1
|
Saravanan PB, Kalivarathan J, McClintock K, Mohammed S, Burch E, Morecock C, Liu J, Khan A, Levy MF, Kanak MA. Inflammatory and hypoxic stress-induced islet exosomes released during isolation are associated with poor transplant outcomes in islet autotransplantation. Am J Transplant 2024; 24:967-982. [PMID: 38364959 DOI: 10.1016/j.ajt.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/03/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Islets experience enormous stress during the isolation process, leading to suboptimal endocrine function after total pancreatectomy with islet autotransplantation (TPIAT). Our investigation focused on inducing isolation stress in islets ex vivo, where proinflammatory cytokines and hypoxia prompted the release of stress exosomes (exoS) sized between 50 and 200 nm. Mass spectrometry analysis revealed 3 distinct subgroups of immunogenic proteins within these exoS: damage-associated molecular patterns (DAMPs), chaperones, and autoantigens. The involvement of endosomal-sorting complex required for transport proteins including ras-associated binding proteins7A, ras-associated binding protein GGTA, vacuolar protein sorting associated protein 45, vacuolar protein sorting associated protein 26B, and the tetraspanins CD9 and CD63, in exoS biogenesis was confirmed through immunoblotting. Next, we isolated similar exoS from the islet infusion bags of TPIAT recipients (N = 20). The exosomes from infusion bags exhibited higher DAMP (heat shock protein family A [Hsp70] member 1B and histone H2B) levels, particularly in the insulin-dependent TPIAT group. Additionally, elevated DAMP protein levels in islet infusion bag exosomes correlated with increased insulin requirements (P = .010) and higher hemoglobin A1c levels 1-year posttransplant. A deeper exploration into exoS functionality revealed their potential to activate monocytes via the toll-like receptor 3/7: DAMP axis. This stimulation resulted in the induction of inflammatory phenotypes marked by increased levels of CD68, CD80, inducible nitric oxide synthase, and cyclooxygenase-2. This activation mechanism may impact the successful engraftment of transplanted islets.
Collapse
Affiliation(s)
- Prathab Balaji Saravanan
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA.
| | - Jagan Kalivarathan
- VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Kaeden McClintock
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA
| | | | - Elijah Burch
- VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Christiane Morecock
- Department of Biostatistics, School of Medicine, VCU, Richmond, Virginia, USA
| | - Jinze Liu
- Department of Biostatistics, School of Medicine, VCU, Richmond, Virginia, USA
| | - Aamir Khan
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Marlon F Levy
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Mazhar A Kanak
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| |
Collapse
|
2
|
Wang Z, Jiang Z, Lu R, Kou L, Zhao YZ, Yao Q. Formulation strategies to provide oxygen-release to contrast local hypoxia for transplanted islets. Eur J Pharm Biopharm 2023; 187:130-140. [PMID: 37105362 DOI: 10.1016/j.ejpb.2023.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Islet transplantation refers to the transfusion of healthy islet cells into the diabetic recipients and reconstruction of their endogenous insulin secretion to achieve insulin independence. It is a minimally invasive surgery that holds renewed prospect as a therapeutic method for type 1 diabetes mellitus. However, poor oxygenation in the early post-transplantation period is considered as one of the major causes of islet loss and dysfunction. Due to the metabolism chacteristics, islets required a high supply of oxygen for cell survival while a hypoxia environment would lead to severe islet loss and graft failure. Emerging strategies have been proposed, including providing external oxygen and speeding up revascularization. From the perspective of formulation science, it is feasible and practical to protect transplanted islets by oxygen-release before revascularization as opposed to local hypoxia. In this study, we review the potential formulation strategies that could provide oxygen-release by either delivering external oxygen or triggering localized oxygen generation for transplanted islets.
Collapse
Affiliation(s)
- Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhikai Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ruijie Lu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
3
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
4
|
Cao M, Wang G, He H, Yue R, Zhao Y, Pan L, Huang W, Guo Y, Yin T, Ma L, Zhang D, Huang X. Hemoglobin-Based Oxygen Carriers: Potential Applications in Solid Organ Preservation. Front Pharmacol 2021; 12:760215. [PMID: 34916938 PMCID: PMC8670084 DOI: 10.3389/fphar.2021.760215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
Ameliorating graft injury induced by ischemia and hypoxia, expanding the donor pool, and improving graft quality and recipient prognosis are still goals pursued by the transplant community. The preservation of organs during this process from donor to recipient is critical to the prognosis of both the graft and the recipient. At present, static cold storage, which is most widely used in clinical practice, not only reduces cell metabolism and oxygen demand through low temperature but also prevents cell edema and resists apoptosis through the application of traditional preservation solutions, but these do not improve hypoxia and increase oxygenation of the donor organ. In recent years, improving the ischemia and hypoxia of grafts during preservation and repairing the quality of marginal donor organs have been of great concern. Hemoglobin-based oxygen carriers (HBOCs) are “made of” natural hemoglobins that were originally developed as blood substitutes but have been extended to a variety of hypoxic clinical situations due to their ability to release oxygen. Compared with traditional preservation protocols, the addition of HBOCs to traditional preservation protocols provides more oxygen to organs to meet their energy metabolic needs, prolong preservation time, reduce ischemia–reperfusion injury to grafts, improve graft quality, and even increase the number of transplantable donors. The focus of the present study was to review the potential applications of HBOCs in solid organ preservation and provide new approaches to understanding the mechanism of the promising strategies for organ preservation.
