1
|
|
2
|
Inhibition of T Cell Alloreactivity by Bronchial Epithelium Is Impaired in Lung Transplant Recipients, Through Pathways Involving TGF-β, IL-10 and HLA-G. Transplantation 2017; 101:2192-2199. [PMID: 27820781 DOI: 10.1097/tp.0000000000001553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Bronchiolitis obliterans syndrome (BOS) after lung transplantation (LTx) results from bronchial epithelial cell (BECs) damages, thought to be orchestrated by T cells primed by antigen-presenting cell presenting alloantigens. In this cell cross-talk, BECs are also suspected to play a pivotal immunosuppressive role in T cell alloreactivity. We studied the immunomodulating role of BECs in a human ex vivo model of allogeneic T cell response, both in healthy subjects and LTx recipients. METHODS BECs from 35 LTx recipients (n = 22 stable, n = 13 BOS) and healthy controls (n = 25) were cultured as primary cell cultures. Their inhibitory capacities through the involvement of tolerogenic molecules (HLA-G, TGF-β, and IL-10) were tested on a mixed lymphocyte reaction between antigen-presenting cells and recipient T cells. RESULTS Control BECs inhibited T cell alloproliferation by a mean of 53 ± 7%. This inhibitory effect of BECs was significantly reduced in the stable LTx group (24 ± 8%, P = 0.009), but not in the BOS TxP group (53 ± 10%, P = 0.97). Neutralization of HLA-G, TGF-β, and IL-10 partially restored T cell alloproliferation, arguing for their involvement in the immunosuppressive effect of BECs. BECs culture supernatant from stable LTx patients with impaired BEC properties showed a skewed Th2-type secretion profile (high IL-4/IFN-γ ratio). CONCLUSIONS The inhibitory properties of BECs are dysregulated in stable LTx recipients, which could suggest their instrumental role in the initiation of BOS process and potential targeted therapies.
Collapse
|
3
|
Ghosh A, Abdelwahab SH, Reeber SL, Reidel B, Marklew AJ, Garrison AJ, Lee S, Dang H, Herring AH, Glish GL, Kesimer M, Tarran R. Little Cigars are More Toxic than Cigarettes and Uniquely Change the Airway Gene and Protein Expression. Sci Rep 2017; 7:46239. [PMID: 28447619 PMCID: PMC5406835 DOI: 10.1038/srep46239] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/14/2017] [Indexed: 12/02/2022] Open
Abstract
Little cigars (LCs) are regulated differently than cigarettes, allowing them to be potentially targeted at youth/young adults. We exposed human bronchial epithelial cultures (HBECs) to air or whole tobacco smoke from cigarettes vs. LCs. Chronic smoke exposure increased the number of dead cells, lactate dehydrogenase release, and interleukin-8 (IL-8) secretion and decreased apical cilia, cystic fibrosis transmembrane conductance regulator (CFTR) protein levels, and transepithelial resistance. These adverse effects were significantly greater in LC-exposed HBECs than cigarette exposed cultures. LC-exposure also elicited unique gene expression changes and altered the proteomic profiles of airway apical secretions compared to cigarette-exposed HBECs. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that LCs produced more chemicals than cigarettes, suggesting that the increased chemical load of LCs may be the cause of the greater toxicity. This is the first study of the biological effects of LCs on pulmonary epithelia and our observations strongly suggest that LCs pose a more severe danger to human health than cigarettes.
