1
|
D Souza S, Obeid W, Hernandez J, Hu D, Wen Y, Moledina DG, Albert A, Gregg A, Wheeler A, Philbrook HT, Parikh CR. The development of lateral flow devices for urinary biomarkers to assess kidney health. Sci Rep 2024; 14:8516. [PMID: 38609491 PMCID: PMC11014899 DOI: 10.1038/s41598-024-59104-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Serum creatinine levels are insensitive to real-time changes in kidney function or injury. There is a growing interest in assessing kidney injury by measuring biomarkers in body fluid. From our previous studies, we identified and reported three urinary biomarkers namely Uromodulin (UMOD), Osteopontin (OPN), and Interleukin-9 (IL-9) to be associated with kidney health. The availability of a rapid point-of-care test for these urinary biomarkers will potentially accelerate its applicability and accessibility. In this study, we aimed to develop novel lateral flow device (LFD) for UMOD, OPN and IL-9. We tested paired antibodies using Enzyme Linked Immunosorbent Assay wherein we observed functionality only for UMOD and OPN and not for IL-9. A conjugation buffer pH of 7.8 and 8.5 was found suitable at a detection antibody concentration of 15 µg/mL for LFD development. The developed LFDs were found to quantitatively measure UMOD standard (LLOD of 80,000 pg/mL) and OPN standard (LLOD of 8600 pg/mL) respectively. The LFD was also able to measure human urinary UMOD and OPN with a percent CV of 12.12 and 5.23 respectively.
Collapse
Affiliation(s)
- Serena D Souza
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA
| | - Wassim Obeid
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA
| | - Jeanine Hernandez
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA
| | - David Hu
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA
| | - Yumeng Wen
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA
| | - Dennis G Moledina
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Andre Albert
- Mologic Inc (D/B/A Global Access Diagnostics), 83 Pineland Drive, Gray Hall Suite 202, New Gloucester, ME, USA
| | - Anya Gregg
- Mologic Ltd (D/B/A Global Access Diagnostics), Bedford Technology Park, Thurleigh, UK
| | - Andrew Wheeler
- Mologic Inc (D/B/A Global Access Diagnostics), 83 Pineland Drive, Gray Hall Suite 202, New Gloucester, ME, USA
| | - Heather Thiessen Philbrook
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA
| | - Chirag R Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA.
| |
Collapse
|
2
|
Roostaee A, Yaghobi R, Afshari A, Jafarinia M. Regulatory role of T helper 9/interleukin-9: Transplantation view. Heliyon 2024; 10:e26359. [PMID: 38420400 PMCID: PMC10900956 DOI: 10.1016/j.heliyon.2024.e26359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
T helper 9 (Th9) cells, a subset of CD4+ T helper cells, have emerged as a valuable target for immune cell therapy due to their potential to induce immunomodulation and tolerance. The Th9 cells mainly produce interleukin (IL)-9 and are known for their defensive effects against helminth infections, allergic and autoimmune responses, and tumor suppression. This paper explores the mechanisms involved in the generation and differentiation of Th9 cells, including the cytokines responsible for their polarization and stabilization, the transcription factors necessary for their differentiation, as well as the role of Th9 cells in inflammatory and autoimmune diseases, allergic reactions, and cancer immunotherapies. Recent research has shown that the differentiation of Th9 cells is coregulated by the transcription factors transforming growth factor β (TGF-β), IL-4, and PU.1, which are also known to secrete IL-10 and IL-21. Multiple cell types, such as T and B cells, mast cells, and airway epithelial cells, are influenced by IL-9 due to its pleiotropic effects.