Collapse
Affiliation(s)
- Min Cao
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Guoqing Wang
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongli He
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiming Yue
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhao
- Anesthesiology, Southwest Medicine University, Luzhou, China
| | - Lingai Pan
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Weiwei Huang
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Guo
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Yin
- Surgical Department, Chengdu Second People's Hospital, Chengdu, China
| | - Lina Ma
- Health Inspection and Quarantine, Chengdu Medical College, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Chen M, Zhang S, Xing Y, Li X, He Y, Wang Y, Oberholzer J, Ai HW. Genetically Encoded, Photostable Indicators to Image Dynamic Zn 2+ Secretion of Pancreatic Islets. Anal Chem 2019; 91:12212-12219. [PMID: 31475537 PMCID: PMC6773511 DOI: 10.1021/acs.analchem.9b01802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As an essential element for living organisms, zinc (Zn2+) exerts its biological functions both intracellularly and extracellularly. Previous studies have reported a number of genetically encoded Zn2+ indicators (GEZIs), which have been widely used to monitor Zn2+ in the cytosol and intracellular organelles. However, it is challenging to localize existing GEZIs to the extracellular space to detect secreted Zn2+. Herein, we report two photostable, green fluorescent protein (GFP) based indicators, ZIBG1 and ZIBG2, which respond to Zn2+ selectively and have affinities suited for detecting Zn2+ secretion from intracellular vesicles. In particular, ZIBG2 can be effectively targeted to the extracellular side of plasma membrane. We applied cell surface-localized ZIBG2 to monitor glucose-induced dynamic Zn2+ secretion from mouse insulinoma MIN6 cells and primary mouse and human pancreatic islets. Because Zn2+ is co-released with insulin from β-cells, the fluorescence of cell surface-localized ZIBG2 was shown to be a strong indicator for the functional potency of islets. Our work here has thus expanded the use of GEZIs to image dynamic Zn2+ secretion in live tissue. Because it is convenient to use genetically encoded indicators for expression over extended periods and for in vivo delivery, we envision future applications of ZIBG2 in development of induced β-cells or islets to advance cell replacement therapies for diabetes and in direct imaging of Zn2+ secretion dynamics in vivo.
Collapse
Affiliation(s)
- Minghai Chen
- Center for Membrane and Cell Physiology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Shen Zhang
- Center for Membrane and Cell Physiology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
- Department of Chemistry, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Yuan Xing
- Department of Surgery, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Xinyu Li
- Center for Membrane and Cell Physiology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Yi He
- Department of Surgery, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Yong Wang
- Department of Surgery, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - José Oberholzer
- Department of Surgery, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
- Department of Bioengineering, and , University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Hui-wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
- Department of Chemistry, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
- Department of Bioengineering, and , University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
- UVA Cancer Center, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| |
Collapse
|
6
|
Mouré A, Bacou E, Bosch S, Jegou D, Salama A, Riochet D, Gauthier O, Blancho G, Soulillou J, Poncelet D, Olmos E, Bach J, Mosser M. Extracellular hemoglobin combined with an O
2
‐generating material overcomes O
2
limitation in the bioartificial pancreas. Biotechnol Bioeng 2019; 116:1176-1189. [DOI: 10.1002/bit.26913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/05/2018] [Accepted: 12/26/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Anne Mouré
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Elodie Bacou
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Steffi Bosch
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Dominique Jegou
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Apolline Salama
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
- Centre de Recherche en Transplantation et Immunologie UMR 1064INSERM, Université de NantesNantes France
| | - David Riochet
- Service de Pédiatrie des Maladies ChroniquesCHU de NantesNantes France
| | | | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie UMR 1064INSERM, Université de NantesNantes France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU NantesNantes France
| | - Jean‐Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR 1064INSERM, Université de NantesNantes France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU NantesNantes France
| | - Denis Poncelet
- Department of Process Engineering for Environment and Food Laboratory (GEPEA)UMR CNRS 6144, OnirisNantes France
| | - Eric Olmos
- Laboratoire Réactions et Génie des Procédés (LRGP)Université de Lorraine, CNRSNancy France
| | - Jean‐Marie Bach
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| | - Mathilde Mosser
- Immuno-Endocrinology Unit (IECM), Oniris, INRA, Université Bretagne LoireNantes France
| |
Collapse
|
7
|
Komatsu H, Cook CA, Gonzalez N, Medrano L, Salgado M, Sui F, Li J, Kandeel F, Mullen Y, Tai YC. Oxygen transporter for the hypoxic transplantation site. Biofabrication 2018; 11:015011. [PMID: 30524058 PMCID: PMC9851375 DOI: 10.1088/1758-5090/aaf2f0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cell transplantation is a promising treatment for complementing lost function by replacing new cells with a desired function, e.g. pancreatic islet transplantation for diabetics. To prevent cell obliteration, oxygen supply is critical after transplantation, especially until the graft is sufficiently re-vascularized. To supply oxygen during this period, we developed a chemical-/electrical-free implantable oxygen transporter that delivers oxygen to the hypoxic graft site from ambient air by diffusion potential. This device is simply structured using a biocompatible silicone-based body that holds islets, connected to a tube that opens outside the body. In computational simulations, the oxygen transporter increased the oxygen level to >120 mmHg within grafts; in contrast, a control device that did not transport oxygen showed <6.5 mmHg. In vitro experiments demonstrated similar results. To test the effectiveness of the oxygen transporter in vivo, we transplanted pancreatic islets, which are susceptible to hypoxia, subcutaneously into diabetic rats. Islets transplanted using the oxygen transporter showed improved graft viability and cellular function over the control device. These results indicate that our oxygen transporter, which is safe and easily fabricated, effectively supplies oxygen locally. Such a device would be suitable for multiple clinical applications, including cell transplantations that require changing a hypoxic microenvironment into an oxygen-rich site.
