1
|
Wakil A, Niazi M, Lunsford KE, Pyrsopoulos N. Future Approaches and Therapeutic Modalities for Acute-on-Chronic Liver Failure. Clin Liver Dis 2023; 27:777-790. [PMID: 37380297 DOI: 10.1016/j.cld.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Acute-on-chronic liver failure (ACLF) results from an acute decompensation of cirrhosis due to exogenous insult. The condition is characterized by a severe systemic inflammatory response, inappropriate compensatory anti-inflammatory response, multisystem extrahepatic organ failure, and high short-term mortality. Here, the authors evaluate the current status of potential treatments for ACLF and assess their efficacy and therapeutic potential.
Collapse
Affiliation(s)
- Ali Wakil
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB H536, Newark, NJ 07103, USA
| | - Mumtaz Niazi
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB H536, Newark, NJ 07103, USA
| | - Keri E Lunsford
- Department of Surgery, Division of Liver Transplant and HPB Surgery, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB H536, Newark, NJ 07103, USA
| | - Nikolaos Pyrsopoulos
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB H536, Newark, NJ 07103, USA.
| |
Collapse
|
2
|
Zimmerer JM, Han JL, Peterson CM, Zeng Q, Ringwald BA, Cassol C, Chaudhari S, Hart M, Hemminger J, Satoskar A, Abdel-Rasoul M, Wang JJ, Warren RT, Zhang ZJ, Breuer CK, Bumgardner GL. Antibody-suppressor CXCR5 + CD8 + T cellular therapy ameliorates antibody-mediated rejection following kidney transplant in CCR5 KO mice. Am J Transplant 2022; 22:1550-1563. [PMID: 35114045 PMCID: PMC9177711 DOI: 10.1111/ajt.16988] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/10/2022] [Accepted: 01/29/2022] [Indexed: 01/25/2023]
Abstract
CCR5 KO kidney transplant (KTx) recipients are extraordinarily high alloantibody producers and develop pathology that mimics human antibody-mediated rejection (AMR). C57BL/6 and CCR5 KO mice (H-2b ) were transplanted with A/J kidneys (H-2a ); select cohorts received adoptive cell therapy (ACT) with alloprimed CXCR5+ CD8+ T cells (or control cells) on day 5 after KTx. ACT efficacy was evaluated by measuring posttransplant alloantibody, pathology, and allograft survival. Recipients were assessed for the quantity of CXCR5+ CD8+ T cells and CD8-mediated cytotoxicity to alloprimed IgG+ B cells. Alloantibody titer in CCR5 KO recipients was four-fold higher than in C57BL/6 recipients. The proportion of alloprimed CXCR5+ CD8+ T cells 7 days after KTx in peripheral blood, lymph node, and spleen was substantially lower in CCR5 KO compared to C57BL/6 recipients. In vivo cytotoxicity towards alloprimed IgG+ B cells was also reduced six-fold in CCR5 KO recipients. ACT with alloprimed CXCR5+ CD8+ T cells (but not alloprimed CXCR5- CD8+ or third-party primed CXCR5+ CD8+ T cells) substantially reduced alloantibody titer, ameliorated AMR pathology, and prolonged allograft survival. These results indicate that a deficiency in quantity and function of alloprimed CXCR5+ CD8+ T cells contributes to high alloantibody and AMR in CCR5 KO recipient mice, which can be rescued with ACT.
