1
|
Nevarez-Mejia J, Jin YP, Pickering H, Parmar R, Valenzuela NM, Sosa RA, Heidt S, Fishbein GA, Rozengurt E, Baldwin WM, Fairchild RL, Reed EF. Human leukocyte antigen class I antibody-activated endothelium promotes CD206+ M2 macrophage polarization and MMP9 secretion through TLR4 signaling and P-selectin in a model of antibody-mediated rejection and allograft vasculopathy. Am J Transplant 2024; 24:406-418. [PMID: 38379280 PMCID: PMC11110958 DOI: 10.1016/j.ajt.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 02/22/2024]
Abstract
HLA donor-specific antibodies (DSA) elicit alloimmune responses against the graft vasculature, leading to endothelial cell (EC) activation and monocyte infiltration during antibody-mediated rejection (AMR). AMR promotes chronic inflammation and remodeling, leading to thickening of the arterial intima termed transplant vasculopathy or cardiac allograft vasculopathy (CAV) in heart transplants. Intragraft-recipient macrophages serve as a diagnostic marker in AMR; however, their polarization and function remain unclear. In this study, we utilized an in vitro Transwell coculture system to explore the mechanisms of monocyte-to-macrophage polarization induced by HLA I DSA-activated ECs. Anti-HLA I (IgG or F(ab')2) antibody-activated ECs induced the polarization of M2 macrophages with increased CD206 expression and MMP9 secretion. However, inhibition of TLR4 signaling or PSGL-1-P-selectin interactions significantly decreased both CD206 and MMP9. Monocyte adherence to Fc-P-selectin coated plates induced M2 macrophages with increased CD206 and MMP9. Moreover, Fc-receptor and IgG interactions synergistically enhanced active-MMP9 in conjunction with P-selectin. Transcriptomic analysis of arteries from DSA+CAV+ rejected cardiac allografts and multiplex-immunofluorescent staining illustrated the expression of CD68+CD206+CD163+MMP9+ M2 macrophages within the neointima of CAV-affected lesions. These findings reveal a novel mechanism linking HLA I antibody-activated endothelium to the generation of M2 macrophages which secrete vascular remodeling proteins contributing to AMR and CAV pathogenesis.
Collapse
Affiliation(s)
- Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Rajesh Parmar
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, California, USA
| | - William M Baldwin
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, Ohio, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
2
|
He M, Borlak J. A genomic perspective of the aging human and mouse lung with a focus on immune response and cellular senescence. Immun Ageing 2023; 20:58. [PMID: 37932771 PMCID: PMC10626779 DOI: 10.1186/s12979-023-00373-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The aging lung is a complex process and influenced by various stressors, especially airborne pathogens and xenobiotics. Additionally, a lifetime exposure to antigens results in structural and functional changes of the lung; yet an understanding of the cell type specific responses remains elusive. To gain insight into age-related changes in lung function and inflammaging, we evaluated 89 mouse and 414 individual human lung genomic data sets with a focus on genes mechanistically linked to extracellular matrix (ECM), cellular senescence, immune response and pulmonary surfactant, and we interrogated single cell RNAseq data to fingerprint cell type specific changes. RESULTS We identified 117 and 68 mouse and human genes linked to ECM remodeling which accounted for 46% and 27%, respectively of all ECM coding genes. Furthermore, we identified 73 and 31 mouse and human genes linked to cellular senescence, and the majority code for the senescence associated secretory phenotype. These cytokines, chemokines and growth factors are primarily secreted by macrophages and fibroblasts. Single-cell RNAseq data confirmed age-related induced expression of marker genes of macrophages, neutrophil, eosinophil, dendritic, NK-, CD4+, CD8+-T and B cells in the lung of aged mice. This included the highly significant regulation of 20 genes coding for the CD3-T-cell receptor complex. Conversely, for the human lung we primarily observed macrophage and CD4+ and CD8+ marker genes as changed with age. Additionally, we noted an age-related induced expression of marker genes for mouse basal, ciliated, club and goblet cells, while for the human lung, fibroblasts and myofibroblasts marker genes increased with age. Therefore, we infer a change in cellular activity of these cell types with age. Furthermore, we identified predominantly repressed expression of surfactant coding genes, especially the surfactant transporter Abca3, thus highlighting remodeling of surfactant lipids with implications for the production of inflammatory lipids and immune response. CONCLUSION We report the genomic landscape of the aging lung and provide a rationale for its growing stiffness and age-related inflammation. By comparing the mouse and human pulmonary genome, we identified important differences between the two species and highlight the complex interplay of inflammaging, senescence and the link to ECM remodeling in healthy but aged individuals.
Collapse
Affiliation(s)
- Meng He
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
3
|
Yin Y, Zhang H, Sun L, Han Q, Zheng M, Chen H, Fei S, Tan R, Ju X, Wang Z, Gu M. Association between fibrosis-related gene polymorphism and long-term allograft outcome in renal transplant recipients. BMC Med Genomics 2023; 16:255. [PMID: 37867197 PMCID: PMC10591404 DOI: 10.1186/s12920-023-01686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Renal allograft fibrosis is one of characteristic causes of long-term renal function loss. The purpose of our study is to investigate the association between fibrosis-related genes single nucleotide polymorphism (SNPs) and kidney function in 5 years after kidney transplantation. METHODS A total of 143 recipients were eligible for screening with 5-year follow-up information and SNP sequencing information from blood samples were included in this study. Minor Allele Frequency (MAF) and Hardy-Weinberg Equilibrium (HWE) analysis was conducted to identify tagger single-nucleotide polymorphisms (SNPs) and haplotypes. SNPs associated with the fifth year chronic kidney disease (CKD) staging were screened by SPSS and the "SNPassoc" package in RStudio and used for subsequent prediction model construction. RESULTS A total of 275 renal transplant-related SNPs identified after target sequencing analysis. 64 Tagger SNPs were selected, and two SNPs (rs13969 and rs243849) were statistically significant for stage of CKD in 5 years. Finally, a model based on Gender, Age, rs1396, and rs243849 was constructed by multivariate linear regression analysis. Additionally, this model has a good performance in predicting uremia five years after kidney transplantation. CONCLUSION Two SNPs (rs13969 and rs243849) were identified to be significantly associated with long-term renal allograft function. Based on this, a prediction model for long-term allograft function was established containing Gender, Age, rs1396, and rs243849. However, an independent cohort should be enrolled to validate the predicting performance.
Collapse
Affiliation(s)
- Yu Yin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Han Zhang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianguang Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaobing Ju
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Min Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Patrichi G, Patrichi A, Satala CB, Sin AI. Matrix Metalloproteinases and Heart Transplantation-A Pathophysiological and Clinical View. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1295. [PMID: 37512106 PMCID: PMC10383867 DOI: 10.3390/medicina59071295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Heart transplantation is undergoing a continuous development, with rates of success increasing substantially due to advances in immunosuppressive therapy and surgical techniques. The most worrying complication occurring after cardiac transplantation is graft rejection, a phenomenon that is much affected by matrix metalloproteinases (MMPs), with the role of these proteases in the cardiac remodeling process being well established in the literature. A detailed investigation of the association between MMPs and cardiac rejection is necessary for the future development of more targeted therapies in transplanted patients, and to discover prognostic serum and immunohistochemical markers that will lead to more organized therapeutic management in these patients. The aim of this review is therefore to highlight the main MMPs relevant to cardiovascular pathology, with particular emphasis on those involved in complications related to heart transplantation, including cardiac graft rejection.
