that SPP inhibitors target P. falciparum SPP in parasites, disrupt the protein's ability to facilitate degradation of unstable proteins, and inhibit its proteolytic activity. These compounds also show low nanomolar activity against liver-stage malaria parasites and are also equipotent against a panel of pathogenic protozoan parasites. Collectively, these data suggest ER quality control as a vulnerability of protozoan parasites, and that SPP inhibition may represent a suitable transmission blocking antimalarial strategy and potential pan-protozoan drug target.
Collapse
|
24
|
(Not) helping Plasmodium break in. Nat Rev Microbiol 2012. [DOI: 10.1038/nrmicro2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|