Collapse
Affiliation(s)
- Jason M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Jing L. Han
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Chelsea M. Peterson
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Qiang Zeng
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Bryce A. Ringwald
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Clarissa Cassol
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Sachi Chaudhari
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Madison Hart
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | | | - Anjali Satoskar
- Department of Pathology, The Ohio State University, Columbus, OH
| | | | - Jiao-Jing Wang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert T. Warren
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Zheng J. Zhang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Christopher K. Breuer
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
3
|
Amoura L, El-Ghazouani FZ, Kassem M, El Habhab A, Kreutter G, Sahraoui S, Bosco D, Jessel N, Berney T, Benhamou PY, Toti F, Kessler L. Assessment of plasma microvesicles to monitor pancreatic islet graft dysfunction: Beta cell- and leukocyte-derived microvesicles as specific features in a pilot longitudinal study. Am J Transplant 2020; 20:40-51. [PMID: 31319009 DOI: 10.1111/ajt.15534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 01/25/2023]
Abstract
Markers of early pancreatic islet graft dysfunction and its causes are lacking. We monitored 19 type 1 diabetes islet-transplanted patients for up to 36 months following last islet injection. Patients were categorized as Partial (PS) or complete (S) Success, or Graft Failure (F), using the β-score as an indicator of graft function. F was the subset reference of maximum worsened graft outcome. To identify the immune, pancreatic, and liver contribution to the graft dysfunction, the cell origin and concentration of circulating microvesicles (MVs) were assessed, including MVs from insulin-secreting β-cells typified by polysialic acid of neural cell adhesion molecule (PSA-NCAM), and data were compared with values of the β-score. Similar ranges of PSA-NCAM+ -MVs were found in healthy volunteers and S patients, indicating minimal cell damage. In PS, a 2-fold elevation in PSA-NCAM+ -MVs preceded each β-score drop along with a concomitant rise in insulin needs, suggesting β-cell damage or altered function. Significant elevation of liver asialoglycoprotein receptor (ASGPR)+ -MVs, endothelial CD105+ -MVs, neutrophil CD66b+ -MVs, monocyte CD 14+ -MVs, and T4 lymphocyte CD4+ -MVs occurred before each β-score drop, CD8+ -MVs increased only in F, and B lymphocyte CD19+ -MVs remained undetectable. In conclusion, PSA-NCAM+ -MVs are noninvasive early markers of transplant dysfunction, while ASGPR+ -MVs signal host tissue remodeling. Leukocyte MVs could identify the cause of graft dysfunction.
Collapse
Affiliation(s)
- Lamia Amoura
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France.,CLINICA Group, Contract Research Organization, Alger, Algeria
| | - Fatiha Z El-Ghazouani
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Ali El Habhab
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Guillaume Kreutter
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Salah Sahraoui
- CLINICA Group, Contract Research Organization, Alger, Algeria
| | - Domenico Bosco
- Department of Surgery, Islet Isolation, and Transplantation, University Hospitals, Geneva, Switzerland
| | - Nadia Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Thierry Berney
- Department of Surgery, Islet Isolation, and Transplantation, University Hospitals, Geneva, Switzerland
| | - Pierre-Yves Benhamou
- Department of Endocrinology, Diabetes, and Nutrition, Grenoble Alpes University, Grenoble, France.,Laboratory of Fundamental and Applied Bioenergetics Grenoble, Inserm U1055, Grenoble, France
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Laurence Kessler
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France.,Department of Endocrinology, Diabetes and Nutrition, University Hospital of Strasbourg, Strasbourg, France.,Faculty of Medicine, Federation of Translational Medicine (FMTS), Strasbourg, France
| | | |
Collapse
|
4
|
Al-Yassin GA, Bretscher PA. Does T Cell Activation Require a Quorum of Lymphocytes? THE JOURNAL OF IMMUNOLOGY 2018; 201:2855-2861. [DOI: 10.4049/jimmunol.1800805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022]
|
5
|
Abstract
BACKGROUND The liver immune environment is tightly regulated to balance immune activation with immune tolerance. Understanding the dominant immune pathways initiated in the liver is important because the liver is a site for cell transplantation, such as for islet and hepatocyte transplantation. The purpose of this study is to examine the consequences of alloimmune stimulation when allogeneic cells are transplanted to the liver in comparison to a different immune locale, such as the kidney. METHODS We investigated cellular and humoral immune responses when allogeneic hepatocytes are transplanted directly to the recipient liver by intraportal injection. A heterotopic kidney engraftment site was used for comparison to immune activation in the liver microenvironment. RESULTS Transplantation of allogeneic hepatocytes delivered directly to the liver, via recipient portal circulation, stimulated long-term, high magnitude CD8 T cell-mediated allocytotoxicity. CD8 T cells initiated significant in vivo allocytotoxicity as well as rapid rejection of hepatocytes transplanted to the liver even in the absence of secondary lymph nodes or CD4 T cells. In contrast, in the absence of recipient peripheral lymphoid tissue and CD4 T cells, CD8-mediated in vivo allocytotoxicity was abrogated, and rejection was delayed when hepatocellular allografts were transplanted to the kidney subcapsular site. CONCLUSIONS These results highlight the CD8-dominant proinflammatory immune responses unique to the liver microenvironment. Allogeneic cells transplanted directly to the liver do not enjoy immune privilege but rather require immunosuppression to prevent rejection by a robust and persistent CD8-dependent allocytotoxicity primed in the liver.