Collapse
Affiliation(s)
- Gabriela Patrichi
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
| | - Andrei Patrichi
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
| | - Catalin-Bogdan Satala
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Anca Ileana Sin
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
| |
Collapse
|
5
|
Zingaropoli MA, Latronico T, Pasculli P, Masci GM, Merz R, Ciccone F, Dominelli F, Del Borgo C, Lichtner M, Iafrate F, Galardo G, Pugliese F, Panebianco V, Ricci P, Catalano C, Ciardi MR, Liuzzi GM, Mastroianni CM. Tissue Inhibitor of Matrix Metalloproteinases-1 (TIMP-1) and Pulmonary Involvement in COVID-19 Pneumonia. Biomolecules 2023; 13:1040. [PMID: 37509076 PMCID: PMC10377146 DOI: 10.3390/biom13071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Background: The aim of the study was to longitudinally evaluate the association between MMP-2, MMP-9, TIMP-1 and chest radiological findings in COVID-19 patients. Methods: COVID-19 patients were evaluated based on their hospital admission (baseline) and three months after hospital discharge (T post) and were stratified into ARDS and non-ARDS groups. As a control group, healthy donors (HD) were enrolled. Results: At the baseline, compared to HD (n = 53), COVID-19 patients (n = 129) showed higher plasma levels of MMP-9 (p < 0.0001) and TIMP-1 (p < 0.0001) and the higher plasma activity of MMP-2 (p < 0.0001) and MMP-9 (p < 0.0001). In the ARDS group, higher plasma levels of MMP-9 (p = 0.0339) and TIMP-1 (p = 0.0044) and the plasma activity of MMP-2 (p = 0.0258) and MMP-9 (p = 0.0021) compared to non-ARDS was observed. A positive correlation between the plasma levels of TIMP-1 and chest computed tomography (CT) score (ρ = 0.2302, p = 0.0160) was observed. At the T post, a reduction in plasma levels of TIMP-1 (p < 0.0001), whereas an increase in the plasma levels of MMP-9 was observed (p = 0.0088). Conclusions: The positive correlation between TIMP-1 with chest CT scores highlights its potential use as a marker of fibrotic burden. At T post, the increase in plasma levels of MMP-9 and the reduction in plasma levels of TIMP-1 suggested that inflammation and fibrosis resolution were still ongoing.
Collapse
Affiliation(s)
- Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giorgio Maria Masci
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberta Merz
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federica Ciccone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federica Dominelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cosmo Del Borgo
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza, University of Rome, 04100 Latina, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza, University of Rome, 04100 Latina, Italy
- Department of Neurosciences Mental Health and Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Franco Iafrate
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Gioacchino Galardo
- Medical Emergency Unit, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Francesco Pugliese
- Department of Specialist Surgery and Organ Transplantation "Paride Stefanini", Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Valeria Panebianco
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Paolo Ricci
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Unit of Emergency Radiology, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
7
|
Matrix Metalloproteinases on Severe COVID-19 Lung Disease Pathogenesis: Cooperative Actions of MMP-8/MMP-2 Axis on Immune Response through HLA-G Shedding and Oxidative Stress. Biomolecules 2022; 12:biom12050604. [PMID: 35625532 PMCID: PMC9138255 DOI: 10.3390/biom12050604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with COVID-19 predominantly have a respiratory tract infection and acute lung failure is the most severe complication. While the molecular basis of SARS-CoV-2 immunopathology is still unknown, it is well established that lung infection is associated with hyper-inflammation and tissue damage. Matrix metalloproteinases (MMPs) contribute to tissue destruction in many pathological situations, and the activity of MMPs in the lung leads to the release of bioactive mediators with inflammatory properties. We sought to characterize a scenario in which MMPs could influence the lung pathogenesis of COVID-19. Although we observed high diversity of MMPs in lung tissue from COVID-19 patients by proteomics, we specified the expression and enzyme activity of MMP-2 in tracheal-aspirate fluid (TAF) samples from intubated COVID-19 and non-COVID-19 patients. Moreover, the expression of MMP-8 was positively correlated with MMP-2 levels and possible shedding of the immunosuppression mediator sHLA-G and sTREM-1. Together, overexpression of the MMP-2/MMP-8 axis, in addition to neutrophil infiltration and products, such as reactive oxygen species (ROS), increased lipid peroxidation that could promote intensive destruction of lung tissue in severe COVID-19. Thus, the inhibition of MMPs can be a novel target and promising treatment strategy in severe COVID-19.
Collapse
|
8
|
Corelattions Between CD31, CD68, MMP-2 and MMP-9 Expression in Allograft Cardiac Rejection – Immunohistochemical Study. ARS MEDICA TOMITANA 2020. [DOI: 10.2478/arsm-2019-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction. The cardiac allograft rejections from the post-transplant period are attributable to the acute cellular rejection monitored by multiple endomyocardial biopsies. Compared to this, humoral rejection remains a matter of debate, with multiple therapeutic strategies, poor prognosis, and persisting uncertainty about diagnostic criteria. Acute allograft rejection is associated with significant modifications of the extracellular matrix compartment mainly regulated by matrix metalloproteinases (MMPs). In this context, the aim of this study was to evaluate the expression of MMP-2 and -9 and CD31, CD68 (endothelial and histiocytic markers) and the correlations between them using immunohistochemistry, in patients with cardiac allografts.
Materials and methods. Tissue fragments were obtained by endomyocardial biopsy from 5 patients with allograft heart transplant, 2 in the medium post-transplant phase and 2 in late phase. After identifying and characterizing the morphological context the probes were processed by standard immunohistochemical technique using anti-MMP-2 and anti-MMP-9 antibodies (Santa Cruz Biotechnology, Inc.) and anti-CD31, anti-CD68 antibodies (Sigma). The samples were examined using the Olympus BX40 microscope with an Olympus E330 camera attached.
Results and discussions. Sample examination revealed in all 4 cases the lack of IR (-) for CD31 and weak IR (+) for CD68 compared to MMPs, where we found moderate IR (++) for MMP-9 and weak IR (+) for MMP-2. These aspects complets the histological lesional aspects of these cases, indicating the lack of acute rejection. In conclusion, CD31 and CD68 IR correlated with MMPs IR (especially MMP-9) appear to represent predictive markers for cardiac allograft rejection and require further studies.
