1
|
Gao H, Kosins AE, Cook-Mills JM. Mechanisms for initiation of food allergy by skin pre-disposed to atopic dermatitis. Immunol Rev 2024; 326:151-161. [PMID: 39007725 DOI: 10.1111/imr.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Food allergy can be life-threatening and often develops early in life. In infants and children, loss-of-function mutations in skin barrier genes associate with food allergy. In a mouse model with skin barrier mutations (Flakey Tail, FT+/- mice), topical epicutaneous sensitization to a food allergen peanut extract (PNE), an environmental allergen Alternaria alternata (Alt) and a detergent induce food allergy and then an oral PNE-challenge induces anaphylaxis. Exposures to these allergens and detergents can occur for infants and children in a household setting. From the clinical and preclinical studies of neonates and children with skin barrier mutations, early oral exposure to allergenic foods before skin sensitization may induce tolerance to food allergens and thus protect against development of food allergy. In the FT+/- mice, oral food allergen prior to skin sensitization induce tolerance to food allergens. However, when the skin of FT+/- pups are exposed to a ubiquitous environmental allergen at the time of oral consumption of food allergens, this blocks the induction of tolerance to the food allergen and the mice can then be skin sensitized with the food allergen. The development of food allergy in neonatal FT+/- mice is mediated by altered skin responses to allergens with increases in skin expression of interleukin 33, oncostatin M and amphiregulin. The development of neonate food allergy is enhanced when born to an allergic mother, but it is inhibited by maternal supplementation with α-tocopherol. Moreover, preclinical studies suggest that food allergen skin sensitization can occur before manifestation of clinical features of atopic dermatitis. Thus, these parameters may impact design of clinical studies for food allergy, when stratifying individuals by loss of skin barrier function or maternal atopy before offspring development of atopic dermatitis.
Collapse
Affiliation(s)
- Haoran Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Allison E Kosins
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Joan M Cook-Mills
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Robinson JL, Gatford KL, Bailey DN, Roff AJ, Clifton VL, Morrison JL, Stark MJ. Preclinical models of maternal asthma and progeny outcomes: a scoping review. Eur Respir Rev 2024; 33:230174. [PMID: 38417970 PMCID: PMC10900068 DOI: 10.1183/16000617.0174-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/09/2023] [Indexed: 03/01/2024] Open
Abstract
There is an increased risk of adverse perinatal outcomes in the ∼17% of women with asthma during pregnancy. The mechanisms linking maternal asthma and adverse outcomes are largely unknown, but reflect joint effects of genetics and prenatal exposure to maternal asthma. Animal models are essential to understand the underlying mechanisms independent of genetics and comorbidities, and enable safe testing of interventions. This scoping review aimed to explore the methodology, phenotype, characteristics, outcomes and quality of published studies using preclinical maternal asthma models. MEDLINE (PubMed), Embase (Elsevier) and Web of Science were systematically searched using previously validated search strings for maternal asthma and for animal models. Two reviewers independently screened titles and abstracts, full texts, and then extracted and assessed the quality of each study using the Animal Research: Reporting of In Vivo Experiments (ARRIVE) 2.0 guidelines. Out of 3618 studies identified, 39 were eligible for extraction. Most studies were in rodents (86%) and all were models of allergic asthma. Maternal and progeny outcomes included airway hyperresponsiveness, airway resistance, inflammation, lung immune cells, lung structure and serum immunoglobulins and cytokines. Experimental design (100%), procedural details (97%) and rationale (100%) were most often reported. Conversely, data exclusion (21%), blinding (18%) and adverse events (8%) were reported in a minority of studies. Species differences in physiology and timing of development, the use of allergens not relevant to humans and a lack of comparable outcome measures may impede clinical translation. Future studies exploring models of maternal asthma should adhere to the minimum core outcomes set presented in this review.