Collapse
|
6
|
Cytotoxic effector function of CD4-independent, CD8(+) T cells is mediated by TNF-α/TNFR. Transplantation 2013; 94:1103-10. [PMID: 23222736 DOI: 10.1097/tp.0b013e318270f3c0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liver parenchymal cell allografts initiate both CD4-dependent and CD4-independent, CD8(+) T cell-mediated acute rejection pathways. The magnitude of allospecific CD8(+) T cell in vivo cytotoxic effector function is maximal when primed in the presence of CD4(+) T cells. The current studies were conducted to determine if and how CD4(+) T cells might influence cytotoxic effector mechanisms. METHODS Mice were transplanted with allogeneic hepatocytes. In vivo cytotoxicity assays and various gene-deficient recipient mice and target cells were used to determine the development of Fas-, TNF-α-, and perforin-dependent cytotoxic effector mechanisms after transplantation. RESULTS CD8(+) T cells maturing in CD4-sufficient hepatocyte recipients develop multiple (Fas-, TNF-α-, and perforin-mediated) cytotoxic mechanisms. However, CD8(+) T cells, maturing in the absence of CD4(+) T cells, mediate cytotoxicity and transplant rejection that is exclusively TNF-α/TNFR-dependent. To determine the kinetics of CD4-mediated help, CD4(+) T cells were adoptively transferred into CD4-deficient mice at various times posttransplant. The maximal influence of CD4(+) T cells on the magnitude of CD8-mediated in vivo allocytotoxicityf occurs within 48 hours. CONCLUSION The implication of these studies is that interference of CD4(+) T cell function by disease or immunotherapy will have downstream consequences on both the magnitude of allocytotoxicity as well as the cytotoxic effector mechanisms used by allospecific CD8(+) cytolytic T cells.
Collapse
|
7
|
Riella LV, Ueno T, Batal I, De Serres SA, Bassil R, Elyaman W, Yagita H, Medina-Pestana JO, Chandraker A, Najafian N. Blockade of Notch ligand δ1 promotes allograft survival by inhibiting alloreactive Th1 cells and cytotoxic T cell generation. THE JOURNAL OF IMMUNOLOGY 2011; 187:4629-38. [PMID: 21949024 DOI: 10.4049/jimmunol.1004076] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The Notch signaling pathway has been recently shown to contribute to T cell differentiation in vitro. However, the in vivo function of Notch signaling in transplantation remains unknown. In this study, we investigated the importance of Delta1 in regulating the alloimmune response in vivo. Delta1 expression was upregulated on dendritic cells and monocytes/macrophages upon transplantation in a BALB/c into B6 vascularized cardiac transplant model. Whereas administration of anti-Delta1 mAb only slightly delayed survival of cardiac allografts in this fully MHC-mismatched model, it significantly prolonged graft survival in combination with single-dose CTLA4-Ig or in CD28 knockout recipients. The prolongation of allograft survival was associated with Th2 polarization and a decrease in Th1 and granzyme B-producing cytotoxic T cells. The survival benefit of Delta1 blockade was abrogated after IL-4 neutralization and in STAT6KO recipients, but was maintained in STAT4KO recipients, reinforcing the key role of Th2 cell development in its graft-prolonging effects. To our knowledge, these data demonstrate for the first time an important role of Delta1 in alloimmunity, identifying Delta1 ligand as a potential novel target for immunomodulation in transplantation.