Collapse
|
9
|
Gelatinase B/matrix metalloproteinase-9 and other neutrophil proteases switch off interleukin-2 activity. Biochem J 2019; 476:2191-2208. [PMID: 31262730 DOI: 10.1042/bcj20180382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022]
Abstract
Interleukin 2 (IL-2) is critical for T cell development and homeostasis, being a key regulator of adaptive immune responses in autoimmunity, hypersensitivity reactions and cancer. Therefore, its abundance in serum and peripheral tissues needs tight control. Here, we described a new mechanism contributing to the immunobiology of IL-2. We demonstrated, both in biochemical and cell-based assays, that IL-2 is subject to proteolytic processing by neutrophil matrix metalloproteinase-9 (MMP-9). IL-2 fragments produced after cleavage by MMP-9 remained linked by a disulfide bond and displayed a reduced affinity for all IL-2 receptor subunits and a distinct pattern and timing of signal transduction. Stimulation of IL-2-dependent cells, including murine CTLL-2 and primary human regulatory T cells, with cleaved IL-2 resulted in significantly decreased proliferation. The concerted action of neutrophil proteases destroyed IL-2. Our data suggest that in neutrophil-rich inflammatory conditions in vivo, neutrophil MMP-9 may reduce the abundance of signaling-competent IL-2 and generate a fragment that competes with IL-2 for receptor binding, whereas the combined activity of granulocyte proteases has the potential to degrade and thus eliminate bioavailable IL-2.
Collapse
|
10
|
Gounko NV, Martens E, Opdenakker G, Rybakin V. Thymocyte development in the absence of matrix metalloproteinase-9/gelatinase B. Sci Rep 2016; 6:29852. [PMID: 27432536 PMCID: PMC4949482 DOI: 10.1038/srep29852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/24/2016] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMP) play critical roles in a variety of immune reactions by facilitating cell migration, and affect cell communication by processing both cytokines and cell surface receptors. Based on published data indicating that MMP-9 is upregulated upon T cell activation and also in the thymus upon the induction of negative selection, we investigated the contribution of MMP-9 into mouse T cell development and differentiation in the thymus. Our data suggest that MMP-9 deficiency does not result in major abnormalities in the development of any conventionally selected or agonist selected subsets and does not interfere with thymocyte apoptosis and clearance, and that MMP-9 expression is not induced in immature T cells at any stage of their thymic development.
Collapse
Affiliation(s)
- Natalia V Gounko
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium.,Electron Microscopy Platform, Center for the Biology of Disease VIB and Center for Human Genetics KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Vasily Rybakin
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium
| |
Collapse
|
11
|
Novel targets for Spinal Cord Injury related neuropathic pain. Ann Neurosci 2014; 18:162-7. [PMID: 25205949 PMCID: PMC4116958 DOI: 10.5214/ans.0972.7531.1118413] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 08/26/2011] [Accepted: 09/05/2011] [Indexed: 12/16/2022] Open
Abstract
Millions of people suffer from spinal cord injury (SCI) with little known effective clinical therapy. Neuropathic pain (NP) is often accompanied with SCI, making clinical treatment challenging. Even though the key mediators in the development of NP have been discovered, the pathogenesis is still unclear. Some of the key mediators in the sustenance of NP include the inflammatory processes, cannabinoid receptors, matrix metalloproteases, and their tissue inhibitors. Animal models have shown promising results with modulation of these mediators, yet the clinical models have been unsuccessful. One such study with matrix metalloproteases (MMPs) has yielded encouraging results. The relationship between MMPs and their tissue inhibitors (TIMPs) plays a significant role in the pathogenesis and recovery of SCI and the CNS. Key factors that lead to the functional consequences of MMP activity are cellular localization, tissue distribution, and temporal pattern of MMP expression. Studies concluding that MMPs can be seen as contributors of tissue damage and as contributors in the repair mechanisms have provided a need to reexamine their roles after acute and chronic neuropathic pain
Collapse
|
12
|
Grigoryev DN, Dalal J, Becker ML, Ye SQ. Combined meta-analysis of systemic effects of allogeneic stem cell transplantation and systemic sclerosis. BMC HEMATOLOGY 2014; 14:7. [PMID: 24656173 PMCID: PMC4021691 DOI: 10.1186/2052-1839-14-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 03/06/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chronic graft-versus-host disease (cGVHD) is a major factor of morbidity and mortality for allogeneic stem cell transplantation (aSCT). The skin and internal organ involvement is the most common systemic complication of cGVHD and closely resembles systemic sclerosis (SSc). Circulating lymphocytes characterize the autoimmune nature of both conditions. Therefore we hypothesized that the common clinical manifestation (systemic organ and skin injury) and the common underlying players (lymphocytes) justify the combined meta-analysis of these diseases. RESULTS The aSCT and SSc datasets were uploaded from Gene Expression Omnibus (GEO), a public functional genomics data repository. The available microarray studies of peripheral blood mononuclear cells (PBMCs) and isolated lymphocytes were limited to well established microarray platforms (Affymetrix, Agilent, Canvac, and Illumina) and experimental settings with ≥10 patients per group. The resulting pools of data were merged by unique gene identifier and analyzed by the expression genome-wide association studies (eGWAS) coupled with the subtraction of the cGVHD+ and cGVHD- molecular signatures. The eGWAS was applied to 47 and 50 lymphocyte profiles from aSCT and SSc patients, respectively. The identified 35 candidates were represented by 8 known cGVHD genes (including CXCR4, LTBR and PML) and 28 new candidate genes (including SEPX1 and DNJGB1). The further mutual subtraction of cGVHD+ and cGVHD- candidates and pathway analysis identified a list of 25 genes. Seven of these genes belong to the fibroblast development and function pathway, consisting of the well known cGVHD genes CCND1, JUN, and FOS, and the new molecular targets MMP2, FOSB, TNFAIP8, and DUSP1. These genes become primary candidates for a potential link of systemic effects of cGVHD and SSc. CONCLUSIONS We designed a new approach for meta-analysis by combining data from different diseases using common clinical manifestation as a linker. This allowed us to power up the insufficient standalone meta-analysis of aSCT microarray studies, by adding SSc samples to the data pool. This new method has successfully identified novel molecular targets for systemic effects of both aSCT and SSc. We believe that this approach is generalizable and can be applied to an array of diseases with common clinical manifestations.
Collapse
Affiliation(s)
- Dmitry N Grigoryev
- Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO, USA.
| | | | | | | |
Collapse
|
13
|
Tiriveedhi V, Upadhya GA, Busch RA, Gunter KL, Dines JN, Knolhoff BL, Jia J, Sarma NJ, Ramachandran S, Anderson CD, Mohanakumar T, Chapman WC. Protective role of bortezomib in steatotic liver ischemia/reperfusion injury through abrogation of MMP activation and YKL-40 expression. Transpl Immunol 2014; 30:93-8. [PMID: 24380732 PMCID: PMC9814016 DOI: 10.1016/j.trim.2013.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 01/07/2023]
Abstract
Steatotic liver grafts tolerate ischemia-reperfusion (I/R) injury poorly, contributing to poor survival following transplantation. However the molecular mechanisms leading to I/R injury still remain to be defined. We have previously reported that the protective effect of bortezomib towards inhibiting cold induced I/R injury in obese rat liver transplant model is through NF-κB down modulation. In this report using an orthotopic liver transplant (OLT) model in Zucker rats (from obese, leptin deficient donor, to lean recipient) we defined the mechanisms of steatotic liver injury, and characterized the role of bortezomib in inhibiting MMP activation and YKL-40, both of which are involved in extracellular matrix deposition and fibrosis, the key pathological features of liver allograft failure. Obese donor rats were treated with bortezomib (i.v., 0.1mg/kg immediately prior to liver procurement) to assess the role of MMP and YKL-40 in steatotic liver I/R injury. I/R injury in steatotic livers resulted in significant increases in expression of YKL-40 (9 fold), and activation of MMP-2 (15 fold)/MMP-9 (12 fold). Bortezomib treatment reduced the expression of YKL-40 and MMP to basal levels. Bortezomib also inhibited the pro-fibrotic (VEGF, HGF, bFGF, TGF-β) and pro-inflammatory (IL-1β, TNF-α and IFN-γ) cytokines significantly in comparison to untreated animals with I/R injury. These results demonstrate that I/R injury in steatotic livers following transplantation are associated with MMP activation and YKL-40 upregulation resulting in pro-fibrotic and pro-inflammatory cytokine release. Administration of the proteosomal inhibitor, bortezomib, effectively attenuated the I/R injury by inhibiting MMP and YKL-40 expression and therefore support the clinical utility of this drug in donor management for preventing I/R injury and its sequelae.