Collapse
Affiliation(s)
- Joshua L Robinson
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - Danielle N Bailey
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Andrea J Roff
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - Vicki L Clifton
- Mater Research Institute, University of Queensland, Brisbane, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael J Stark
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Neonatal Medicine, Women's & Children's Hospital, Adelaide, Australia
| |
Collapse
|
3
|
Kawamura M, Shimono M, Suga R, Yoshino K, Fujino Y, Tsuji M, Sanefuji M, Ohga S, Hoshina T, Kusuhara K. Occupational exposure of pregnant women to refined oil and infant wheezing: Japan environment and children's study findings. Clin Exp Allergy 2023; 53:1302-1306. [PMID: 37817428 DOI: 10.1111/cea.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023]
Affiliation(s)
- Masaru Kawamura
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masayuki Shimono
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Regional Center for Japan Environment and Children's Study, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Reiko Suga
- Regional Center for Japan Environment and Children's Study, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kiyoshi Yoshino
- Regional Center for Japan Environment and Children's Study, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshihisa Fujino
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mayumi Tsuji
- Regional Center for Japan Environment and Children's Study, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayuki Hoshina
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koichi Kusuhara
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Regional Center for Japan Environment and Children's Study, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
4
|
Ramar M, Yano N, Fedulov AV. Intra-Airway Treatment with Synthetic Lipoxin A4 and Resolvin E2 Mitigates Neonatal Asthma Triggered by Maternal Exposure to Environmental Particles. Int J Mol Sci 2023; 24:ijms24076145. [PMID: 37047118 PMCID: PMC10093944 DOI: 10.3390/ijms24076145] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Particulate matter in the air exacerbates airway inflammation (AI) in asthma; moreover, prenatal exposure to concentrated urban air particles (CAPs) and diesel exhaust particles (DEPs) predisposes the offspring to asthma and worsens the resolution of AI in response to allergens. We previously tested the hypothesis that such exposure impairs the pathways of specialized proresolving mediators that are critical for resolution and found declined Lipoxin A4 (LxA4) and Resolvin E2 (RvE2) levels in the "at-risk" pups of exposed mothers. Here, we hypothesized that supplementation with synthetic LxA4 or RvE2 via the airway can ameliorate AI after allergen exposure, which has not been tested in models with environmental toxicant triggers. BALB/c newborns with an asthma predisposition resultant from prenatal exposure to CAPs and DEPs were treated once daily for 3 days with 750 ng/mouse of LxA4 or 300 ng/mouse of RvE2 through intranasal instillation, and they were tested with the intentionally low-dose ovalbumin protocol that elicits asthma in the offspring of particle-exposed mothers but not control mothers, mimicking the enigmatic maternal transmission of asthma seen in humans. LxA4 and RvE2 ameliorated the asthma phenotype and improved AI resolution, which was seen as declining airway eosinophilia, lung tissue infiltration, and proallergic cytokine levels.
Collapse
Affiliation(s)
- Mohankumar Ramar
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Naohiro Yano
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Alexey V Fedulov
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
5
|
Bloodworth JC, Hoji A, Wolff G, Mandal RK, Schmidt NW, Deshane JS, Morrow CD, Kloepfer KM, Cook-Mills JM. Dysbiotic lung microbial communities of neonates from allergic mothers confer neonate responsiveness to suboptimal allergen. FRONTIERS IN ALLERGY 2023; 4:1135412. [PMID: 36970065 PMCID: PMC10036811 DOI: 10.3389/falgy.2023.1135412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
In humans and animals, offspring of allergic mothers have increased responsiveness to allergens. This is blocked in mice by maternal supplementation with α-tocopherol (αT). Also, adults and children with allergic asthma have airway microbiome dysbiosis with increased Proteobacteria and may have decreased Bacteroidota. It is not known whether αT alters neonate development of lung microbiome dysbiosis or whether neonate lung dysbiosis modifies development of allergy. To address this, the bronchoalveolar lavage was analyzed by 16S rRNA gene analysis (bacterial microbiome) from pups of allergic and non-allergic mothers with a basal diet or αT-supplemented diet. Before and after allergen challenge, pups of allergic mothers had dysbiosis in lung microbial composition with increased Proteobacteria and decreased Bacteroidota and this was blocked by αT supplementation. We determined whether intratracheal transfer of pup lung dysbiotic microbial communities modifies the development of allergy in recipient pups early in life. Interestingly, transfer of dysbiotic lung microbial communities from neonates of allergic mothers to neonates of non-allergic mothers was sufficient to confer responsiveness to allergen in the recipient pups. In contrast, neonates of allergic mothers were not protected from development of allergy by transfer of donor lung microbial communities from either neonates of non-allergic mothers or neonates of αT-supplemented allergic mothers. These data suggest that the dysbiotic lung microbiota is dominant and sufficient for enhanced neonate responsiveness to allergen. Importantly, infants within the INHANCE cohort with an anti-inflammatory profile of tocopherol isoforms had an altered microbiome composition compared to infants with a pro-inflammatory profile of tocopherol isoforms. These data may inform design of future studies for approaches in the prevention or intervention in asthma and allergic disease early in life.