Collapse
Affiliation(s)
- Hirotake Komatsu
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA.,Corresponding author: Hirotake Komatsu,
| | - Colin A. Cook
- Department of Electrical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 136-93, Pasadena, CA 91125, USA
| | - Nelson Gonzalez
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Leonard Medrano
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Mayra Salgado
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Feng Sui
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yoko Mullen
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yu-Chong Tai
- Department of Electrical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 136-93, Pasadena, CA 91125, USA
| |
Collapse
|
8
|
Abstract
Pancreatic islet transplantation is a promising treatment option for individuals with type 1 diabetes; however, maintaining islet function after transplantation remains a large challenge. Multiple factors, including hypoxia associated events, trigger pretransplant and posttransplant loss of islet function. In fact, islets are easily damaged in hypoxic conditions before transplantation including the preparation steps of pancreas procurement, islet isolation, and culture. Furthermore, after transplantation, islets are also exposed to the hypoxic environment of the transplant site until they are vascularized and engrafted. Because islets are exposed to such drastic environmental changes, protective measures are important to maintain islet viability and function. Many studies have demonstrated that the prevention of hypoxia contributes to maintaining islet quality. In this review, we summarize the latest oxygen-related islet physiology, including computational simulation. Furthermore, we review recent advances in oxygen-associated treatment options used as part of the transplant process, including up-to-date oxygen generating biomaterials as well as a classical oxygen inhalation therapy.
Collapse
|
9
|
Rodriguez-Brotons A, Bietiger W, Peronet C, Langlois A, Magisson J, Mura C, Sookhareea C, Polard V, Jeandidier N, Zal F, Pinget M, Sigrist S, Maillard E. Comparison of Perfluorodecalin and HEMOXCell as Oxygen Carriers for Islet Oxygenation in an In Vitro Model of Encapsulation. Tissue Eng Part A 2016; 22:1327-1336. [PMID: 27796164 DOI: 10.1089/ten.tea.2016.0064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transplantation of encapsulated islets in a bioartificial pancreas is a promising alternative to free islet cell therapy to avoid immunosuppressive regimens. However, hypoxia, which can induce a rapid loss of islets, is a major limiting factor. The efficiency of oxygen delivery in an in vitro model of bioartificial pancreas involving hypoxia and confined conditions has never been investigated. Oxygen carriers such as perfluorocarbons and hemoglobin might improve oxygenation. To verify this hypothesis, this study aimed to identify the best candidate of perfluorodecalin (PFD) or HEMOXCell® to reduce cellular hypoxia in a bioartificial pancreas in an in vitro model of encapsulation ex vivo. The survival, hypoxia, and inflammation markers and function of rat islets seeded at 600 islet equivalents (IEQ)/cm2 and under 2% pO2 were assessed in the presence of 50 μg/mL of HEMOXCell or 10% PFD with or without adenosine. Both PFD and HEMOXCell increased the cell viability and decreased markers of hypoxia (hypoxia-inducible factor mRNA and protein). In these culture conditions, adenosine had deleterious effects, including an increase in cyclooxygenase-2 and interleukin-6, in correlation with unregulated proinsulin release. Despite the effectiveness of PFD in decreasing hypoxia, no restoration of function was observed and only HEMOXCell had the capacity to restore insulin secretion to a normal level. Thus, it appeared that the decrease in cell hypoxia as well as the intrinsic superoxide dismutase activity of HEMOXCell were both mandatory to maintain islet function under hypoxia and confinement. In the context of islet encapsulation in a bioartificial pancreas, HEMOXCell is the candidate of choice for application in vivo.
Collapse
Affiliation(s)
| | - William Bietiger
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Claude Peronet
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Allan Langlois
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | | | - Carole Mura
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Cynthia Sookhareea
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Valerie Polard
- 4 HEMARINA Aéropôle Centre , Biotechnopôle, Morlaix, France
| | - Nathalie Jeandidier
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France .,2 Structure d'Endocrinologie, Diabète-Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS) , Strasbourg, France
| | - Franck Zal
- 4 HEMARINA Aéropôle Centre , Biotechnopôle, Morlaix, France
| | - Michel Pinget
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France .,2 Structure d'Endocrinologie, Diabète-Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg (HUS) , Strasbourg, France
| | - Séverine Sigrist
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| | - Elisa Maillard
- 1 Université de Strasbourg, Centre Européen d'Etude du Diabète, Strasbourg, France
| |
Collapse
|
10
|
Cotransplantation of Polymerized Hemoglobin Reduces β-Cell Hypoxia and Improves β-Cell Function in Intramuscular Islet Grafts. Transplantation 2015; 99:2077-82. [DOI: 10.1097/tp.0000000000000815] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Roth AD, Elmer J, Harris DR, Huntley J, Palmer AF, Nelson T, Johnson JK, Xue R, Lannutti JJ, Viapiano MS. Hemoglobin regulates the migration of glioma cells along poly(ε-caprolactone)-aligned nanofibers. Biotechnol Prog 2014; 30:1214-20. [DOI: 10.1002/btpr.1950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 06/17/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Alexander D. Roth
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - Jacob Elmer
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - David R. Harris
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - Joseph Huntley
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - Andre F. Palmer
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - Tyler Nelson
- Dept. of Biomedical Engineering; The Ohio State University; Columbus OH 43210
| | - Jed K. Johnson
- Nanofiber Solutions LLC; 1275 Kinnear Road Columbus OH 43212
| | - Ruipeng Xue
- Dept. of Materials Science and Engineering; The Ohio State University; Columbus OH 43210
| | - John J. Lannutti
- Dept. of Materials Science and Engineering; The Ohio State University; Columbus OH 43210
| | - Mariano S. Viapiano
- Dept. of Neurological Surgery; The Ohio State University Wexner Medical Center; Columbus OH 43210
| |
Collapse
|
12
|
Azzi J, Geara AS, El-Sayegh S, Abdi R. Immunological aspects of pancreatic islet cell transplantation. Expert Rev Clin Immunol 2014; 6:111-24. [DOI: 10.1586/eci.09.67] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Nourmohammadzadeh M, Lo JF, Bochenek M, Mendoza-Elias JE, Wang Q, Li Z, Zeng L, Qi M, Eddington DT, Oberholzer J, Wang Y. Microfluidic array with integrated oxygenation control for real-time live-cell imaging: effect of hypoxia on physiology of microencapsulated pancreatic islets. Anal Chem 2013; 85:11240-9. [PMID: 24083835 DOI: 10.1021/ac401297v] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this article, we present a novel microfluidic islet array based on a hydrodynamic trapping principle. The lab-on-a-chip studies with live-cell multiparametric imaging allow understanding of physiological and pathophysiological changes of microencapsulated islets under hypoxic conditions. Using this microfluidic array and imaging analysis techniques, we demonstrate that hypoxia impairs the function of microencapsulated islets at the single islet level, showing a heterogeneous pattern reflected in intracellular calcium signaling, mitochondrial energetic, and redox activity. Our approach demonstrates an improvement over conventional hypoxia chambers that is able to rapidly equilibrate to true hypoxia levels through the integration of dynamic oxygenation. This work demonstrates the feasibility of array-based cellular analysis and opens up new modality to conduct informative analysis and cell-based screening for microencapsulated pancreatic islets.