Collapse
Affiliation(s)
- Arunava Ghosh
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Sabri H. Abdelwahab
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Steven L. Reeber
- Department of Chemistry, The University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Boris Reidel
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Abigail J. Marklew
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Andrew J. Garrison
- Department of Biostatistics, The University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Shernita Lee
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Hong Dang
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Amy H. Herring
- Department of Biostatistics, The University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Gary L. Glish
- Department of Chemistry, The University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Robert Tarran
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, NC, 27599, USA
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, NC, 27599, USA
| |
Collapse
|
4
|
Choi J, Iich E, Lee JH. Organogenesis of adult lung in a dish: Differentiation, disease and therapy. Dev Biol 2016; 420:278-286. [PMID: 27713058 DOI: 10.1016/j.ydbio.2016.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 12/26/2022]
Abstract
The remarkable regenerative capacity of the lung suggests that stem cells could be of therapeutic importance in diverse lung diseases; however, the successful exploitation of lung stem cell biology has long been hampered by our inability to maintain and expand adult lung stem cells while retaining their multi-lineage potential in vitro. Recently, advances in our understanding of stem cell niches and the role of key signalling modulators in controlling stem cell maintenance and differentiation have fuelled the development of new in vitro three-dimensional (3D) culture technologies that sustain the stem cell-driven formation of near-physiological, self-organizing structures called organoids. Here we review basic approaches to organoid model systems and highlight recent achievements in the generation of organoids from adult stem and progenitor cells of both the murine and human lungs. We evaluate current applications in studying cellular changes in proliferation, differentiation, plasticity, and cell polarity, and cellular and molecular crosstalk of epithelial cells with stroma. Advantages and limitations of organoids for clinical use are also discussed.
Collapse
Affiliation(s)
- Jinwook Choi
- Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Elhadi Iich
- Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Joo-Hyeon Lee
- Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neutabroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
5
|
Mizokami D, Araki K, Tanaka N, Suzuki H, Tomifuji M, Yamashita T, Matsushita K, Shimada H, Shiotani A. Tacrolimus prevents laryngotracheal stenosis in an acute-injury rat model. Laryngoscope 2015; 125:E210-5. [PMID: 25647147 DOI: 10.1002/lary.25178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/28/2014] [Accepted: 01/05/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVES/HYPOTHESIS Acquired laryngotracheal stenosis is a challenging problem for otolaryngologists. Several studies suggest tacrolimus may inhibit post-transplant airway stenosis that occurs with coronary drug-eluting stents. The objective of the present study was to determine whether tacrolimus modulates wound healing of the airway mucosa and prevents laryngotracheal stenosis in an acute injury animal model. STUDY DESIGN Basic science. METHODS The laryngotracheal mucosa of rats was scraped with a nylon brush through the tracheostoma. Tacrolimus (0.2 mg/kg or 1.0 mg/kg) was systemically administered intramuscularly for 5 days. Nine days after scraping, the pathological changes and the degree of stenosis were assessed by hematoxylin and eosin staining or by immunohistochemical staining for nuclear factor of activated T cell and interleukin 2. RESULTS Lumen stenosis resulted from hyperplasia of the airway epithelium and a thickened submucosal layer with extensive fibrosis, angiogenesis, and collagen deposition. There was a significant preventive effect on airway stenosis at the tracheal and cricoid levels in the low-dose (0.2 mg/kg) tacrolimus-treated animals, compared to the untreated animals (P < .05). This effect was insignificant with treatment by high-dose tacrolimus (1.0 mg/kg). Immunohistochemistry showed that, after tacrolimus treatment, the expressions of nuclear factor of activated T cell and interleukin 2 were downregulated in submucosal fibroblasts, neovascular cells, and glandular cells. CONCLUSIONS This study suggests that low-dose systemic tacrolimus has a preventive effect on laryngotracheal stenosis by inhibiting the activation of immune cells in the injured airway mucosa via the calcineurin/nuclear factor of activated T cell/interleukin 2 pathway. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Daisuke Mizokami
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Koji Araki
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Nobuaki Tanaka
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroshi Suzuki
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | - Taku Yamashita
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuyuki Matsushita
- Department of Molecular Diagnosis, Division of Clinical Genetics and Proteomics, Graduate School of Medicine, Chiba University, Chiba City, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, Toho University School of Medicine, Ota-Ku, Tokyo, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
6
|
Pazetti R, Pêgo-Fernandes PM, Jatene FB. Adverse effects of immunosuppressant drugs upon airway epithelial cell and mucociliary clearance: implications for lung transplant recipients. Drugs 2014; 73:1157-69. [PMID: 23842748 DOI: 10.1007/s40265-013-0089-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Optimal post-transplantation immunosuppression is critical to the survival of the graft and the patient after lung transplantation. Immunosuppressant agents target various aspects of the immune system to maximize graft tolerance while minimizing medication toxicities and side effects. The vast majority of patients receive maintenance immunosuppressive therapy consisting of a triple-drug regimen including a calcineurin inhibitor, a cell cycle inhibitor and a corticosteroid. Although these immunosuppressant drugs are frequently used after transplantation and to control inflammatory processes, limited data are available with regard to their effects on cells other than those from the immunological system. Notably, the airway epithelial cell is of interest because it may contribute to development of bronchiolitis obliterans through production of pro-inflammatory cytokines. This review focuses the current armamentarium of immunosuppressant drugs used after lung transplantation and their main side effects upon airway epithelial cells and mucociliary clearance.