Collapse
Affiliation(s)
- Jeffery C. Bloodworth
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Aki Hoji
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Garen Wolff
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Pulmonary, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rabindra K. Mandal
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nathan W. Schmidt
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jessy S. Deshane
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Casey D. Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kirsten M. Kloepfer
- Division of Pulmonary, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joan M. Cook-Mills
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Cook-Mills JM, Emmerson LN. Epithelial barrier regulation, antigen sampling, and food allergy. J Allergy Clin Immunol 2022; 150:493-502. [DOI: 10.1016/j.jaci.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
|
7
|
Kumar M, Yano N, Fedulov AV. Gestational exposure to titanium dioxide, diesel exhaust, and concentrated urban air particles affects levels of specialized pro-resolving mediators in response to allergen in asthma-susceptible neonate lungs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:243-261. [PMID: 34802391 PMCID: PMC8785906 DOI: 10.1080/15287394.2021.2000906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Maternal gestational exposures to traffic and urban air pollutant particulates have been linked to increased risk and/or worsening asthma in children; however, mechanisms underlying this vertical transmission are not entirely understood. It was postulated that gestational particle exposure might affect the ability to elicit specialized proresolving mediator (SPM) responses upon allergen encounter in neonates. Lipidomic profiling of 50 SPMs was performed in lungs of neonates born to mice exposed to concentrated urban air particles (CAP), diesel exhaust particles (DEP), or less immunotoxic titanium dioxide particles (TiO2). While asthma-like phenotypes were induced with identical eosinophilia intensity across neonates of all particle-exposed mothers, levels of LXA4, HEPE and HETE isoforms, and HDoHe were only decreased by CAP and DEP only but not by TiO2. However, RvE2 and RvD1 were inhibited by all particles. In contrast, isomers of Maresin1 and Protectin D1 were variably elevated by CAP and DEP, whereas Protectin DX, PGE2, and TxB2 were increased in all groups. Only Protectin D1/DX, MaR1(n-3,DPA), 5(S),15(S)-DiHETE, PGE2, and RvE3 correlated with eosinophilia but the majority of other analytes, elevated or inhibited, showed no marked correlation with inflammation intensity. Evidence indicates that gestational particle exposure leads to both particle-specific and nonspecific effects on the SPM network.
Collapse
Affiliation(s)
- Mohan Kumar
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Naohiro Yano
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Alexey V. Fedulov
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| |
Collapse
|
8
|
Cook-Mills JM, Averill SH, Lajiness JD. Asthma, allergy and vitamin E: Current and future perspectives. Free Radic Biol Med 2022; 179:388-402. [PMID: 34785320 PMCID: PMC9109636 DOI: 10.1016/j.freeradbiomed.2021.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 02/03/2023]
Abstract
Asthma and allergic disease result from interactions of environmental exposures and genetics. Vitamin E is one environmental factor that can modify development of allergy early in life and modify responses to allergen after allergen sensitization. Seemingly varied outcomes from vitamin E are consistent with the differential functions of the isoforms of vitamin E. Mechanistic studies demonstrate that the vitamin E isoforms α-tocopherol and γ-tocopherol have opposite functions in regulation of allergic inflammation and development of allergic disease, with α-tocopherol having anti-inflammatory functions and γ-tocopherol having pro-inflammatory functions in allergy and asthma. Moreover, global differences in prevalence of asthma by country may be a result, at least in part, of differences in consumption of these two isoforms of tocopherols. It is critical in clinical and animal studies that measurements of the isoforms of tocopherols be determined in vehicles for the treatments, and in the plasma and/or tissues before and after intervention. As allergic inflammation is modifiable by tocopherol isoforms, differential regulation by tocopherol isoforms provide a foundation for development of interventions to improve lung function in disease and raise the possibility of early life dietary interventions to limit the development of lung disease.
Collapse
Affiliation(s)
- Joan M Cook-Mills
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Samantha H Averill
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jacquelyn D Lajiness
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
9
|
Taylor M, Pillaye J, Horsnell WGC. Inherent maternal type 2 immunity: Consequences for maternal and offspring health. Semin Immunol 2021; 53:101527. [PMID: 34838445 DOI: 10.1016/j.smim.2021.101527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
An inherent elevation in type 2 immunity is a feature of maternal and offspring immune systems. This has diverse implications for maternal and offspring biology including influencing success of pregnancy, offspring immune development and maternal and offspring ability to control infection and diseases such as allergies. In this review we provide a broad insight into how this immunological feature of pregnancy and early life impacts both maternal and offspring biology. We also suggest how understanding of this axis of immune influence is and may be utilised to improve maternal and offspring health.
Collapse
Affiliation(s)
- Matthew Taylor
- Institute of Immunology and Infection Research, Ashworth Laboratories, The Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK.