Collapse
Affiliation(s)
- Mohammad Nourmohammadzadeh
- Department of Surgery/Transplant, University of Illinois at Chicago , 840 South Wood Street, Room 502, Chicago, Illinois 60612
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang Y, Wang S, Harvat T, Kinzer K, Zhang L, Feng F, Qi M, Oberholzer J. Diazoxide, a K(ATP) channel opener, prevents ischemia-reperfusion injury in rodent pancreatic islets. Cell Transplant 2013; 24:25-36. [PMID: 24070013 DOI: 10.3727/096368913x673441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Diazoxide (DZ) is a pharmacological opener of ATP-sensitive K(+) channels that has been used for mimicking ischemic preconditioning and shows protection against ischemic damage. Here we investigated whether diazoxide supplementation to University of Wisconsin (UW) solution has cellular protection during islet isolation and improves in vivo islet transplant outcomes in a rodent ischemia model. C57/B6 mice pancreata were flushed with UW or UW + DZ solution and cold preserved for 6 or 10 h prior to islet isolation. Islet yield, in vitro and in vivo function, mitochondrial morphology, and apoptosis were evaluated. Significantly higher islet yields were observed in the UW + DZ group than in the UW group (237.5 ± 25.6 vs. 108.7 ± 49.3, p < 0.01). The islets from the UW + DZ group displayed a significantly higher glucose-induced insulin secretion (0.97 ng/ml ± 0.15 vs. 0.758 ng/ml ± 0.21, p = 0.009) and insulin content (60.96 ng/islet ± 13.94 vs. 42.09 ng/islet ± 8.15, p = 0.002). The DZ-treated islets had well-preserved mitochondrial morphology with superior responses of mitochondrial potentials, and calcium influx responded to glucose. A higher number of living cells and less late apoptotic cells were observed in the UW + DZ group (p < 0.05). Additionally, the islets from the UW + DZ group had a significantly higher cure rate and improved glucose tolerance. This study is the first to report mitoprotective effects of DZ for pancreas preservation and islet isolation. In the future, it will be necessary to further understand the underlying mechanism for the mitoprotection and to test this promising approach for pancreas preservation and the islet isolation process in nonhuman primates and ultimately humans.
Collapse
Affiliation(s)
- Yong Wang
- University of Illinois at Chicago Department of Transplant/Surgery, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hogan AR, Doni M, Molano RD, Ribeiro MM, Szeto A, Cobianchi L, Zahr-Akrawi E, Molina J, Fornoni A, Mendez AJ, Ricordi C, Pastori RL, Pileggi A. Beneficial effects of ischemic preconditioning on pancreas cold preservation. Cell Transplant 2013; 21:1349-60. [PMID: 22305457 DOI: 10.3727/096368911x623853] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ischemic preconditioning (IPC) confers tissue resistance to subsequent ischemia in several organs. The protective effects are obtained by applying short periods of warm ischemia followed by reperfusion prior to extended ischemic insults to the organs. In the present study, we evaluated whether IPC can reduce pancreatic tissue injury following cold ischemic preservation. Rat pancreata were exposed to IPC (10 min of warm ischemia followed by 10 min of reperfusion) prior to ~18 h of cold preservation before assessment of organ injury or islet isolation. Pancreas IPC improved islet yields (964 ± 336 vs. 711 ± 204 IEQ/pancreas; p = 0.004) and lowered islet loss after culture (33 ± 10% vs. 51 ± 14%; p = 0.0005). Islet potency in vivo was well preserved with diabetes reversal and improved glucose clearance. Pancreas IPC reduced levels of NADPH-dependent oxidase, a source of reactive oxygen species, in pancreas homogenates versus controls (78.4 ± 45.9 vs. 216.2 ± 53.8 RLU/μg; p = 0.002). Microarray genomic analysis of pancreata revealed upregulation of 81 genes and downregulation of 454 genes (greater than twofold change) when comparing IPC-treated glands to controls, respectively, and showing a decrease in markers of apoptosis and oxidative stress. Collectively, our study demonstrates beneficial effects of IPC of the pancreas prior to cold organ preservation and provides evidence of the key role of IPC-mediated modulation of oxidative stress pathways. The use of IPC of the pancreas may contribute to increasing the quality of donor pancreas for transplantation and to improving organ utilization.