Collapse
Affiliation(s)
- Rogerio Pazetti
- Laboratory of Thoracic Surgery Research-LIM61, Department of Cardiopneumology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Avenida Doutor Arnaldo, 455, 1o. Andar, Sala 1220, Pacaembu, São Paulo, SP, 01246-000, Brazil.
| | | | | |
Collapse
|
7
|
Effect of cyclosporine on lymphocytic variant hypereosinophilic syndrome. Int Immunopharmacol 2013; 16:488-91. [DOI: 10.1016/j.intimp.2013.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/11/2013] [Accepted: 04/25/2013] [Indexed: 11/23/2022]
|
8
|
Corcoran TE, Niven R, Verret W, Dilly S, Johnson BA. Lung deposition and pharmacokinetics of nebulized cyclosporine in lung transplant patients. J Aerosol Med Pulm Drug Deliv 2013; 27:178-84. [PMID: 23668548 DOI: 10.1089/jamp.2013.1042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Inhaled cyclosporine (CsA) is being investigated as a prophylaxis for lung transplant rejection. Lung deposition and systemic exposure of nebulized CsA in lung transplant patients was evaluated as part of the Phase 3 cyclosporine inhalation solution (CIS) trial (CYCLIST). METHODS Ten patients received 300 mg of CIS (62.5 mg/mL CsA in propylene glycol) admixed with 148 MBq of Tc-DTPA (technetium-99m bound to diethylenetriaminepentaacetic acid) administered using a Sidestream(®) disposable jet nebulizer. Deposition was assessed using a dual-headed gamma camera. Blood samples were collected over a 24-hr time period after aerosol dosing and analyzed for CsA levels. A pharmacokinetic analysis of the resulting blood concentration versus time profiles was performed. RESULTS The average total deposited dose was 53.7 ± 12.7 mg. Average pulmonary dose was 31.8 ± 16.3 mg, and stomach dose averaged 15.5 ± 11.1 mg. Device performance was consistent, with breathing maneuvers influencing dose variation. Predose coaching with five of 10 patients reduced stomach deposition (22.6 ± 11.2 vs. 8.3 ± 5.2 mg; p=0.03). Blood concentrations declined quickly from a maximum of 372 ± 140 ng/mL to 15.3 ± 9.7 ng/mL at 24 hr post dose. Levels of AUC(0-24) [area under the concentration vs. time curve from 0 to 24 hr] averaged 1,493 ± 746 ng hr/mL. On a three times per week dose regimen, this represents <5% of the weekly systemic exposure of twice per day oral administration. CONCLUSIONS Substantial doses of CsA can be delivered to the lungs of lung transplant patients by inhaled aerosol. Systemic levels are small relative to typical oral CsA administration.