| | - Jamie Pillaye
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - William Gordon Charles Horsnell
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK; Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
10
|
Walker MT, Ferrie RP, Hoji A, Schroeder-Carter LM, Cohen JD, Schnaar RL, Cook-Mills JM. β-Glucosylceramide From Allergic Mothers Enhances Offspring Responsiveness to Allergen. FRONTIERS IN ALLERGY 2021; 2. [PMID: 34368802 PMCID: PMC8345025 DOI: 10.3389/falgy.2021.647134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In animals and humans, offspring of allergic mothers have increased responsiveness to allergen and the allergen-specificity of the offspring can be different than that of the mother. In our preclinical models, the mother's allergic responses influence development of the fetus and offspring by elevating numbers of cells in dendritic cell subsets. A major question is the identity of maternal factors of allergic mothers that alter offspring development of responsiveness to allergen. Lipids are altered during allergic responses and lipids are transported to the fetus for growth and formation of fetal membranes. We hypothesized that pro-inflammatory lipids, that are elevated in allergic mothers, are transported to the fetus and regulate fetal immune development. We demonstrate in this report that there was a significant 2-fold increase in β-glucosylceramides (βGlcCer) in allergic mothers, the fetal liver and her offspring. The βGlcCer were transported from mother's plasma, across the placenta, to the fetus and in breastmilk to the offspring. Administration of βGlcCer to non-allergic mothers was sufficient for offspring responses to allergen. Importantly, maternal administration of a clinically relevant pharmacological inhibitor of βGlcCer synthase returned βGlcCer to normal levels in the allergic mothers and her offspring and blocked the offspring increase in dendritic cell subsets and offspring allergen responsiveness. In summary, allergic mothers had increased βGlcCer that was transported to offspring and mediated increases in offspring DCs and responsiveness to allergen. These data have a significant impact on our understanding of mechanisms for development of allergies in offspring of allergic mothers and have the potential to lead to novel interventions that significantly impact risk for allergic disease early in life.
Collapse
Affiliation(s)
- Matthew T Walker
- Allergy/Immunology Division, Northwestern University School of Medicine, Chicago, IL, United States
| | - Ryan P Ferrie
- Allergy/Immunology Division, Northwestern University School of Medicine, Chicago, IL, United States
| | - Aki Hoji
- Departments of Pediatrics and Microbiology and Immunology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lindsay M Schroeder-Carter
- Departments of Pediatrics and Microbiology and Immunology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jacob D Cohen
- Departments of Pediatrics and Microbiology and Immunology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ronald L Schnaar
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joan M Cook-Mills
- Departments of Pediatrics and Microbiology and Immunology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
11
|
Fujimura T, Lum SZC, Nagata Y, Kawamoto S, Oyoshi MK. Influences of Maternal Factors Over Offspring Allergies and the Application for Food Allergy. Front Immunol 2019; 10:1933. [PMID: 31507589 PMCID: PMC6716146 DOI: 10.3389/fimmu.2019.01933] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
The prevalence of food allergy has been steadily rising worldwide with the highest incidence noted among younger children, and increasingly recognized as a growing public concern. The first known ingestion of foods often causes allergic reaction, suggesting that sensitization of offspring with food allergens may occur during pregnancy and/or through breastfeeding. This creates a milieu that shapes the neonatal immune responses to these allergens. However, the effects of maternal allergen exposure and maternal sensitization with allergens on development of allergies in offspring remain controversial. This review discusses recent advances from human data in our understanding of how maternal factors, namely, food allergens, allergen-specific immunoglobulins, cytokines, genetics, and environmental factors transferred during pregnancy or breastfeeding influence offspring allergies and how such effects may be applicable to food allergy. Based on information obtained from mouse models of asthma and food allergy, the review also dissects the mechanisms by which maternal factors, including the impact of immune complexes, transforming growth factor-β, vitamin A, and regulatory T-cell responses, contribute to the induction of neonatal tolerance vs. development of allergic responses to maternally transferred allergens.
Collapse
Affiliation(s)
- Takashi Fujimura
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States.,Hiroshima Research Center for Healthy Aging (HiHA), Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Yuka Nagata
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States.,Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Seiji Kawamoto
- Hiroshima Research Center for Healthy Aging (HiHA), Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Michiko K Oyoshi
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Walker MT, Green JE, Ferrie RP, Queener AM, Kaplan MH, Cook-Mills JM. Mechanism for initiation of food allergy: Dependence on skin barrier mutations and environmental allergen costimulation. J Allergy Clin Immunol 2018; 141:1711-1725.e9. [PMID: 29454836 PMCID: PMC5938139 DOI: 10.1016/j.jaci.2018.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Mechanisms for the development of food allergy in neonates are unknown but clearly linked in patient populations to a genetic predisposition to skin barrier defects. Whether skin barrier defects contribute functionally to development of food allergy is unknown. OBJECTIVE The purpose of the study was to determine whether skin barrier mutations, which are primarily heterozygous in patient populations, contribute to the development of food allergy. METHODS Mice heterozygous for the filaggrin (Flg)ft and Tmem79ma mutations were skin sensitized with environmental and food allergens. After sensitization, mice received oral challenge with food allergen, and then inflammation, inflammatory mediators, and anaphylaxis were measured. RESULTS We define development of inflammation, inflammatory mediators, and food allergen-induced anaphylaxis in neonatal mice with skin barrier mutations after brief concurrent cutaneous exposure to food and environmental allergens. Moreover, neonates of allergic mothers have increased responses to suboptimal sensitization with food allergens. Importantly, responses to food allergens by these neonatal mice were dependent on genetic defects in skin barrier function and on exposure to environmental allergens. ST2 blockade during skin sensitization inhibited the development of anaphylaxis, antigen-specific IgE, and inflammatory mediators. Neonatal anaphylactic responses and antigen-specific IgE were also inhibited by oral pre-exposure to food allergen, but interestingly, this was blunted by concurrent pre-exposure of the skin to environmental allergen. CONCLUSION These studies uncover mechanisms for food allergy sensitization and anaphylaxis in neonatal mice that are consistent with features of human early-life exposures and genetics in patients with clinical food allergy and demonstrate that changes in barrier function drive development of anaphylaxis to food allergen.