Collapse
Affiliation(s)
- Anthony R Hogan
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Diabetes Mellitus: New Challenges and Innovative Therapies. NEW STRATEGIES TO ADVANCE PRE/DIABETES CARE: INTEGRATIVE APPROACH BY PPPM 2013; 3. [PMCID: PMC7120768 DOI: 10.1007/978-94-007-5971-8_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes is a common chronic disease affecting an estimated 285 million adults worldwide. The rising incidence of diabetes, metabolic syndrome, and subsequent vascular diseases is a major public health problem in industrialized countries. This chapter summarizes current pharmacological approaches to treat diabetes mellitus and focuses on novel therapies for diabetes mellitus that are under development. There is great potential for developing a new generation of therapeutics that offer better control of diabetes, its co-morbidities and its complications. Preclinical results are discussed for new approaches including AMPK activation, the FGF21 target, cell therapy approaches, adiponectin mimetics and novel insulin formulations. Gene-based therapies are among the most promising emerging alternatives to conventional treatments. Therapies based on gene silencing using vector systems to deliver interference RNA to cells (i.e. against VEGF in diabetic retinopathy) are also a promising therapeutic option for the treatment of several diabetic complications. In conclusion, treatment of diabetes faces now a new era that is characterized by a variety of innovative therapeutic approaches that will improve quality of life in the near future.
Collapse
|
17
|
Protective effect of rat pancreatic progenitors cells expressing Pdx1 and nestin on islets survival and function in vitro and in vivo. J Physiol Biochem 2012; 68:603-10. [PMID: 22644623 DOI: 10.1007/s13105-012-0180-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 05/16/2012] [Indexed: 01/08/2023]
Abstract
To maintain islets survival and function is critical in successful pancreatic transplantation. Pancreatic progenitors cells (PPCs) with lineage potentials, giving rise to exocrine, endocrine, and duct cells, reside in developing and adult pancreas. As tissue-specific stem cells, they can produce pancreatic tissue-specific matrix factors to promote islets survival and function. The aim of our research was to investigate the protective effect of rat pancreatic-duodenal homeobox 1 (Pdx1)(+)/nestin(+) PPCs on islets. In vitro, co-culturing islets with Pdx1(+)/nestin(+) PPCs prolonged the former survival from 7 to 14 days. Furthermore, with high glucose (300.8 mg/dl) stimuli, the yield of insulin in co-cultures was significantly higher than that in control group (single islets group). In vivo, co-transplanting islets and Pdx1(+)/nestin(+) PPCs for 3 days, the blood glucose of diabetic rat was significantly decreased to normal level and sustained for 2 weeks. Without Pdx1(+)/nestin(+) PPCs in islets transplantation, hyperglycemia was reversed at day 7 and recovered at day 15. Pathology analysis showed that islets had remnants in co-transplantation at day 21, as complete graft rejection in alone islets transplantation. Our study showed that Pdx1(+)/nestin(+) PPCs displayed the ability of preserving islets viability and function in vitro and prolonging their survival in vivo.
Collapse
|
18
|
Implication of mitochondrial cytoprotection in human islet isolation and transplantation. Biochem Res Int 2012; 2012:395974. [PMID: 22611495 PMCID: PMC3352213 DOI: 10.1155/2012/395974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 01/30/2012] [Indexed: 12/23/2022] Open
Abstract
Islet transplantation is a promising therapy for type 1 diabetes mellitus; however, success rates in achieving both short- and long-term insulin independence are not consistent, due in part to inconsistent islet quality and quantity caused by the complex nature and multistep process of islet isolation and transplantation. Since the introduction of the Edmonton Protocol in 2000, more attention has been placed on preserving mitochondrial function as increasing evidences suggest that impaired mitochondrial integrity can adversely affect clinical outcomes. Some recent studies have demonstrated that it is possible to achieve islet cytoprotection by maintaining mitochondrial function and subsequently to improve islet transplantation outcomes. However, the benefits of mitoprotection in many cases are controversial and the underlying mechanisms are unclear. This article summarizes the recent progress associated with mitochondrial cytoprotection in each step of the islet isolation and transplantation process, as well as islet potency and viability assays based on the measurement of mitochondrial integrity. In addition, we briefly discuss immunosuppression side effects on islet graft function and how transplant site selection affects islet engraftment and clinical outcomes.
Collapse
|
19
|
Negi S, Park SH, Jetha A, Aikin R, Tremblay M, Paraskevas S. Evidence of endoplasmic reticulum stress mediating cell death in transplanted human islets. Cell Transplant 2011; 21:889-900. [PMID: 22182941 DOI: 10.3727/096368911x603639] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A key limitation to the success of islet transplantation is islet cell exhaustion and cell death during islet isolation and following transplantation. Endoplasmic reticulum (ER) stress has been identified as an important mechanism in the development of β-cell dysfunction, cell death, and diabetes. This study investigated the role of ER stress in islet loss during human islet isolation and posttransplantation in a diabetic athymic mouse model. Islets were isolated from human organ donor pancreata using intraductal enzymatic dissociation and continuous density gradient purification. ER stress mediators were assessed by Western blot and by RT-PCR. Caspase-3 activity was quantified by a bioluminescent peptide cleavage assay. Normal and streptozotocin-treated diabetic nude mice were transplanted with 2,000 IEQ of human islets under the kidney capsule and the grafts were harvested 3 or 28 days after transplantation. The grafts were analyzed for the presence for ER stress signals by immunohistochemistry. Isolated islets demonstrated higher levels of ER chaperone Bip, ER stress mediators eIF2α, ATF, spliced XBP-1, and CHOP, and also ER stress-associated apoptotic signals like JNK, caspase-3/7, and cleaved PARP. Donor pancreatic tissue did not show expression of any of these ER stress mediators. After transplantation, low expression of only protective ER stress mediators was evident in the grafts from the normal recipients. In contrast, both protective and apoptotic ER stress mediators were highly expressed in the grafts of hyperglycemic mice. ER stress mediators were induced during islet isolation and may contribute to islet apoptosis and cell death. Islet isolation activates ER stress and apoptotic pathways in isolated islets. Hyperglycemia may prolong this ER stress signal in engrafted islets, converting the protective aspects of the ER stress response to a proapoptotic response and thus contribute to deterioration of β-cell function and survival.