Collapse
Affiliation(s)
- T E Corcoran
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh , Pittsburgh, PA 15213
| | | | | | | | | |
Collapse
|
9
|
Floreth T, Stern E, Tu Y, Stern R, Garrity ER, Bhorade SM, White SR. Differentiated transplant derived airway epithelial cell cytokine secretion is not regulated by cyclosporine. Respir Res 2011; 12:44. [PMID: 21477368 PMCID: PMC3079624 DOI: 10.1186/1465-9921-12-44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 04/10/2011] [Indexed: 11/25/2022] Open
Abstract
Background While lung transplantation is an increasingly utilized therapy for advanced lung diseases, chronic rejection in the form of Bronchiolitis Obliterans Syndrome (BOS) continues to result in significant allograft dysfunction and patient mortality. Despite correlation of clinical events with eventual development of BOS, the causative pathophysiology remains unknown. Airway epithelial cells within the region of inflammation and fibrosis associated with BOS may have a participatory role. Methods Transplant derived airway epithelial cells differentiated in air liquid interface culture were treated with IL-1β and/or cyclosporine, after which secretion of cytokines and growth factor and gene expression for markers of epithelial to mesenchymal transition were analyzed. Results Secretion of IL-6, IL-8, and TNF-α, but not TGF-β1, was increased by IL-1β stimulation. In contrast to previous studies using epithelial cells grown in submersion culture, treatment of differentiated cells in ALI culture with cyclosporine did not elicit cytokine or growth factor secretion, and did not alter IL-6, IL-8, or TNF-α production in response to IL-1β treatment. Neither IL-1β nor cyclosporine elicited expression of markers of the epithelial to mesenchymal transition E-cadherin, EDN-fibronectin, and α-smooth muscle actin. Conclusion Transplant derived differentiated airway epithelial cell IL-6, IL-8, and TNF-α secretion is not regulated by cyclosporine in vitro; these cells thus may participate in local inflammatory responses in the setting of immunosuppression. Further, treatment with IL-1β did not elicit gene expression of markers of epithelial to mesenchymal transition. These data present a model of differentiated airway epithelial cells that may be useful in understanding epithelial participation in airway inflammation and allograft rejection in lung transplantation.
Collapse
Affiliation(s)
- Timothy Floreth
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Niven R, Lynch M, Moutvic R, Gibbs S, Briscoe C, Raff H. Safety and toxicology of cyclosporine in propylene glycol after 9-month aerosol exposure to beagle dogs. J Aerosol Med Pulm Drug Deliv 2011; 24:205-12. [PMID: 21476863 DOI: 10.1089/jamp.2010.0863] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cyclosporine inhalation solution (CIS) delivered via nebulization is under evaluation for the prevention of chronic rejection post-lung transplant. A 300-patient randomized, controlled clinical trial (CYCLIST) is expected to be completed late in 2011. In support of this trial, a chronic inhalation toxicology study in dogs has been completed. METHODS To mimic the clinical setting, animals (four/sex/dose plus two/sex/dose in the control and high dose recovery groups) were exposed to aerosolized CIS, via nose-only exposure, three times per week for 9 months at targeted inhaled doses of 0 (air), 4, 12, and 24 mg/kg. In addition, the potential for persistence or reversibility of any toxic effects were assessed after a 6-week recovery period. The toxicological endpoints included clinical observations, body-weight, food consumption, toxicokinetics, clinical chemistry, and histopathology. RESULTS All dogs receiving CIS completed the study with the only consistent observations being excessive salivation and changes in minute ventilation. There was no limiting lung or systemic toxicity associated with exposure to CIS, and the only possible drug-related effect was an observation of benign fibroadenoma tissue in the mammary glands of the high-dose female recovery group. Toxicokinetic data showed that cyclosporine is initially absorbed rapidly with little drug remaining in lung tissue or blood 24 h after the end of dosing. CONCLUSION The study supports the pulmonary and systemic safety of aerosolized CIS at expected lung dose levels/kg of up to 12 times greater than the average dose patients are receiving in the CYCLIST trial.
Collapse
Affiliation(s)
- Ralph Niven
- APT Pharmaceuticals, Burlingame, California.
| | | | | | | | | | | |
Collapse
|
11
|
Niven RW. Toward managing chronic rejection after lung transplant: the fate and effects of inhaled cyclosporine in a complex environment. Adv Drug Deliv Rev 2011; 63:88-109. [PMID: 20950661 DOI: 10.1016/j.addr.2010.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/09/2010] [Accepted: 10/05/2010] [Indexed: 10/19/2022]
Abstract
The fate and effects of inhaled cyclosporine A (CsA) are considered after deposition on the lung surface. Special emphasis is given to a post-lung transplant environment and to the potential effects of the drug on the various cell types it is expected to encounter. The known stability, metabolism, pharmacokinetics and pharmacodynamics of the drug have been reviewed and discussed in the context of the lung microenvironment. Arguments support the contention that the immuno-inhibitory and anti-inflammatory effects of CsA are not restricted to T-cells. It is likely that pharmacologically effective concentrations of CsA can be sustained in the lungs but due to the complexity of uptake and action, the elucidation of effective posology must ultimately rely on clinical evidence.