Collapse
Affiliation(s)
- Leonardo V Riella
- Renal Division, Transplantation Research Center, Brigham and Women's Hospital, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Interferon gamma licensing of human dendritic cells in T-helper-independent CD8+ alloimmunity. Blood 2010; 116:3089-98. [PMID: 20644110 DOI: 10.1182/blood-2010-02-268623] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The high frequency of allogeneic reactive CD8(+) T cells in human and their resistance to immunosuppression might be one of the reasons why successful tolerance-inducing strategies in rodents have failed in primates. Studies on the requirement for T-helper cells in priming CD8(+) T-cell responses have led to disparate findings. Recent studies have reported CD8(+)-mediated allograft rejection independently of T-helper cells; however, the mechanisms that govern the activation of these T cells are far from being elucidated. In this study, we demonstrated that lipopolysaccharide-treated dendritic cells (DCs) were able to induce proliferation and cytotoxic activity of allogeneic CD8(+) T cells independently of CD4(+) T cells, while adding mycophenolic acid (MPA) to LPS abolished this capacity and resulted in anergic CD8(+) T cells that secreted high levels of interleukin-4 (IL-4), IL-5, IL-10, and transforming growth factor-β. Interestingly, we demonstrated that MPA inhibited the LPS-induced synthesis of tumor necrosis factor-α, IL-12, and interferon-γ (IFN-γ) in DCs. Importantly, we found that adding exogenous IFN-γ to MPA restored both the synthesis of cytokines and the ability to activate CD8(+) T cells. However, adding IL-12 or tumor necrosis factor-α had no effect. These results suggest that IFN-γ has an important role in licensing DCs to prime CD4-independent CD8 allogeneic T cells via an autocrine loop.
Collapse
|
9
|
Winnicka B, O'Conor C, Schacke W, Vernier K, Grant CL, Fenteany FH, Pereira FE, Liang B, Kaur A, Zhao R, Montrose DC, Rosenberg DW, Aguila HL, Shapiro LH. CD13 is dispensable for normal hematopoiesis and myeloid cell functions in the mouse. J Leukoc Biol 2010; 88:347-59. [PMID: 20430777 PMCID: PMC2908940 DOI: 10.1189/jlb.0210065] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
While the myeloid marker CD13 has been implicated in numerous myeloid cell functions, its genetic ablation reveals a nominal contribution of CD13 to these functions. The robust and consistent expression of the CD13 cell surface marker on very early as well as differentiated myeloid hematopoietic cells has prompted numerous investigations seeking to define roles for CD13 in myeloid cells. To address the function of myeloid CD13 directly, we created a CD13 null mouse and assessed the responses of purified primary macrophages or DCs from WT and CD13 null animals in cell assays and inflammatory disease models, where CD13 has been implicated previously. We find that mice lacking CD13 develop normally with normal hematopoietic profiles except for an increase in thymic but not peripheral T cell numbers. Moreover, in in vitro assays, CD13 appears to be largely dispensable for the aspects of phagocytosis, proliferation, and antigen presentation that we tested, although we observed a slight decrease in actin‐independent erythrocyte uptake. However, in agreement with our published studies, we show that lack of monocytic CD13 completely ablates anti‐CD13‐dependent monocyte adhesion to WT endothelial cells. In vivo assessment of four inflammatory disease models showed that lack of CD13 has little effect on disease onset or progression. Nominal alterations in gene expression levels between CD13 WT and null macrophages argue against compensatory mechanisms. Therefore, although CD13 is highly expressed on myeloid cells and is a reliable marker of the myeloid lineage of normal and leukemic cells, it is not a critical regulator of hematopoietic development, hemostasis, or myeloid cell function.