Collapse
Affiliation(s)
- Venkataswarup Tiriveedhi
- Department of Surgery, Washington University in St. Louis, School of Medicine, ST Louis, MO, United States,Department of Biological Sciences, Tennessee State University, Nashville, TN, United States,Correspondence to: V. Tiriveedhi, Tennessee State University, Department of Biological Sciences, 3500 John A Merritt Blvd, Nashville, TN 37209. (V. Tiriveedhi)
| | - Gundumi A. Upadhya
- Department of Surgery, Washington University in St. Louis, School of Medicine, ST Louis, MO, United States
| | - Rebecca A. Busch
- Department of Surgery, Washington University in St. Louis, School of Medicine, ST Louis, MO, United States
| | - Kristen L. Gunter
- Department of Surgery, Washington University in St. Louis, School of Medicine, ST Louis, MO, United States
| | - Jeff N. Dines
- Department of Medicine, Washington University in St. Louis, School of Medicine, ST Louis, MO, United States
| | - Bret L. Knolhoff
- Department of Medicine, Washington University in St. Louis, School of Medicine, ST Louis, MO, United States
| | - Jianluo Jia
- Department of Surgery, Washington University in St. Louis, School of Medicine, ST Louis, MO, United States
| | - Nayan J. Sarma
- Department of Surgery, Washington University in St. Louis, School of Medicine, ST Louis, MO, United States
| | - Sabarinathan Ramachandran
- Department of Surgery, Washington University in St. Louis, School of Medicine, ST Louis, MO, United States
| | | | - Thallachallour Mohanakumar
- Department of Surgery, Washington University in St. Louis, School of Medicine, ST Louis, MO, United States,Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, ST Louis, MO, United States
| | - William C. Chapman
- Department of Surgery, Washington University in St. Louis, School of Medicine, ST Louis, MO, United States,Correspondence to: W. C. Chapman, Washington University School of Medicine, Department of Surgery, Queeny Tower-6107, 660 S. Euclid Ave, St Louis MO 63110. Tel.: + 1 314 362 7792; fax: +1 314 361 4197. (W.C. Chapman)
| |
Collapse
|
14
|
Zhang Q, Reed EF. Array-based methods for diagnosis and prevention of transplant rejection. Expert Rev Mol Diagn 2014; 6:165-78. [PMID: 16512777 DOI: 10.1586/14737159.6.2.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA microarray is a microhybridization-based assay that is used to simultaneously study the expression of thousands of genes, thus providing a global view of gene expression in a tissue sample. This powerful technique has been adopted by many biomedical disciplines and will likely have a profound impact on the diagnosis, treatment and prognosis of human diseases. This review article presents an overview of the application of microarray technology to the field of solid-organ transplantation.
Collapse
Affiliation(s)
- Qiuheng Zhang
- Immunogenetics Center, Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
15
|
Duansak N, Schmid-Schönbein GW. The oxygen free radicals control MMP-9 and transcription factors expression in the spontaneously hypertensive rat. Microvasc Res 2013; 90:154-61. [PMID: 24060804 DOI: 10.1016/j.mvr.2013.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Oxygen free radical and matrix metalloproteinases-9 (MMP-9) play an important pathophysiological role in the development of chronic hypertension. MMP-9 activities are regulated at different levels. We hypothesize that as mediators of the expression of MMP-9 the transcription factors like nuclear factor kappa B (NF-κB), c-fos and retinoic acid receptors-α (RAR-α) with binding sites to the MMP-9 promoter are overexpressed in the spontaneously hypertensive rat (SHR) in a process that is regulated by oxygen free radicals. Transcription factor NF-κB, c-fos and RAR-α expression levels were determined by immunohistochemistry in renal, cardiac and mesentery microcirculation of the SHR and its normotensive control, the Wistar Kyoto (WKY) rat. The animals were treated with a superoxide scavenger (Tempol) for eight weeks. The elevated plasma levels of thiobarbituric acid reactive substances and MMP-9 levels in the SHR were significantly decreased by Tempol treatment (P<0.05). The NF-κB, c-fos and RAR-α expression levels in renal glomerular, heart and mesentery microvessels were enhanced in the SHR and could also be reduced by Tempol compared to untreated animals (P<0.05). The enhanced MMP-9 levels in SHR microvessels co-express with transcription factors. These results suggest that elevated NF-κB, c-fos and RAR-α expressions and MMP-9 activity in the SHR are superoxide-dependent.
Collapse
Affiliation(s)
- Naphatsanan Duansak
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093-0412, USA; Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12121, Thailand
| | | |
Collapse
|
16
|
Vanhoutte D, van Almen GC, Van Aelst LNL, Van Cleemput J, Droogné W, Jin Y, Van de Werf F, Carmeliet P, Vanhaecke J, Papageorgiou AP, Heymans S. Matricellular proteins and matrix metalloproteinases mark the inflammatory and fibrotic response in human cardiac allograft rejection. Eur Heart J 2012; 34:1930-41. [PMID: 23139380 PMCID: PMC4051259 DOI: 10.1093/eurheartj/ehs375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aims The cardiac extracellular matrix is highly involved in regulating inflammation, remodelling, and function of the heart. Whether matrix alterations relate to the degree of inflammation, fibrosis, and overall rejection in the human transplanted heart remained, until now, unknown. Methods and results Expression of matricellular proteins, proteoglycans, and metalloproteinases (MMPs) and their inhibitors (TIMPs) were investigated in serial endomyocardial biopsies (n = 102), in a cohort of 39 patients within the first year after cardiac transplantation. Out of 15 matrix-related proteins, intragraft transcript and protein levels of syndecan-1 and MMP-9 showed a strong association with the degree of cardiac allograft rejection (CAR), the expression of pro-inflammatory cytokines tumour necrosis factor (TNF)-α, interleukin (IL)-6 and transforming growth factor (TGF)-β, and with infiltrating CD3+T-cells and CD68+monocytes. In addition, SPARC, CTGF, TSP-2, MMP-14, TIMP-1, Testican-1, TSP-1, Syndecan-1, MMP-2, -9, and -14, as well as IL-6 and TGF-β transcript levels and inflammatory infiltrates all strongly relate to collagen expression in the transplanted heart. More importantly, receiver operating characteristic curve analysis demonstrated that syndecan-1 and MMP-9 transcript levels had the highest area under the curve (0.969 and 0.981, respectively), thereby identifying both as a potential decision-making tool to discriminate rejecting from non-rejecting hearts. Conclusion Out of 15 matrix-related proteins, we identified synd-1 and MMP-9 intragraft transcript levels of as strong predictors of human CAR. In addition, a multitude of non-structural matrix-related proteins closely associate with collagen expression in the transplanted heart. Therefore, we are convinced that these findings deserve further investigation and are likely to be of clinical value to prevent human CAR.