Collapse
Affiliation(s)
- Matthew T Walker
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Jeremy E Green
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ryan P Ferrie
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ashley M Queener
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Mark H Kaplan
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Ind
| | - Joan M Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
13
|
Abdala-Valencia H, Soveg F, Cook-Mills JM. γ-Tocopherol supplementation of allergic female mice augments development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates. Am J Physiol Lung Cell Mol Physiol 2016; 310:L759-71. [PMID: 26801566 DOI: 10.1152/ajplung.00301.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
γ-Tocopherol increases responses to allergen challenge in allergic adult mice, but it is not known whether γ-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether γ-tocopherol augments development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with γ-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to allergen challenge. The γ-tocopherol supplementation of allergic female mice increased the numbers of eosinophils twofold in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also about a twofold increase in pup lung CD11b(+) subsets of CD11c(+) dendritic cells and in numbers of these dendritic cells expressing the transcription factor IRF4. There was no change in several CD11b(-) dendritic cell subsets. Furthermore, maternal supplementation with γ-tocopherol increased the number of fetal liver CD11b(+)CD11c(+) dendritic cells twofold in utero. In the pups, γ-tocopherol increased lung expression of the inflammatory mediators CCL11, amphiregulin, activin A, and IL-5. In conclusion, maternal supplementation with γ-tocopherol increased fetal development of subsets of dendritic cells that are critical for allergic responses and increased development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with γ-tocopherol in prenatal vitamins.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Frank Soveg
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Joan M Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
14
|
Abstract
Asthma occurs as a result of complex interactions of environmental and genetic factors. Clinical studies and animal models of asthma indicate offspring of allergic mothers have increased risk of development of allergies. Environmental factors including stress-induced corticosterone and vitamin E isoforms during pregnancy regulate the risk for offspring development of allergy. In this review, we discuss mechanisms for the development of allergic disease early in life, environmental factors that may impact the development of risk for allergic disease early in life, and how the variation in global prevalence of asthma may be explained, at least in part, by some environmental components.
Collapse
|
15
|
Krauss-Etschmann S, Meyer KF, Dehmel S, Hylkema MN. Inter- and transgenerational epigenetic inheritance: evidence in asthma and COPD? Clin Epigenetics 2015; 7:53. [PMID: 26052354 PMCID: PMC4456695 DOI: 10.1186/s13148-015-0085-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022] Open
Abstract
Evidence is now emerging that early life environment can have lifelong effects on metabolic, cardiovascular, and pulmonary function in offspring, a concept also known as fetal or developmental programming. In mammals, developmental programming is thought to occur mainly via epigenetic mechanisms, which include DNA methylation, histone modifications, and expression of non-coding RNAs. The effects of developmental programming can be induced by the intrauterine environment, leading to intergenerational epigenetic effects from one generation to the next. Transgenerational epigenetic inheritance may be considered when developmental programming is transmitted across generations that were not exposed to the initial environment which triggered the change. So far, inter- and transgenerational programming has been mainly described for cardiovascular and metabolic disease risk. In this review, we discuss available evidence that epigenetic inheritance also occurs in respiratory diseases, using asthma and chronic obstructive pulmonary disease (COPD) as examples. While multiple epidemiological as well as animal studies demonstrate effects of 'toxic' intrauterine exposure on various asthma-related phenotypes in the offspring, only few studies link epigenetic marks to the observed phenotypes. As epigenetic marks may distinguish individuals most at risk of later disease at early age, it will enable early intervention strategies to reduce such risks. To achieve this goal further, well designed experimental and human studies are needed.