Collapse
Affiliation(s)
- Sarita Negi
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Stiegler P, Matzi V, Pierer E, Hauser O, Schaffellner S, Renner H, Greilberger J, Aigner R, Maier A, Lackner C, Iberer F, Smolle-Jüttner FM, Tscheliessnigg K, Stadlbauer V. Creation of a prevascularized site for cell transplantation in rats. Xenotransplantation 2011; 17:379-90. [PMID: 20955294 DOI: 10.1111/j.1399-3089.2010.00606.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Transplanted cells, especially islet cells, are likely to become apoptotic due to local hypoxia leading to graft dysfunction. Isolated pancreatic islet cells depend on the diffusion of oxygen from the surrounding tissue; therefore, access to sufficient oxygen supply is beneficial, particularly when microcapsules are used for immunoisolation in xenotransplantation. The aim of this study was to create a prevascularized site for cell transplantation in rats and test its effectiveness with microencapsulated HEK293 cells. METHODS The combination of implantation of a foam dressing, vacuum-assisted wound closure (foam+VAC) and hyperbaric oxygenation (HBO) was used in 40 Sprague-Dawley rats. Blood flow and vascular endothelial growth factor (VEGF) levels were determined. Sodium cellulose sulphate (SCS)-microencapsulated HEK293 cells were xenotransplanted into the foam dressing in rats pre-treated with HBO, and angiogenesis and apoptosis were assessed. RESULTS Vessel ingrowth and VEGF levels increased depending on the duration of HBO treatment. The area containing the foam was perfused significantly better in the experimental groups when compared to controls. Only a small amount of apoptosis occurs in SCS-microencapsulated HEK293 cells after xenotransplantation. CONCLUSION As ischemia-damaged cells are likely to undergo cell death or loose functionality due to hypoxia, therefore leading to graft dysfunction, the combination foam+VAC and HBO might be a promising method to create a prevascularized site to achieve better results in xenogeneic cell transplantation.
Collapse
Affiliation(s)
- Philipp Stiegler
- Department of Surgery, Division of Transplantation Surgery, Medical University Graz, Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Khanna O, Moya ML, Opara EC, Brey EM. Synthesis of multilayered alginate microcapsules for the sustained release of fibroblast growth factor-1. J Biomed Mater Res A 2011; 95:632-40. [PMID: 20725969 DOI: 10.1002/jbm.a.32883] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alginate microcapsules coated with a permselective poly-L-ornithine (PLO) membrane have been investigated for the encapsulation and transplantation of islets as a treatment for type 1 diabetes. The therapeutic potential of this approach could be improved through local stimulation of microvascular networks to meet mass transport demands of the encapsulated cells. Fibroblast growth factor-1 (FGF-1) is a potent angiogenic factor with optimal effect occurring when it is delivered in a sustained manner. In this article, a technique is described for the generation of multilayered alginate microcapsules with an outer alginate layer that can be used for the delivery of FGF-1. The influence of alginate concentration and composition (high mannuronic acid (M) or guluronic acid (G) content) on outer layer size and stability, protein encapsulation efficiency, and release kinetics was investigated. The technique results in a stable outer layer of alginate with a mean thickness between 113 and 164 μm, increasing with alginate concentration and G-content. The outer layer was able to encapsulate and release FGF-1 for up to 30 days, with 1.25% of high G alginate displaying the most sustained release. The released FGF-1 retained its biologic activity in the presence of heparin, and the addition of the outer layer did not alter the permselectivity of the PLO coat. This technique could be used to generate encapsulation systems that deliver proteins to stimulate local neovascularization around encapsulated islets.
Collapse
Affiliation(s)
- Omaditya Khanna
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
22
|
Modified gold nanoparticle vectors: A biocompatible intracellular delivery system for pancreatic islet cell transplantation. Surgery 2010; 148:858-65; discussion 865-6. [DOI: 10.1016/j.surg.2010.07.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 07/15/2010] [Indexed: 01/12/2023]
|
23
|
Adewola AF, Lee D, Harvat T, Mohammed J, Eddington DT, Oberholzer J, Wang Y. Microfluidic perifusion and imaging device for multi-parametric islet function assessment. Biomed Microdevices 2010; 12:409-17. [PMID: 20300858 DOI: 10.1007/s10544-010-9398-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A microfluidic islet perifusion device was developed for the assessment of dynamic insulin secretion of multiple pancreatic islets and simultaneous fluorescence imaging of calcium influx and mitochondrial potential changes. The fanned out design of the second generation device optimized the efficient mixing and uniform distribution of rapid alternating solutions in the perifusion chamber and allowed for the generation of reproducible glucose gradients. Simultaneous imaging of calcium influx and mitochondrial potential changes in response to glucose stimulation showed high signal-noise ratio and spatial-temporal resolution. These results suggest that this system can be used for detailed study of the endocrine function of pancreatic islets with simultaneous imaging of intracellular ion fluxes and mitochondrial membrane potential changes. This tool can be used for quality assessment of islets preparation before transplantation and for in vitro studies of islet function.