Collapse
Affiliation(s)
- Davy Vanhoutte
- Cardiovascular Diseases, University Hospitals Leuven, and Department of Cardiovascular Sciences, KU Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am J Physiol Renal Physiol 2012; 302:F1351-61. [PMID: 22492945 DOI: 10.1152/ajprenal.00037.2012] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that have been increasingly linked to both normal physiology and abnormal pathology in the kidney. Collectively able to degrade all components of the extracellular matrix, MMPs were originally thought to antagonize the development of fibrotic diseases solely through digestion of excessive matrix. However, increasing evidence has shown that MMPs play a wide variety of roles in regulating inflammation, epithelial-mesenchymal transition, cell proliferation, angiogenesis, and apoptosis. We now have robust evidence for MMP dysregulation in a multitude of renal diseases including acute kidney injury, diabetic nephropathy, glomerulonephritis, inherited kidney disease, and chronic allograft nephropathy. The goal of this review is to summarize current findings regarding the role of MMPs in kidney diseases as well as the mechanisms of action of this family of proteases.
Collapse
Affiliation(s)
- Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15261, USA
| | | |
Collapse
|
18
|
Tiriveedhi V, Angaswamy N, Brand D, Weber J, Gelman AG, Hachem R, Trulock EP, Meyers B, Patterson G, Mohanakumar T. A shift in the collagen V antigenic epitope leads to T helper phenotype switch and immune response to self-antigen leading to chronic lung allograft rejection. Clin Exp Immunol 2012; 167:158-68. [PMID: 22132895 DOI: 10.1111/j.1365-2249.2011.04486.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Immune responses to human leucocyte antigen (HLA) and self-antigen collagen V (Col-V) have been proposed in the pathogenesis of chronic rejection (bronchiolitis obliterans syndrome, BOS) following human lung transplantation (LTx). In this study, we defined the role for the shift in immunodominant epitopes of Col-V in inducing T helper phenotype switch leading to immunity to Col-V and BOS. Sera and lavage from BOS(+) LTx recipients with antibodies to Col-V were analysed. Two years prior to BOS, patients developed antibodies to both Col-V,α1(V) and α2(V) chains. However, at clinical diagnosis of BOS, antibodies became restricted to α1(V). Further, lung biopsy from BOS(+) patients bound to antibodies to α1(V), indicating that these epitopes are exposed. Fourteen Col-V peptides [pep1-14, pep1-4 specific to α1(V), pep5-8 to α1,2(V) and pep9-14 to α2(V)] which bind to HLA-DR4 and -DR7, demonstrated that prior to BOS, pep 6, 7, 9, 11 and 14 were immunodominant and induced interleukin (IL)-10. However, at BOS, the response switched to pep1, 4 and 5 and induced interferon (IFN)-γ and IL-17 responses, but not IL-10. The T helper (Th) phenotype switch is accompanied by decreased frequency of regulatory T cells (T(regs) ) in the lavage. LTx recipients with antibodies to α1(V) also demonstrated increased matrix metalloproteinase (MMP) activation with decreased MMP inhibitor, tissue inhibitor of metalloproteinase (TIMP), suggesting that MMP activation may play a role in the exposure of new Col-V antigenic epitopes. We conclude that a shift in immunodominance of self-antigenic determinants of Col-V results in induction of IFN-γ and IL-17 with loss of tolerance leading to autoimmunity to Col-V, which leads to chronic lung allograft rejection.
Collapse
Affiliation(s)
- V Tiriveedhi
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Suzuki JI, Ogawa M, Hishikari K, Watanabe R, Takayama K, Hirata Y, Nagai R, Isobe M. Novel effects of macrolide antibiotics on cardiovascular diseases. Cardiovasc Ther 2011; 30:301-7. [PMID: 22136572 DOI: 10.1111/j.1755-5922.2011.00303.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Macrolide antibiotics are broadly used for the treatment of various microbial infections. However, they are also known to have multiple biologic effects, such as alteration of inflammatory factors and matrix metalloproteinases (MMPs). Because of controversial results in clinical trials, the effects of macrolides on cardiovascular diseases are still to be elucidated. It has been reported that MMP activity is upregulated in various cardiovascular diseases, such as myocarditis, cardiac transplant rejection and myocardial infarction. However, little is known about the effects of macrolides on cardiovascular diseases. We have reported that clarithromycin suppressed the development of myocarditis, cardiac rejection and myocardial ischemia using animal models. In this article, we reviewed the roles of MMPs in cardiovascular diseases and the effects of macrolides on the prevention of adverse tissue remodeling.
Collapse
Affiliation(s)
- Jun-ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cauwe B, Martens E, Sagaert X, Dillen C, Geurts N, Li S, Mertens J, Thijs G, Van den Steen PE, Heremans H, De Vos R, Blockmans D, Arnold B, Opdenakker G. Deficiency of gelatinase B/MMP-9 aggravates lpr-induced lymphoproliferation and lupus-like systemic autoimmune disease. J Autoimmun 2011; 36:239-52. [PMID: 21376533 DOI: 10.1016/j.jaut.2011.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/20/2011] [Accepted: 02/02/2011] [Indexed: 01/01/2023]
Abstract
Gelatinase B/matrix metalloproteinase-9 (MMP-9) is a key enzyme involved in inflammatory, hematological, vascular and neoplastic diseases. In previous studies, we explored the intracellular substrate set or 'degradome' of MMP-9 and found many systemic autoantigens as novel intracellular gelatinase B substrates. Little is known, however, about the functional role of MMP-9 in the development of systemic autoimmunity in vivo. B6(lpr/lpr) mice with defective Fas-mediated apoptosis were used to investigate the functions of MMP-9 in lymphocyte proliferation and in the development of systemic autoimmunity. Combined Fas and gelatinase B deficiency resulted in extreme lymphoproliferative disease with enhanced lymphadenopathy and splenomegaly, and significantly reduced survival compared with single Fas deficiency. At the cellular level, this was corroborated by increased lymph node accumulation of 'double negative' T cells, B cells and myeloid cells. In addition, higher autoantibody titers and more pronounced autoimmune tissue injury were found in the absence of MMP-9, culminating in chronically enhanced systemic lupus erythematosus (SLE)-like autoimmunity. After cleavage by MMP-9 the SLE autoantigens U1snRNP A and ribosomal protein P0 were hardly recognized by plasma samples of both B6(lpr/lpr).MMP-9⁻/⁻ and B6(lpr/lpr).MMP-9+/+ mice, pointing to a destruction of B cell epitopes by MMP-9-mediated proteolysis. In addition, the same loss of immunodominant epitopes was observed with plasma samples from SLE patients, suggesting that MMP-9 suppresses systemic antibody-mediated autoimmunity by clearance of autoepitopes in immunogenic substrates. Thus, new protective functions for MMP-9 were revealed in the suppression of lymphoproliferation and dampening of systemic autoimmunity, cautioning against the long-term use of MMP inhibitors in autoimmune lymphoproliferative syndrome (ALPS) and SLE.