Collapse
Affiliation(s)
- Beata Winnicka
- Center for Vascular Biology, Department of Immunology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-3501, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jiang Y, Nishimura W, Devor-Henneman D, Kusewitt D, Wang H, Holloway MP, Dohi T, Sabo E, Robinson ML, Altieri DC, Sharma A, Altura RA. Postnatal expansion of the pancreatic beta-cell mass is dependent on survivin. Diabetes 2008; 57:2718-27. [PMID: 18599523 PMCID: PMC2551682 DOI: 10.2337/db08-0170] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 06/26/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Diabetes results from a deficiency of functional beta-cells due to both an increase in beta-cell death and an inhibition of beta-cell replication. The molecular mechanisms responsible for these effects in susceptible individuals are mostly unknown. The objective of this study was to determine whether a gene critical for cell division and cell survival in cancer cells, survivin, might also be important for beta-cells. RESEARCH DESIGN AND METHODS We generated mice harboring a conditional deletion of survivin in pancreatic endocrine cells using mice with a Pax-6-Cre transgene promoter construct driving tissue-specific expression of Cre-recombinase in these cells. We performed metabolic studies and immunohistochemical analyses to determine the effects of a mono- and biallelic deletion of survivin. RESULTS Selective deletion of survivin in pancreatic endocrine cells in the mouse had no discernible effects during embryogenesis but was associated with striking decreases in beta-cell number after birth, leading to hyperglycemia and early-onset diabetes by 4 weeks of age. Serum insulin levels were significantly decreased in animals lacking endocrine cell survivin, with relative stability of other hormones. Exogenous expression of survivin in mature beta-cells lacking endogenous survivin completely rescued the hyperglycemic phenotype and the decrease in beta-cell mass, confirming the specificity of the survivin effect in these cells. CONCLUSIONS Our findings implicate survivin in the maintenance of beta-cell mass through both replication and antiapoptotic mechanisms. Given the widespread involvement of survivin in cancer, a novel role for survivin may well be exploited in beta-cell regulation in diseased states, such as diabetes.
Collapse
Affiliation(s)
- Yuying Jiang
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Wataru Nishimura
- Joslin Diabetes Center, Harvard Medical School, Boston Massachusetts
| | | | - Donna Kusewitt
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio
| | - Haijuan Wang
- Department of Pediatrics, Brown University, Providence, Rhode Island
| | - Michael P. Holloway
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, Brown University, Providence, Rhode Island
| | - Takehiko Dohi
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Edmond Sabo
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | | | - Dario C. Altieri
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Arun Sharma
- Joslin Diabetes Center, Harvard Medical School, Boston Massachusetts
| | - Rachel A. Altura
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, Brown University, Providence, Rhode Island
| |
Collapse
|
11
|
Ford ML, Wagener ME, Hanna SS, Pearson TC, Kirk AD, Larsen CP. A critical precursor frequency of donor-reactive CD4+ T cell help is required for CD8+ T cell-mediated CD28/CD154-independent rejection. THE JOURNAL OF IMMUNOLOGY 2008; 180:7203-11. [PMID: 18490719 DOI: 10.4049/jimmunol.180.11.7203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ag-specific precursor frequency is increasingly being appreciated as an important factor in determining the kinetics, magnitude, and degree of differentiation of T cell responses, and recently was found to play a critical role in determining the relative requirement of CD8(+) T cells for CD28- and CD154-mediated costimulatory signals during transplantation. We addressed the possibility that variations in CD4(+) T cell precursor frequency following transplantation might affect CD4(+) T cell proliferation, effector function, and provision of help for donor-reactive B cell and CD8(+) T cell responses. Using a transgenic model system wherein increasing frequencies of donor-reactive CD4(+) T cells were transferred into skin graft recipients, we observed that a critical CD4(+) T cell threshold precursor frequency was necessary to provide help following blockade of the CD28 and CD154 costimulatory pathways, as measured by increased B cell and CD8(+) T cell responses and precipitation of graft rejection. In contrast to high-frequency CD8(+) T cell responses, this effect was observed even though the proliferative and cytokine responses of Ag-specific CD4(+) T cells were inhibited. Thus, we conclude that an initial high frequency of donor-reactive CD4(+) T cells uncouples T cell proliferative and effector cytokine production from the provision of T cell help.