Collapse
|
12
|
Deuse T, Blankenberg F, Haddad M, Reichenspurner H, Phillips N, Robbins RC, Schrepfer S. Mechanisms behind local immunosuppression using inhaled tacrolimus in preclinical models of lung transplantation. Am J Respir Cell Mol Biol 2009; 43:403-12. [PMID: 19880819 DOI: 10.1165/rcmb.2009-0208oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Inhaled immunosuppression with tacrolimus (TAC) is a novel strategy after lung transplantation. Here we investigate the feasibility of tacrolimus delivery via aerosol, assess its immunosuppressive efficacy, reveal possible mechanisms of action, and evaluate its airway toxicity. Rats received 4 mg/kg TAC via oral or inhaled (AER) administration. Pharmacokinetic properties were compared, and in vivo airway toxicity was assessed. Full-thickness human airway epithelium (AE) was grown in vitro at an air-liquid interface. Equal TAC doses (10-1,000 ng) were either added to the bottom chamber (MED) or aerosolized for gas-phase exposure (AER). Airway epithelium TAC absorption, cell toxicity, and interactions of TAC with NFκB activation were studied. Single-photon emission computed tomography demonstrated a linear tracer accumulation within the lungs during TAC inhalation. The AER TAC generated higher lung-tissue concentrations, but blood concentrations that were 11 times lower. Airway histology and gene expression did not reveal drug toxicity after 3 weeks of treatment. In vitro AE exposed to TAC at 10-1,000 ng, orally or AER, maintained its pseudostratified morphology, did not show cell toxicity, and maintained its epithelial integrity, with tight junction formation. The TAC AER-treated AE absorbed the drug from the apical surface and generated lower-chamber TAC concentrations sufficient to suppress activated lymphocytes. Tacrolimus AER was superior to TAC MED at preventing AE IFN-γ, IL-10, IL-13, monocyte chemoattractant protein-1 chemokine (C-C motif) ligand 5 (RANTES) and TNF-α up-regulation. Tacrolimus inhibited airway epithelial cell NFκB activation. In conclusion, TAC can be delivered easily and effectively into the lungs without causing airway toxicity, decreases inflammatory AE cytokine production, and inhibits NFκB activation.
Collapse
Affiliation(s)
- Tobias Deuse
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Sato M, Keshavjee S. Bronchiolitis obliterans syndrome: alloimmune-dependent and -independent injury with aberrant tissue remodeling. Semin Thorac Cardiovasc Surg 2008; 20:173-82. [PMID: 18707652 DOI: 10.1053/j.semtcvs.2008.05.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2008] [Indexed: 12/21/2022]
Abstract
Long-term success in lung transplantation continues to be challenged by chronic graft dysfunction, which is manifest as bronchiolitis obliterans syndrome (BOS). The mechanisms of BOS involve both immune-mediated pathways (rejection, autoimmune-like mechanisms), and alloimmune-independent pathways (infection, aspiration, ischemia, primary graft failure), which lead to a fibroproliferative responses. BOS correlates histologically with obliterative bronchiolitis in terminal bronchioles and evidence of aberrant remodeling in the airway epithelium, vasculature, stroma, and lymphoid system. A potentially important mechanism that supports the progressive and therapy-resistant nature of BOS is a continuous cycle of ongoing injury and aberrant remodeling. Namely, anatomical and functional abnormalities induce and exacerbate immune-mediated and alloimmune-independent pathways through various mechanisms (e.g., epithelial remodeling decreases mucociliary clearance that exacerbates aspiration-related injury). From this viewpoint, we review current therapeutic strategies and revisit the role of transplant surgeons in attenuating the initial transplant-related injuries to prevent the lung grafts from entering the remodeling-injury cycle.
Collapse
Affiliation(s)
- Masaaki Sato
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
Pazetti R, Pêgo-Fernandes PM, Lorenzi-Filho G, Saldiva PH, Moreira LFP, Jatene FB. Effects of Cyclosporine A and Bronchial Transection on Mucociliary Transport in Rats. Ann Thorac Surg 2008; 85:1925-9; discussion 1929. [DOI: 10.1016/j.athoracsur.2008.02.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/23/2008] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
|