Collapse
Affiliation(s)
- Bénédicte Cauwe
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Matrix metalloproteinase 9 gene haplotypes affect left ventricular hypertrophy in hypertensive patients. Clin Chim Acta 2010; 411:1940-4. [DOI: 10.1016/j.cca.2010.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 12/27/2022]
|
22
|
Singh R, Srivastava P, Srivastava A, Mittal RD. Matrix metalloproteinase (MMP-9 and MMP-2) gene polymorphisms influence allograft survival in renal transplant recipients. Nephrol Dial Transplant 2010; 25:3393-3401. [DOI: 10.1093/ndt/gfq174] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
23
|
Benson HL, Mobashery S, Chang M, Kheradmand F, Hong JS, Smith GN, Shilling RA, Wilkes DS. Endogenous matrix metalloproteinases 2 and 9 regulate activation of CD4+ and CD8+ T cells. Am J Respir Cell Mol Biol 2010; 44:700-8. [PMID: 20639459 DOI: 10.1165/rcmb.2010-0125oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We reported that inhibiting matrix metalloproteinases (MMP), known to remodel the extracellular matrix, also down-regulated antigen-specific T-cell responses. However, the direct role of MMP2 and MMP9 in regulating intracellular function in T cells is unknown. Markers of cellular activation and cytokine profiles were examined in anti-CD3-stimulated wild-type C57BL/6 mouse-derived CD4(+) or CD8(+) T cells, or MMP2- or MMP9-deficient (-/-) mice. MMP-sufficient T cells were also treated with SB-3CT, a highly selective inhibitor of MMP2 and MMP9. The effect of MMP-specific inhibition on T cell-dependent, antigen-specific murine lung injury was examined in vivo. SB-3CT induced dose-dependent reductions in anti-CD3-stimulated T-cell proliferation. Although MMP2(-/-) cells were reduced 20%, anti-CD3-induced proliferation was down-regulated 80-85% in MMP9(-/-) or in SB-3CT-treated wild-type CD4(+) and CD8(+) T cells. Intracellular calcium flux was augmented in response to MMP inhibition or deficiency in the same cells, and IL-2 production was reduced in CD4(+) and CD8(+) MMP9(-/-) T cells. SB-3CT-mediated MMP2 and MMP9 inhibition abrogated antigen-specific CD8(+) T cell-mediated lung injury in vivo. MMPs, particularly MMP9, may function intracellularly to regulate T-cell activation. T cell-targeted MMP inhibition may provide a novel approach of immune regulation in the treatment of T cell-mediated diseases.
Collapse
Affiliation(s)
- Heather L Benson
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Aharinejad S, Krenn K, Zuckermann A, Schäfer R, Gmeiner M, Thomas A, Aliabadi A, Schneider B, Grimm M. Serum matrix metalloprotease-1 and vascular endothelial growth factor--a predict cardiac allograft rejection. Am J Transplant 2009; 9:149-59. [PMID: 19067665 DOI: 10.1111/j.1600-6143.2008.02470.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cardiac allograft rejection is currently diagnosed from endomyocardial biopsies (EMB) that are invasive and impractical to repeat. A serological marker could facilitate rejection monitoring and minimize EMB-associated risks. We investigated the relation of serum matrix metalloprotease (MMP)-1 and vascular endothelial growth factor (VEGF)-A concentrations to cardiac allograft rejection, using 1176 EMBs and serum samples obtained from 208 recipients. Acute cellular rejection was diagnosed in 186 EMBs. Mean week 1 and week 2 serum MMP-1 concentrations predicted rejection (p = 0.001, AUC = 0.80). At the optimal cut-off level of >or=7.5 ng/mL, MMP-1 predicted rejection with 82% sensitivity and 72% specificity. Initial serum MMP-1 <5.3 ng/mL (lowest quartile) was associated with rejection-free outcome in 80% of patients. Both MMP-1 (p < 0.001, AUC = 0.67-0.75) and VEGF-A (p < 0.01, AUC = 0.62-0.67) predicted rejection on the next EMB, while rejection at EMB was identified only by VEGF-A (p < 0.02, AUC = 0.70-0.77). Patients receiving combined cyclosporine-A and everolimus had the lowest serum MMP-1 concentrations. While serum MMP-1 predicts rejection-free outcome and VEGF-A identifies rejection on EMB, both markers predict rejection in follow-up of cardiac transplant recipients. Combination of serum MMP-1 and VEGF-A concentration may be a noninvasive prognostic marker of cardiac allograft rejection, and could have important implications for choice of surveillance and immunosuppression protocols.
Collapse
Affiliation(s)
- S Aharinejad
- Department of Cardiothoracic Surgery, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee YJ, Woo M, Nam JH, Baek J, Im CH, Lee EY, Lee EB, Park KS, Song YW. Matrix metalloproteinase–9 promoter polymorphisms in Korean patients with systemic lupus erythematosus. Hum Immunol 2008; 69:374-9. [DOI: 10.1016/j.humimm.2008.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 03/26/2008] [Accepted: 03/28/2008] [Indexed: 11/16/2022]
|
26
|
Lung transplant ischemia reperfusion injury: metalloprotease inhibition down-regulates exposure of type V collagen, growth-related oncogene-induced neutrophil chemotaxis, and tumor necrosis factor-alpha expression. Transplantation 2008; 85:417-26. [PMID: 18322435 DOI: 10.1097/tp.0b013e31815e91b6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Immunity to type V collagen [col(V)] contributes to lung transplant rejection. Matrix metalloproteases (MMPs), which are induced by transplant-related ischemia-reperfusion injury (IRI), could expose col(V) and regulate local IRI-induced inflammation. METHODS To test the hypothesis that MMPs induce col(V) exposure and inflammation, Wistar-Kyoto rats were treated with the MMP inhibitor, COL-3, before inducing lung IRI without transplantation, and in parallel studies, Wistar-Kyoto lung donor and recipients were treated with COL-3 pre- and postisograft lung transplantation. RESULTS Ischemia-reperfusion injury induced growth-related oncogene/CINC-1-dependent neutrophil influx, and up-regulated tumor necrosis factor-alpha. MMP2 and MMP9, induced at 4 and 24 hr after IRI, respectively, were associated with detection of antigenic col(V) in bronchoalveolar lavage and lung interstitium because of MMP-mediated matrix degradation. MMP-inhibitor treatment significantly reduced polymorphonuclear leukocytes, growth-related oncogene/CINC-1, and tumor necrosis factor-alpha; abrogated MMP-9 expression; and resulted in lower levels of antigenic col(V) in bronchoalveolar lavage. In the lung transplant model, inhibiting MMPs in the donor before lung harvest and in the recipient after lung transplantation resulted in improved oxygenation and diminished polymorphonuclear leukocyte influx into the isograft. CONCLUSION MMP inhibition may be a potential therapy to prevent release of antigenic col(V) and ameliorate IRI in the transplant recipient.