Collapse
Affiliation(s)
- Adeola F Adewola
- Department of Transplant/Surgery, University of Illinois, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Saito Y, Goto M, Maya K, Ogawa N, Fujimori K, Kurokawa Y, Satomi S. Brain Death in Combination with Warm Ischemic Stress during Isolation Procedures Induces the Expression of Crucial Inflammatory Mediators in the Isolated Islets. Cell Transplant 2010; 19:775-82. [DOI: 10.3727/096368910x508889] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tissue factor (TF) and monocyte chemoattractant protein-1 (MCP-1) expressed on the islets have been identified as the main trigger of the instant blood-mediated inflammatory reaction (IBMIR) in islet transplantation. Because the key steps that directly induce TF and MCP-1 remain to be determined, we focused on the influence of brain death (BD) on TF and MCP-1 expression in the pancreatic tissues and isolated islets using a rodent model. TF and MCP-1 mRNA levels in the pancreatic tissues were similar between the BD and the control group. However, TF and MCP-1 mRNA in the fresh islets of the BD group were significantly higher than that of the control group ( p < 0.01). BD may thus be suggested to be of great importance as an initiator of TF and MCP-1 induction in the isolated islets. Furthermore, the upregulation of crucial inflammatory mediators induced by BD could be exacerbated by warm ischemic damage during digestion procedures. In the present study, the islet yield and purity were affected by BD. However, almost no influences were observed with respect to islet viability, indicating that the expression of inflammatory mediators rather than islet viability is more susceptible to BD. According to the change in time course of TF and MCP-1 expression in the isolated islets, the selected time point for islet infusion in current clinical islet transplantation was thus shown to be at its worst level, at least with respect to the damage caused by BD and ischemic stress. In conclusion, BD in combination with warm ischemic stress during isolation procedures induces a high expression of TF and MCP-1 in the isolated islets. In order to reduce the expression of crucial inflammatory mediators in the islet grafts, the management of the pancreas from brain-dead donors with early anti-inflammatory treatments is thus warranted.
Collapse
Affiliation(s)
- Yukihiko Saito
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
| | - Masafumi Goto
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
- Tohoku University International Advanced Research and Education Organization, Tohoku University, Sendai, Japan
| | - Kozue Maya
- Tohoku University International Advanced Research and Education Organization, Tohoku University, Sendai, Japan
| | - Norihiko Ogawa
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
| | - Keisei Fujimori
- Medical Safety Management Office, Tohoku University, Sendai, Japan
| | - Yoshimochi Kurokawa
- Tohoku University Innovation of New Biomedical Engineering Center, Tohoku University, Sendai, Japan
| | - Susumu Satomi
- Division of Advanced Surgical Science and Technology, Tohoku University, Sendai, Japan
| |
Collapse
|
25
|
Stiegler P, Stadlbauer V, Hackl F, Schaffellner S, Iberer F, Greilberger J, Strunk D, Zelzer S, Lackner C, Tscheliessnigg K. Prevention of oxidative stress in porcine islet isolation. J Artif Organs 2010; 13:38-47. [DOI: 10.1007/s10047-010-0488-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 12/24/2009] [Indexed: 01/11/2023]
|
26
|
Sena CM, Bento CF, Pereira P, Seiça R. Diabetes mellitus: new challenges and innovative therapies. EPMA J 2010; 1:138-63. [PMID: 23199048 PMCID: PMC3405309 DOI: 10.1007/s13167-010-0010-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/04/2010] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is a widespread disease prevalence and incidence of which increases worldwide. The introduction of insulin therapy represented a major breakthrough in type 1 diabetes; however, frequent hyper- and hypoglycemia seriously affects the quality of life of these patients. New therapeutic approaches, such as whole pancreas transplant or pancreatic islet transplant, stem cell, gene therapy and islets encapsulation are discussed in this review. Regarding type 2 diabetes, therapy has been based on drugs that stimulate insulin secretion (sulphonylureas and rapid-acting secretagogues), reduce hepatic glucose production (biguanides), delay digestion and absorption of intestinal carbohydrate (alpha-glucosidase inhibitors) or improve insulin action (thiazolidinediones). This review is also focused on the newer therapeutically approaches such as incretin-based therapies, bariatric surgery, stem cells and other emerging therapies that promise to further extend the options available. Gene-based therapies are among the most promising emerging alternatives to conventional treatments. Some of these therapies rely on genetic modification of non-differentiated cells to express pancreatic endocrine developmental factors, promoting differentiation of non-endocrine cells into β-cells, enabling synthesis and secretion of insulin in a glucose-regulated manner. Alternative therapies based on gene silencing using vector systems to deliver interference RNA to cells (i.e. against VEGF in diabetic retinopathy) are also a promising therapeutic option for the treatment of several diabetic complications. In conclusion, treatment of diabetes faces now a new era that is characterized by a variety of innovative therapeutic approaches that will improve quality-life and allow personalized therapy-planning in the near future.