Collapse
Affiliation(s)
- Susanne Krauss-Etschmann
- />Comprehensive Pneumology Center, Helmholtz Center Munich and Children’s Hospital of Ludwig-Maximilians University, Max-Lebsche-Platz 31, 81377 Munich, Germany
- />Priority Area Asthma & Allergy, Leibniz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel, Airway Research Center North, Member of the German Center for Lung Research, Parkallee 1-40, Borstel, Germany
| | - Karolin F Meyer
- />Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
- />University of Groningen, GRIAC Research Institute, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Stefan Dehmel
- />Comprehensive Pneumology Center, Helmholtz Center Munich and Children’s Hospital of Ludwig-Maximilians University, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Machteld N Hylkema
- />Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
- />University of Groningen, GRIAC Research Institute, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| |
Collapse
|
16
|
López-Expósito I, Srivastava KD, Birmingham N, Castillo A, Miller RL, Li XM. Maternal Antiasthma Simplified Herbal Medicine Intervention therapy prevents airway inflammation and modulates pulmonary innate immune responses in young offspring mice. Ann Allergy Asthma Immunol 2014; 114:43-51.e1. [PMID: 25465920 DOI: 10.1016/j.anai.2014.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Maternal asthma is a risk factor for asthma in offspring; however, transmission of the risk for allergic asthma without direct offspring sensitization has not been explored. OBJECTIVE To determine whether offspring from mothers with ovalbumin (OVA)-sensitized asthma would develop airway disease at first-ever exposure to OVA and whether preconception maternal treatment with the Antiasthma Simplified Herbal Medicine Intervention (ASHMI) or dexamethasone (DEX) could modify this risk in offspring. METHODS Female BALB/c mice (F0) with OVA-induced asthma were generated using established protocols. Mice with asthma were treated with ASHMI, DEX, or water for 6 to 7 weeks. Naive mice served as controls. Subsequently, mice were mated. Twelve-day-old F1 offspring received 3 consecutive intranasal low- or high-dose OVA exposures without sensitization. Forty-eight hours later, airway inflammation, mucus hypersecretion, serum antibodies, and cytokines were evaluated. RESULTS Offspring from OVA-sensitized mothers, but not naive mothers, showed eosinophilic and neutrophilic airway inflammation, and mucus hyperplasia after OVA exposure and he presence of OVA-specific IgG1 and IgG2a. Offspring of ASHMI- and DEX-treated mothers showed decreased airway inflammation and mucus hypersecretion after low-dose OVA (P < .05-.001 for the 2 comparisons vs offspring of OVA/Sham mothers). Offspring of ASHMI-treated, but not DEX-treated, mothers were protected after the high-dose OVA challenge (P < .05-.01 vs offspring OVA/Sham). Maternal ASHMI therapy was associated with increased IgG2a (P < .01 vs offspring of OVA/Sham mothers) and decreased bronchoalveolar lavage fluid CXCL-1 and eotaxin-1 levels (P < .01 and P < .05, respectively, vs offspring of OVA/Sham mothers). CONCLUSION Offspring of mothers with OVA-induced asthma developed airway inflammation and mucus to first-ever OVA exposure without prior sensitization. Maternal therapy with ASHMI was superior to DEX in decreasing offspring susceptibility to airway disease and could be a strategy to lower asthma prevalence.
Collapse
Affiliation(s)
- Iván López-Expósito
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York; Department of Bioactivity and Food Analysis, Institute in Food Science Research (CIAL), CSIC-UAM, Madrid, Spain
| | - Kamal D Srivastava
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York.
| | - Neil Birmingham
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York
| | - Alexandra Castillo
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York
| | - Rachel L Miller
- Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Columbia University, New York, New York
| | - Xiu-Min Li
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
17
|
Lim R, Fedulov AV, Kobzik L. Maternal stress during pregnancy increases neonatal allergy susceptibility: role of glucocorticoids. Am J Physiol Lung Cell Mol Physiol 2014; 307:L141-8. [PMID: 24838749 PMCID: PMC4101791 DOI: 10.1152/ajplung.00250.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 05/13/2014] [Indexed: 01/29/2023] Open
Abstract
We sought to test experimentally whether maternal stress can promote susceptibility to development of asthma-like allergic airways disease in offspring. Normal pregnant mice (day 15) were subjected to a single restraint stress exposure. We subsequently tested their offspring for the development of airway hyperreactivity (AHR) and allergic airway inflammation (AI), after an intentionally suboptimal sensitization protocol. The offspring of stressed mothers showed levels of AI and enhanced airway responses to methacholine comparable to those seen in fully sensitized and challenged positive control animals; in contrast, minimal effects were seen in control offspring. Restraint stress caused a rapid and large increase in plasma corticosterone levels. Maternal treatment with dexamethasone on day 15 of pregnancy mimicked the stress effect and reproduced the AI and AHR outcomes, whereas blockade of the stress-induced corticosterone surge with metyrapone pretreatment of pregnant mice abrogated the effect. We conclude that stress-triggered glucocorticoids during pregnancy can increase susceptibility to allergy in offspring. Because inflammation typically includes a stress hormone response, the results also suggest a common pathway by which various injurious exposures during pregnancy might increase offspring susceptibility to asthma.