Collapse
Affiliation(s)
- Mandy L Ford
- Department of Surgery and Emory Transplant Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Horne PH, Lunsford KE, Walker JP, Koester MA, Bumgardner GL. Recipient Immune Repertoire and Engraftment Site Influence the Immune Pathway Effecting Acute Hepatocellular Allograft Rejection. Cell Transplant 2008; 17:829-44. [DOI: 10.3727/096368908786516792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As novel acute allograft rejection mechanisms are being discovered, determining the conditions that promote or subvert these distinct rejection pathways is important to interpret the clinical relevance of these pathways for specific recipient groups as well as specific tissue and organ transplants. We have employed a versatile hepatocellular allograft model to analyze how the host immune repertoire and immune locale influences the phenotype of the rejection pathway. In addition, we investigated how peripheral monitoring of cellular and humoral immune parameters correlates with the activity of a specific rejection pathway. Complete MHC mismatched hepatocellular allografts were transplanted into immune competent CD4-deficient, CD8-deficient, or C57BL/6 hosts to focus on CD8-dependent, CD4-dependent, or combined CD4 and CD8-dependent alloimmunity, respectively. Hepatocellular allografts were transplanted to the liver or kidney subcapsular space to investigate the influence of the immune locale on each rejection pathway. The generation of donor-reactive DTH, alloantibody, and allospecific cytotoxicity was measured to assess both cellular and humoral immunity. Graft-infiltrating lymphocytes were phenotyped and enumerated in each recipient group. In the presence of CD8+ T cells, cytolytic cellular activity is the dominant mechanism of graft destruction and is amplified in the presence of CD4+ T cells. The absence of CD8+ T cells (CD8 KO) results in potent humoral immunity as reflected by high levels of cytotoxic alloantibody and graft rejection with similar kinetics. Transplant to the liver compared to the kidney site is distinguished by more rapid kinetics of rejection and alloimmunity, which is predominately cell mediated rather than a mix of both humoral and cell-mediated immunity. These studies define several rejection mechanisms occurring in distinct immune conditions, highlighting the plasticity of acute allograft rejection responses and the need to design specific monitoring strategies for these pathways to allow dynamic immune assessment of clinical transplant recipients and targeted immunotherapies.
Collapse
Affiliation(s)
- Phillip H. Horne
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Keri E. Lunsford
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Jon P. Walker
- Division of Digestive Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Mitchel A. Koester
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University Medical Center, Columbus, OH, USA
| | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University Medical Center, Columbus, OH, USA
| |
Collapse
|
13
|
Lunsford KE, Jayanshankar K, Eiring AM, Horne PH, Koester MA, Gao D, Bumgardner GL. Alloreactive (CD4-Independent) CD8+ T cells jeopardize long-term survival of intrahepatic islet allografts. Am J Transplant 2008; 8:1113-28. [PMID: 18522544 PMCID: PMC3081659 DOI: 10.1111/j.1600-6143.2008.02219.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite success of early islet allograft engraftment and survival in humans, late islet allograft loss has emerged as an important clinical problem. CD8+ T cells that are independent of CD4+ T cell help can damage allograft tissues and are resistant to conventional immunosuppressive therapies. Previous work demonstrates that islet allografts do not primarily initiate rejection by the (CD4-independent) CD8-dependent pathway. This study was performed to determine if activation of alloreactive CD4-independent, CD8+ T cells, by exogenous stimuli, can precipitate late loss of islet allografts. Recipients were induced to accept intrahepatic islet allografts (islet 'acceptors') by short-term immunotherapy with donor-specific transfusion (DST) and anti-CD154 mAb. Following the establishment of stable long-term islet allograft function for 60-90 days, recipients were challenged with donor-matched hepatocellular allografts, which are known to activate (CD4-independent) CD8+ T cells. Allogeneic islets engrafted long-term were vulnerable to damage when challenged locally with donor-matched hepatocytes. Islet allograft loss was due to allospecific immune damage, which was CD8- but not CD4-dependent. Selection of specific immunotherapy to suppress both CD4- and CD8-dependent immune pathways at the time of transplant protects islet allografts from both early and late immune damage.