Collapse
Affiliation(s)
- Cristina M. Sena
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-354 Coimbra, Portugal
- IBILI, University of Coimbra, Coimbra, Portugal
| | - Carla F. Bento
- IBILI, University of Coimbra, Coimbra, Portugal
- Centre of Ophthalmology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo Pereira
- IBILI, University of Coimbra, Coimbra, Portugal
- Centre of Ophthalmology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-354 Coimbra, Portugal
- IBILI, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
27
|
Islet amyloid deposition limits the viability of human islet grafts but not porcine islet grafts. Proc Natl Acad Sci U S A 2010; 107:4305-10. [PMID: 20160085 DOI: 10.1073/pnas.0909024107] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Islet transplantation is a promising treatment for diabetes but long-term success is limited by progressive graft loss. Aggregates of the beta cell peptide islet amyloid polypeptide (IAPP) promote beta cell apoptosis and rapid amyloid formation occurs in transplanted islets. Porcine islets are an attractive alternative islet source as they demonstrate long-term graft survival. We compared the capacity of transplanted human and porcine islets to form amyloid as an explanation for differences in graft survival. Human islets were transplanted into streptozotocin-diabetic immune-deficient mice. Amyloid deposition was detectable at 4 weeks posttransplantation and was associated with islet graft failure. More extensive amyloid deposition was observed after 8 weeks. By contrast, no amyloid was detected in transplanted neonatal or adult porcine islets that had maintained normoglycemia for up to 195 days. To determine whether differences in IAPP sequence between humans and pigs could explain differences in amyloid formation and transplant viability, we sequenced porcine IAPP. Porcine IAPP differs from the human sequence at 10 positions and includes substitutions predicted to reduce its amyloidogenicity. Synthetic porcine IAPP was considerably less amyloidogenic than human IAPP as determined by transmission electron microscopy, circular dichroism, and thioflavin T binding. Viability assays indicated that porcine IAPP is significantly less toxic to INS-1 beta cells than human IAPP. Our findings demonstrate that species differences in IAPP sequence can explain the lack of amyloid formation and improved survival of transplanted porcine islets. These data highlight the potential of porcine islet transplantation as a therapeutic approach for human diabetes.
Collapse
|
28
|
Corrêa-Giannella ML, Raposo do Amaral AS. Pancreatic islet transplantation. Diabetol Metab Syndr 2009; 1:9. [PMID: 19825146 PMCID: PMC2761853 DOI: 10.1186/1758-5996-1-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 09/21/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND No formulation of exogenous insulin available to date has yet been able to mimic the physiological nictemeral rhythms of this hormone, and despite all engineering advancements, the theoretical proposal of developing a mechanical replacement for pancreatic beta cell still has not been reached. Thus, the replacement of beta cells through pancreas and pancreatic islet transplantation are the only concrete alternatives for re-establishing the endogenous insulin secretion in type 1 diabetic patients. Since only 1 to 1.5% of the pancreatic mass corresponds to endocrine tissue, pancreatic islets transplantation arises as a natural alternative. Data from the International Islet Transplant Registry (ITR) from 1983 to December 2000 document a total of 493 transplants performed around the world, with progressively worse rates of post-transplant insulin independence. In 2000, the "Edmonton Protocol" introduced several modifications to the transplantation procedure, such as the use of a steroid-free immunosuppression regimen and transplantation of a mean islet mass of 11,000 islet equivalents per kilogram, which significantly improved 1-year outcomes. Although the results of a 5-year follow-up in 65 patients demonstrated improvement in glycemic instability in a significant portion of them, only 7.5% of the patients have reached insulin independence, indicating the need of further advances in the preservation of the function of transplanted islet. In addition to the scarcity of organs available for transplantation, islets transplantation still faces major challenges, specially those related to cell loss during the process of islet isolation and the losses related to the graft site, apoptosis, allorejection, autoimmunity, and immunosuppression. The main strategies to optimize islet transplantation aim at improving all these aspects. CONCLUSION Human islet transplantation should be regarded as an intervention that can decrease the frequency of severe hypoglycemic episodes and improve glycemic control in selected patient for whom benefits of 4-5 years duration would be very valuable. Its limitations, however, indicate that the procedure in its current format is not suitable for all patients with type 1 diabetes.
Collapse
Affiliation(s)
- Maria Lúcia Corrêa-Giannella
- Laboratory of Cellular and Molecular Endocrinology (LIM25) - University of São Paulo Medical School, São Paulo, Brazil
| | - Alexandre S Raposo do Amaral
- Laboratory of Cellular and Molecular Endocrinology (LIM25) - University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
29
|
Mohammed JS, Wang Y, Harvat TA, Oberholzer J, Eddington DT. Microfluidic device for multimodal characterization of pancreatic islets. LAB ON A CHIP 2009; 9:97-106. [PMID: 19209341 PMCID: PMC3759253 DOI: 10.1039/b809590f] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A microfluidic device to perfuse pancreatic islets while simultaneously characterizing their functionality through fluorescence imaging of the mitochondrial membrane potential and intracellular calcium ([Ca(2+)](i)) in addition to enzyme linked immunosorbent assay (ELISA) quantification of secreted insulin was developed and characterized. This multimodal characterization of islet function will facilitate rapid assessment of tissue quality immediately following isolation from donor pancreas and allow more informed transplantation decisions to be made which may improve transplantation outcomes. The microfluidic perfusion chamber allows flow rates of up to 1 mL min(-1), without any noticeable perturbation or shear of islets. This multimodal quantification was done on both mouse and human islets. The ability of this simple microfluidic device to detect subtle variations in islet responses in different functional assays performed in short time-periods demonstrates that the microfluidic perfusion chamber device can be used as a new gold standard to perform comprehensive islet analysis and obtain a more meaningful predictive value for islet functionality prior to transplantation into recipients, which is currently difficult to predict using a single functional assay.
Collapse
|
30
|
Saito Y, Goto M, Maya K, Ogawa N, Fujimori K, Kurokawa Y, Satomi S. The Influence of Brain Death on Tissue Factor Expression in the Pancreatic Tissues and Isolated Islets in Rats. Transplant Proc 2009; 41:307-10. [DOI: 10.1016/j.transproceed.2008.10.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/11/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|