Collapse
Affiliation(s)
- Robert Lim
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Alexey V Fedulov
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Lester Kobzik
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| |
Collapse
|
18
|
Abdala-Valencia H, Berdnikovs S, Soveg FW, Cook-Mills JM. α-Tocopherol supplementation of allergic female mice inhibits development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates. Am J Physiol Lung Cell Mol Physiol 2014; 307:L482-96. [PMID: 25015974 DOI: 10.1152/ajplung.00132.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
α-Tocopherol blocks responses to allergen challenge in allergic adult mice, but it is not known whether α-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether α-tocopherol blocked development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with α-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to the allergen challenge, and α-tocopherol supplementation of allergic female mice resulted in a dose-dependent reduction in eosinophils in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also a reduction in pup lung CD11b(+) dendritic cell subsets that are critical to development of allergic responses, but there was no change in several CD11b(-) dendritic cell subsets. Furthermore, maternal supplementation with α-tocopherol reduced the number of fetal liver CD11b(+) dendritic cells in utero. In the pups, there was reduced allergen-induced lung mRNA expression of IL-4, IL-33, TSLP, CCL11, and CCL24. Cross-fostering pups at the time of birth demonstrated that α-tocopherol had a regulatory function in utero. In conclusion, maternal supplementation with α-tocopherol reduced fetal development of subsets of dendritic cells that are critical for allergic responses and reduced development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with α-tocopherol.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sergejs Berdnikovs
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Frank W Soveg
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Joan M Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
19
|
Mikhaylova L, Zhang Y, Kobzik L, Fedulov AV. Link between epigenomic alterations and genome-wide aberrant transcriptional response to allergen in dendritic cells conveying maternal asthma risk. PLoS One 2013; 8:e70387. [PMID: 23950928 PMCID: PMC3741290 DOI: 10.1371/journal.pone.0070387] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/19/2013] [Indexed: 12/23/2022] Open
Abstract
We investigated the link between epigenome-wide methylation aberrations at birth and genomic transcriptional changes upon allergen sensitization that occur in the neonatal dendritic cells (DC) due to maternal asthma. We previously demonstrated that neonates of asthmatic mothers are born with a functional skew in splenic DCs that can be seen even in allergen-naïve pups and can convey allergy responses to normal recipients. However, minimal-to-no transcriptional or phenotypic changes were found to explain this alteration. Here we provide in-depth analysis of genome-wide DNA methylation profiles and RNA transcriptional (microarray) profiles before and after allergen sensitization. We identified differentially methylated and differentially expressed loci and performed manually-curated matching of methylation status of the key regulatory sequences (promoters and CpG islands) to expression of their respective transcripts before and after sensitization. We found that while allergen-naive DCs from asthma-at-risk neonates have minimal transcriptional change compared to controls, the methylation changes are extensive. The substantial transcriptional change only becomes evident upon allergen sensitization, when it occurs in multiple genes with the pre-existing epigenetic alterations. We demonstrate that maternal asthma leads to both hyper- and hypomethylation in neonatal DCs, and that both types of events at various loci significantly overlap with transcriptional responses to allergen. Pathway analysis indicates that approximately 1/2 of differentially expressed and differentially methylated genes directly interact in known networks involved in allergy and asthma processes. We conclude that congenital epigenetic changes in DCs are strongly linked to altered transcriptional responses to allergen and to early-life asthma origin. The findings are consistent with the emerging paradigm that asthma is a disease with underlying epigenetic changes.
Collapse
Affiliation(s)
- Lyudmila Mikhaylova
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yiming Zhang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lester Kobzik
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Alexey V. Fedulov
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Royer CM, Rudolph K, Barrett EG. The neonatal susceptibility window for inhalant allergen sensitization in the atopically predisposed canine asthma model. Immunology 2013. [PMID: 23181409 DOI: 10.1111/imm.12043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Allergic asthma often begins in early life and, although many risk factors have been enumerated, the specific factors that initiate disease progression in an individual remain unclear. Using our dog model of early life allergen inhalation, we tested the hypothesis that the atopically biased neonatal immune system would exhibit tolerance to ragweed if allowed to mature normally before exposure or artificially through innate immune stimulation with early life exposure. Dogs were subjected to a series of inhalational ragweed exposures from 1 to 20 weeks old, with or without inhalation of a Toll-like receptor 4 (TLR4) agonist (CRX-527), or from 13 to 31 weeks old. Serum allergen-specific antibody response was assessed at 4, 8 and 20 weeks after the last sensitizing exposure. At 24 or 35 weeks old, airway hyper-responsiveness to methacholine and ragweed challenges and pulmonary inflammation by bronchoalveolar lavage were tested 1 and 4 days after ragweed challenge at 28 or 39 weeks old. Allergen-free immune maturation resulted in no airway hyper-responsiveness and very little ragweed-specific IgE relative to the control group, but eosinophilia developed upon ragweed challenge. TLR4 agonism yielded no airway hyper-responsiveness, but a strong airway neutrophilia developed upon ragweed challenge. Our data indicate that an atopic predisposition creates a critical window in which allergen exposure can lead to an asthmatic phenotype. Allergen-free immune maturation may lead to allergen tolerance. TLR4 agonism before early life allergen exposure may abrogate the development of allergen-specific bronchonconstriction, but allergen-specific pulmonary inflammation remains a strong concern.