Collapse
|
27
|
Eaton VL, Lerret NM, Velásquez-Lopera MM, John R, Caicedo M, DeCresce RP, Jaramillo A. Enhanced allograft survival and modulation of T-cell alloreactivity induced by inhibition of MMP/ADAM enzymatic activity. Am J Transplant 2008; 8:507-16. [PMID: 18294147 DOI: 10.1111/j.1600-6143.2007.02097.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent studies have shown significantly increased expression of matrix metalloproteinases (MMP) and disintegrin-type metalloproteinases (ADAM) during allograft rejection. In this regard, our previous studies have demonstrated contrasting roles for MMP-2 and MMP-9 during allograft rejection: MMP-2-deficiency enhanced allograft survival while MMP-9-deficiency decreased allograft survival. The aim of this study was to determine the effect of broad-spectrum MMP/ADAM inhibition on the pathogenesis of allograft rejection. Toward this, heterotopic BALB/c cardiac allografts were transplanted into C57BL/6 recipients treated with MMP/ADAM inhibitors, GM6001 or doxycycline. Systemic MMP/ADAM inhibition significantly enhanced allograft survival. Functioning allografts recovered from MMP/ADAM inhibitor-treated recipients showed lower cellular infiltration and tissue remodeling than rejected allografts recovered from control recipients. In addition, decreased chemotaxis of CD4+ and CD8+ T cells, B cells and macrophages was observed in vitro in the presence of MMP/ADAM inhibitors. Enhanced T-cell alloreactivity was also observed ex vivo in MMP/ADAM inhibitor-treated recipients and in vitro in the presence of MMP/ADAM inhibitors. These observations were associated with enhanced cytokine, chemokine and growth factor production. These results indicate that MMPs and ADAMs play a critical role in the pathogenesis of allograft rejection and may represent novel therapeutic targets for the treatment and/or prevention of this disease.
Collapse
Affiliation(s)
- V L Eaton
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Hu J, Van den Steen PE, Sang QXA, Opdenakker G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 2007; 6:480-98. [PMID: 17541420 DOI: 10.1038/nrd2308] [Citation(s) in RCA: 585] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Matrix metalloproteinases (MMPs) have outgrown the field of extracellular-matrix biology and have progressed towards being important regulatory molecules in cancer and inflammation. This rise in status was accompanied by the development of various classes of inhibitors. Although clinical trials with synthetic inhibitors for the treatment of cancer were disappointing, recent data indicate that the use of selective inhibitors might lead to new therapies for acute and chronic inflammatory and vascular diseases. In this Review, we compare the major classes of MMP inhibitors and advocate that future drug discovery should be based on crucial insights into the differential roles of specific MMPs in pathophysiology obtained with animal models, including knockout studies.
Collapse
Affiliation(s)
- Jialiang Hu
- Rega Institute for Medical Research, Catholic University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
29
|
Yoshida S, Iwata T, Chiyo M, Smith GN, Foresman BH, Mickler EA, Heidler KM, Cummings OW, Fujisawa T, Brand DD, Baker A, Wilkes DS. Metalloproteinase Inhibition Has Differential Effects on Alloimmunity, Autoimmunity, and Histopathology in the Transplanted Lung. Transplantation 2007; 83:799-808. [PMID: 17414715 DOI: 10.1097/01.tp.0000258600.05531.5d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Upregulation of matrix metalloproteinases (MMPs) has been associated with chronic lung allograft rejection known as bronchiolitis obliterans syndrome. It has been suggested that MMP inhibition could prevent the rejection response. However, the effect of MMP inhibition on lung allograft rejection has not been reported. METHODS Utilizing a rat model of lung transplantation, tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were overexpressed by gene therapy in F344 rat lung allografts prior to transplantation into WKY recipient rats. Separately, WKY rats that received F344 lung allografts were treated systemically with COL-3, a global MMP inhibitor. RESULTS TIMP-1 and TIMP-2 had differential effects on delayed type hypersensitivity (DTH) responses to donor antigens and type V collagen, an autoantigen involved in the rejection response. Neither TIMP-1 or TIMP-2 affected the onset of rejection pathology. COL-3 suppressed DTH responses to donor antigens and type V collagen, abrogated local production of tumor necrosis factor-alpha, and interleukin-1beta. Although it did not prevent rejection pathology, COL-3 (30 mg/kg) induced intragraft B cell hyperplasia suggestive of posttransplant proliferative disorder (PTLD). CONCLUSIONS These data identify a complex role for MMPs and TIMPs in the immunopathogenesis of lung allograft rejection, and indicate their effects are not limited to matrix remodeling.
Collapse
Affiliation(s)
- Shigetoshi Yoshida
- Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Greenlee KJ, Werb Z, Kheradmand F. Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev 2007; 87:69-98. [PMID: 17237343 PMCID: PMC2656382 DOI: 10.1152/physrev.00022.2006] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The matrix metalloproteinases (MMPs), a family of 25 secreted and cell surface-bound neutral proteinases, process a large array of extracellular and cell surface proteins under normal and pathological conditions. MMPs play critical roles in lung organogenesis, but their expression, for the most part, is downregulated after generation of the alveoli. Our knowledge about the resurgence of the MMPs that occurs in most inflammatory diseases of the lung is rapidly expanding. Although not all members of the MMP family are found within the lung tissue, many are upregulated during the acute and chronic phases of these diseases. Furthermore, potential MMP targets in the lung include all structural proteins in the extracellular matrix (ECM), cell adhesion molecules, growth factors, cytokines, and chemokines. However, what is less known is the role of MMP proteolysis in modulating the function of these substrates in vivo. Because of their multiplicity and substantial substrate overlap, MMPs are thought to have redundant functions. However, as we explore in this review, such redundancy most likely evolved as a necessary compensatory mechanism given the critical regulatory importance of MMPs. While inhibition of MMPs has been proposed as a therapeutic option in a variety of inflammatory lung conditions, a complete understanding of the biology of these complex enzymes is needed before we can reasonably consider them as therapeutic targets.
Collapse
Affiliation(s)
- Kendra J Greenlee
- Departments of Medicine and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
31
|
Mehra MR, Uber PA, Walther D, Vesely M, Wohlgemuth JG, Prentice J, Tayama D, Billingham M. Gene Expression Profiles and B-Type Natriuretic Peptide Elevation in Heart Transplantation. Circulation 2006; 114:I21-6. [PMID: 16820574 DOI: 10.1161/circulationaha.105.000513] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
B-type natriuretic peptide (BNP) is chronically elevated in heart transplantation and reflects diastolic dysfunction, cardiac allograft vasculopathy, and poor late outcome. This investigation studied peripheral gene expression signatures of elevated BNP concentrations in clinically quiescent heart transplant recipients in an effort to elucidate molecular correlates beyond hemodynamic perturbations.