Collapse
Affiliation(s)
- Keri E. Lunsford
- Integrated Biomedical Science Graduate Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH
| | - Kartika Jayanshankar
- Department of Surgery, Division of Transplantation, The Ohio State University Medical Center, Columbus, OH
| | - Anna M. Eiring
- Department of Surgery, Division of Transplantation, The Ohio State University Medical Center, Columbus, OH
| | - Phillip H. Horne
- Integrated Biomedical Science Graduate Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH
| | - Mitchel A. Koester
- Department of Surgery, Division of Transplantation, The Ohio State University Medical Center, Columbus, OH
| | - Donghong Gao
- Department of Surgery, Division of Transplantation, The Ohio State University Medical Center, Columbus, OH
| | - Ginny L. Bumgardner
- Department of Surgery, Division of Transplantation, The Ohio State University Medical Center, Columbus, OH,Ginny L. Bumgardner, M.D, Ph.D., F.A.C.S The Ohio State University Medical Center Department of Surgery, Division of Transplant 1654 Upham Drive, 373 Means Hall Columbus, Ohio 43210-1250 Phone: 614-293-6177 Fax: 614-293-4541
| |
Collapse
|
14
|
Gelman AE, Okazaki M, Lai J, Kornfeld CG, Kreisel FH, Richardson SB, Sugimoto S, Tietjens JR, Patterson GA, Krupnick AS, Kreisel D. CD4+ T lymphocytes are not necessary for the acute rejection of vascularized mouse lung transplants. THE JOURNAL OF IMMUNOLOGY 2008; 180:4754-62. [PMID: 18354199 DOI: 10.4049/jimmunol.180.7.4754] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acute rejection continues to present a major obstacle to successful lung transplantation. Although CD4(+) T lymphocytes are critical for the rejection of some solid organ grafts, the role of CD4(+) T cells in the rejection of lung allografts is largely unknown. In this study, we demonstrate in a novel model of orthotopic vascularized mouse lung transplantation that acute rejection of lung allografts is independent of CD4(+) T cell-mediated allorecognition pathways. CD4(+) T cell-independent rejection occurs in the absence of donor-derived graft-resident hematopoietic APCs. Furthermore, blockade of the CD28/B7 costimulatory pathways attenuates acute lung allograft rejection in the absence of CD4(+) T cells, but does not delay acute rejection when CD4(+) T cells are present. Our results provide new mechanistic insight into the acute rejection of lung allografts and highlight the importance of identifying differences in pathways that regulate the rejection of various organs.
Collapse
Affiliation(s)
- Andrew E Gelman
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Allen KJ, Mifsud NA, Williamson R, Bertolino P, Hardikar W. Cell-mediated rejection results in allograft loss after liver cell transplantation. Liver Transpl 2008; 14:688-94. [PMID: 18433045 DOI: 10.1002/lt.21443] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver cell transplantation in humans has been impeded by invariable loss of the graft. It is unclear whether graft loss is due to an immune response against donor hepatocytes. Transplantation with ABO-matched liver cells was performed in a patient with Crigler-Najjar type 1. After successful engraftment, there was a gradual loss of graft function. Solid-phase enzyme immunoassay testing and cell-complement cytotoxicity assays detecting preformed antibodies directed toward class I and/or class II human leukocyte antigen (HLA) molecules were negative. In contrast, a striking host alloresponse to either the HLA-B39 or C7 antigen was found, suggesting that a vigorous response to a defined mismatched HLA antigen contributed to graft loss in our patient. This study provides evidence that a T-cell-mediated immune mechanism could be responsible for human liver cell transplant graft loss. This finding warrants confirmation in future liver cell transplants in humans.