Collapse
Affiliation(s)
- Christopher M Royer
- Respiratory Immunology and Asthma Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | | | | |
Collapse
|
21
|
Pucheu-Haston CM, Copeland LB, Haykal-Coates N, Ward MDW. Maternal respiratory sensitization and gestational allergen exposure does not affect subsequent pup responses to homologous or heterologous allergen. J Immunotoxicol 2010; 7:57-67. [PMID: 19916739 DOI: 10.3109/15476910903373440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evidence suggests that the predisposition towards atopy begins early in life. Maternal allergy has been associated with an increased risk of the development of allergic disease in offspring. Some studies suggest that the development of childhood atopy may also be influenced by prenatal allergen exposure. In this study, a respiratory allergen exposure model was used to determine the impact of maternal sensitization (with or without additional exposures during pregnancy) on subsequent pup responses to homologous or heterologous allergen. Female BALB/c mice received two intratracheal aspiration (IA) exposures to Metarhizium anisopliae crude antigen (MACA) or Hank's buffered salt solution (HBSS) prior to breeding. Some mice also received three additional exposures during pregnancy. Control mothers did not receive treatment. Young adult offspring received three IA exposures to MACA, house dust mite extract (HDM) or HBSS. Offspring sensitized as young adults to either HDM or MACA developed an airway inflammatory response, including increased bronchoalveolar lavage fluid lactate dehydrogenase activity, total protein and total and differential cell counts compared to offspring exposed to HBSS. Increased airway responsiveness to methacholine was observed in pups treated with HDM but not with MACA. Maternal sensitization status (with or without gestational allergen exposure) had no effect on offspring response to either MACA or HDM. In conclusion, this study demonstrates that IA administration of MACA or HDM extract to young adult BALB/c mice induces the development of an inflammatory airway response. In contrast to previous reports, neither maternal sensitization nor gestational allergen exposure could be demonstrated to have a clear effect on offspring sensitization. This discrepancy may be a function of the respiratory sensitization and exposure protocol used in this study, which mimics natural sensitization more closely than do parenteral routes of exposure.
Collapse
Affiliation(s)
- Cherie M Pucheu-Haston
- Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27711, USA
| | | | | | | |
Collapse
|
22
|
|
23
|
Fedulov AV, Kobzik L. Immunotoxicologic analysis of maternal transmission of asthma risk. J Immunotoxicol 2009; 5:445-52. [PMID: 19404877 DOI: 10.1080/15476910802481765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Asthma has origins in early life. Epidemiological studies show that maternal, more than paternal, asthma significantly increases a child's risk of developing the disease. Experimental animal models exist which reproduce the increased susceptibility to asthma seen in human studies, and allow analysis of immunotoxic mechanisms that may contribute to neonatal allergy. In addition to maternal asthma, chemically-induced skin contact hypersensitivity or exposure during pregnancy of non-allergic females to certain environmental agents, e.g., air pollution particles, can also result in increased susceptibility to asthma in their offspring. We review here experimental models of maternal transmission of asthma risk, the progress to date in identifying mechanisms, and potential directions for future research.
Collapse
Affiliation(s)
- Alexey V Fedulov
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
24
|
Abstract
Maternal asthma significantly increases the risk of asthma in offspring, but the mechanisms remain poorly defined. We review animal models used to study the maternal effect, focusing on a murine model developed in our laboratory. Mother mice rendered allergic to ovalbumin produce offspring that are more susceptible to allergic sensitization, seen as airway hyperresponsiveness and allergic airway inflammation after a sensitization protocol, which has minimal effects on newborns from normal mothers. Mechanistic analyses identify a role for interleukin-4 (based on pre-mating injection of neutralizing antibodies), dendritic cells and allergen-specific T cells (based on adoptive transfer experiments). Other maternal exposures (e.g. pollutant exposure and non-pulmonary allergy) can increase asthma susceptibility in offspring. This observation implies that the maternal transmission of asthma represents a final common pathway to various types of inflammatory stimuli. Identification of the shared molecular mechanisms in these models may allow better prevention and therapy. Current knowledge, gaps in knowledge and future directions are discussed.
Collapse
Affiliation(s)
- Robert H Lim
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
| | | |
Collapse
|