Methods and Results—
We performed gene microarray analysis in peripheral blood mononuclear cells of 28 heart transplant recipients with clinical quiescence (absence of dyspnea or fatigue; normal left ventricular ejection fraction [EF >55%]; ISHLT biopsy score 0 or 1A; and normal hemodynamics [RAP <7 mm Hg, PCWP ≤15 mm Hg, and CI ≥2.5 L/min per m
2
]). BNP levels were performed using the Triage B-type Natriuretic Peptide test (Biosite Diagnostics Inc, San Diego, Calif) and median BNP concentration was 165 pg/mL. Seventy-eight probes (of 7370) mapped to 54 unique genes were significantly correlated with BNP concentrations (
P
<0.001). Of these, the strongest correlated genes (
P
<0.0001) were in the domains of gelsolin (actin cytoskeleton), matrix metallopeptidases (collagen degradation), platelet function, and immune activity (human leukocyte antigen system, heat shock protein, mast cell, and B-cell lineage).
Conclusions—
In the clinically quiescent heart transplant recipient, an elevated BNP concentration is associated with molecular patterns that point to ongoing active cardiac structural remodeling, vascular injury, inflammation, and alloimmune processes. Thus, these findings allude to the notion that BNP elevation is not merely a hemodynamic marker but should be considered reflective of integrated processes that determine the balance between active cardiac allograft injury and repair.
Collapse
Affiliation(s)
- Mandeep R Mehra
- University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wolff RA, Malinowski RL, Heaton NS, Hullett DA, Hoch JR. Transforming growth factor-beta1 antisense treatment of rat vein grafts reduces the accumulation of collagen and increases the accumulation of h-caldesmon. J Vasc Surg 2006; 43:1028-36. [PMID: 16678700 DOI: 10.1016/j.jvs.2006.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND The main cause of occlusion and vein graft failure after peripheral and coronary arterial reconstruction is intimal hyperplasia. Transforming growth factor beta-1 (TGF-beta1) is a pleiotropic cytokine known to have powerful effects on cell growth, apoptosis, cell differentiation, and extracellular matrix synthesis. METHODS To investigate the role of TGF-beta1 in intimal hyperplasia, we used adenovirus to deliver to superficial epigastric vein messenger RNA (mRNA) antisense to TGF-beta1 (Ad-AST) or the sequence encoding the bioactive form of TGF-beta1 (Ad-BAT). Infection with "empty" virus was used as a control (Ad-CMVpLpA). The treated vein was then used for an interposition graft into rat femoral artery. Grafts were harvested at 1, 2, 4, and 12 weeks and formalin-fixed for histologic studies or placed in liquid nitrogen for mRNA studies. RESULTS Ad-AST treatment resulted in an overall reduction of TGF-beta1 expression (P = .001), and Ad-BAT treatment resulted in an overall increase in TGF-beta1 expression (P = .007). Histologic analysis showed Ad-AST caused reduced collagen build up in the neointima at 12 weeks (P = .0001). Immunohistochemical staining for h-caldesmon at 12 weeks indicated Ad-AST increased smooth muscle cells throughout the vessel wall compared with Ad-CMVpLpA (P = .0024) or Ad-BAT (P = .04). Ad-AST also resulted in reduced CD68-positive cells in the media/adventitia (P = .005 vs Ad-CMVpLpA, P = .01 vs Ad-BAT). To further understand how Ad-AST was influencing the build up of collagen, we performed quantitative polymerase chain reaction on complimentary DNA (cDNA) from homogenates of the vein grafts. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) was increased at 1 week by Ad-BAT (P = .048 vs Ad-CMVpLpA) and decreased by Ad-AST at all time points (P </= .038). The mRNA for collagen-1 alpha-1 was decreased by Ad-AST at 2, 4, and 12 weeks (P < or = .05) and increased by Ad-BAT at 1 week (P = .01). CONCLUSIONS TGF-beta1 antisense treatment of vein grafts prevents the accumulation of collagen in the neointima in part by (1) changing the proportions of the cell types populating the vein graft wall, (2) reducing the mRNA for TIMPs, and (3) reducing the amount of collagen mRNA. With the Ad-AST and Ad-BAT treatments, we have been able to tip the maturation of the vein graft toward positive remodeling (artery-like phenotype) or toward negative remodeling (fibroproliferation and stenosis), respectively.
Collapse
Affiliation(s)
- Randal A Wolff
- William S. Middleton Memorial Veterans Hospital and University of Wisconsin Medical School, Madison, Wisconsin 53792-3236, USA.
| | | | | | | | | |
Collapse
|
33
|
Agrawal S, Anderson P, Durbeej M, van Rooijen N, Ivars F, Opdenakker G, Sorokin LM. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. ACTA ACUST UNITED AC 2006; 203:1007-19. [PMID: 16585265 PMCID: PMC2118280 DOI: 10.1084/jem.20051342] [Citation(s) in RCA: 408] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The endothelial cell monolayer of cerebral vessels and its basement membrane (BM) are ensheathed by the astrocyte endfeet, the leptomeningeal cells, and their associated parenchymal BM, all of which contribute to establishment of the blood-brain barrier (BBB). As a consequence of this unique structure, leukocyte penetration of cerebral vessels is a multistep event. In mouse experimental autoimmune encephalomyelitis (EAE), a widely used central nervous system inflammatory model, leukocytes first penetrate the endothelial cell monolayer and underlying BM using integrin beta1-mediated processes, but mechanisms used to penetrate the second barrier defined by the parenchymal BM and glia limitans remain uninvestigated. We show here that macrophage-derived gelatinase (matrix metalloproteinase [MMP]-2 and MMP-9) activity is crucial for leukocyte penetration of the parenchymal BM. Dystroglycan, a transmembrane receptor that anchors astrocyte endfeet to the parenchymal BM via high affinity interactions with laminins 1 and 2, perlecan and agrin, is identified as a specific substrate of MMP-2 and MMP-9. Ablation of both MMP-2 and MMP-9 in double knockout mice confers resistance to EAE by inhibiting dystroglycan cleavage and preventing leukocyte infiltration. This is the first description of selective in situ proteolytic damage of a BBB-specific molecule at sites of leukocyte infiltration.
Collapse
Affiliation(s)
- Smriti Agrawal
- Experimental Pathology, 2Immunology, and 3Experimental Medical Science, Lund University, Lund 22185, Sweden
| | | | | | | | | | | | | |
Collapse
|
34
|
McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Crit Rev Biochem Mol Biol 2000; 48:222-72. [PMID: 10947989 DOI: 10.3109/10409238.2013.770819] [Citation(s) in RCA: 551] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tissue degradation by the matrix metalloproteinase gelatinase A is pivotal to inflammation and metastases. Recognizing the catalytic importance of substrate-binding exosites outside the catalytic domain, we screened for extracellular substrates using the gelatinase A hemopexin domain as bait in the yeast two-hybrid system. Monocyte chemoattractant protein-3 (MCP-3) was identified as a physiological substrate of gelatinase A. Cleaved MCP-3 binds to CC-chemokine receptors-1, -2, and -3, but no longer induces calcium fluxes or promotes chemotaxis, and instead acts as a general chemokine antagonist that dampens inflammation. This suggests that matrix metalloproteinases are both effectors and regulators of the inflammatory response.
Collapse
Affiliation(s)
- G A McQuibban
- Department of Biochemistry and Molecular Biology, Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|