Collapse
Affiliation(s)
- Katrina J Allen
- Gut and Liver Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Horne PH, Koester MA, Jayashankar K, Lunsford KE, Dziema HL, Bumgardner GL. Disparate Primary and Secondary Allospecific CD8+ T Cell Cytolytic Effector Function in the Presence or Absence of Host CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:80-8. [PMID: 17579024 DOI: 10.4049/jimmunol.179.1.80] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The role of CD4+ T cells in promoting CD8+ T cell effector activity in response to transplant Ags in vivo has not been reported. We used a hepatocellular allograft model known to initiate both CD4-dependent and CD4-independent rejection responses to investigate the contribution of CD4+ T cells to the development, function, and persistence of allospecific CD8+ T cell effectors in vivo. Complete MHC-mismatched hepatocellular allografts were transplanted into C57BL/6 (CD4-sufficient) or CD4 knockout (CD4-deficient) hosts. The development of in vivo allospecific cytotoxicity was determined by clearance of CFSE-labeled target cells. CD8+ T cell cytotoxic effector activity was enhanced in response to allogeneic hepatocellular grafts with a greater magnitude of allocytotoxicity and a prolonged persistence of CTL effector activity in CD4-sufficient hosts compared with CD4-deficient hosts. Cytolytic activity was mediated by CD8+ T cells in both recipient groups. In response to a second hepatocyte transplant, rejection kinetics were enhanced in both CD4-sufficient and CD4-deficient hepatocyte recipients. However, only CD4-sufficient hosts developed recall CTL responses with an augmented magnitude and persistence of allocytotoxicity in comparison with primary CTL responses. These studies show important functional differences between alloreactive CD8+ T cell cytolytic effectors that mature in vivo in the presence or absence of CD4+ T cells.
Collapse
Affiliation(s)
- Phillip H Horne
- Department of Surgery, Comprehensive Transplant Center, Ohio State University Medical Center, 1654 Upham Drive, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
18
|
Huang Y, Yin H, Han J, Huang B, Xu J, Zheng F, Tan Z, Fang M, Rui L, Chen D, Wang S, Zheng X, Wang CY, Gong F. Extracellular hmgb1 functions as an innate immune-mediator implicated in murine cardiac allograft acute rejection. Am J Transplant 2007; 7:799-808. [PMID: 17331117 DOI: 10.1111/j.1600-6143.2007.01734.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hmgb1, an evolutionarily conserved chromosomal protein, was recently re-discovered to be an innate immune-mediator contributing to both innate and adaptive immune responses. Here, we show a pivotal role for Hmgb1 in acute allograft rejection in a murine cardiac transplantation model. Extracellular Hmgb1 was found to be a potent stimulator for adaptive immune responses. Hmgb1 can be either passively released from damaged cells after organ harvest and ischemia/reperfusion insults, or actively secreted by allograft infiltrated immune cells. After transplantation, allografts show a significant temporal up-regulation of Hmgb1 expression accompanied by inflammatory infiltration, a consequence of graft destruction. These data suggest the involvement of Hmgb1 in acute allograft rejection. In line with these observations, treatment of recipients with rA-box, a specific blockade for endogenous Hmgb1, significantly prolonged cardiac allograft survival as compared to those recipients treated with either rGST or control vehicle. The enhanced graft survival is associated with reduced allograft expression of TNFalpha, IFNgamma and Hmgb1 and impaired Th1 immune response.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Transplantation, Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|