Collapse
Affiliation(s)
- Azadeh Roostaee
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
3
|
Hricik DE, Armstrong B, Alhamad T, Brennan DC, Bromberg JS, Bunnapradist S, Chandran S, Fairchild RL, Foley DP, Formica R, Gibson IW, Kesler K, Kim SJ, Mannon RB, Menon MC, Newell KA, Nickerson P, Odim J, Poggio ED, Sung R, Shapiro R, Tinckam K, Vincenti F, Heeger PS. Infliximab Induction Lacks Efficacy and Increases BK Virus Infection in Deceased Donor Kidney Transplant Recipients: Results of the CTOT-19 Trial. J Am Soc Nephrol 2023; 34:145-159. [PMID: 36195441 PMCID: PMC10101585 DOI: 10.1681/asn.2022040454] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion (IR) of a kidney transplant (KTx) upregulates TNF α production that amplifies allograft inflammation and may negatively affect transplant outcomes. METHODS We tested the effects of blocking TNF peri-KTx via a randomized, double-blind, placebo-controlled, 15-center, phase 2 clinical trial. A total of 225 primary transplant recipients of deceased-donor kidneys (KTx; 38.2% Black/African American, 44% White) were randomized to receive intravenous infliximab (IFX) 3 mg/kg or saline placebo (PLBO) initiated before kidney reperfusion. All patients received rabbit anti-thymocyte globulin induction and maintenance immunosuppression (IS) with tacrolimus, mycophenolate mofetil, and prednisone. The primary end point was the difference between groups in mean 24-month eGFR. RESULTS There was no difference in the primary end point of 24-month eGFR between IFX (52.45 ml/min per 1.73 m 2 ; 95% CI, 48.38 to 56.52) versus PLBO (57.35 ml/min per 1.73 m 2 ; 95% CI, 53.18 to 61.52; P =0.1). There were no significant differences between groups in rates of delayed graft function, biopsy-proven acute rejection (BPAR), development of de novo donor-specific antibodies, or graft loss/death. Immunosuppression did not differ, and day 7 post-KTx plasma analyses showed approximately ten-fold lower TNF ( P <0.001) in IFX versus PLBO. BK viremia requiring IS change occurred more frequently in IFX (28.9%) versus PLBO (13.4%; P =0.004), with a strong trend toward higher rates of BKV nephropathy in IFX (13.3%) versus PLBO (4.9%; P =0.06). CONCLUSIONS IFX induction therapy does not benefit recipients of kidney transplants from deceased donors on this IS regimen. Because the intervention unexpectedly increased rates of BK virus infections, our findings underscore the complexities of targeting peritransplant inflammation as a strategy to improve KTx outcomes.Clinical Trial registry name and registration number:clinicaltrials.gov (NCT02495077).
Collapse
Affiliation(s)
- Donald E Hricik
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Tarek Alhamad
- Department of Medicine, Washington University, Saint Louis, Missouri
| | | | | | | | - Sindhu Chandran
- Departments of Medicine and Surgery, University of California, San Francisco, California
| | - Robert L Fairchild
- Glickman Urological and Kidney Institute and the Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - David P Foley
- Department of Surgery, University of Wisconsin, Madison, Wisconsin
| | - Richard Formica
- Departments of Medicine and Surgery, Yale University, New Haven, Connecticut
| | - Ian W Gibson
- Departments of Medicine and Pathology, University of Manitoba, Winnipeg, Canada
| | | | - S Joseph Kim
- Department of Medicine, University Health Network, Toronto, Canada
| | - Roslyn B Mannon
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Madhav C Menon
- Departments of Medicine and Surgery, Yale University, New Haven, Connecticut
| | | | - Peter Nickerson
- Departments of Medicine and Pathology, University of Manitoba, Winnipeg, Canada
| | - Jonah Odim
- Transplant Branch, Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Emilio D Poggio
- Glickman Urological and Kidney Institute and the Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Randall Sung
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Ron Shapiro
- Departments of Medicine, Icahn School of Medicine at Mount Sinai and Recanati Miller Transplant Institute, Mount Sinai Hospital, New York, New York
| | - Kathryn Tinckam
- Department of Medicine, University Health Network, Toronto, Canada
| | - Flavio Vincenti
- Departments of Medicine and Surgery, University of California, San Francisco, California
| | - Peter S Heeger
- Departments of Medicine, Icahn School of Medicine at Mount Sinai and Recanati Miller Transplant Institute, Mount Sinai Hospital, New York, New York
| |
Collapse
|
4
|
Santana AC, Andraus W, Silva FMO, Sala ACG, Schust AS, Neri LHM, Feliciano R, Pepineli R, Dellê H, Ruiz LM, de Oliveira-Braga KA, Nepomuceno NA, Pêgo-Fernandes PM, Dos Santos MJ, de Moraes EL, Brasil S, Figueiredo EG. Thalidomide modulates renal inflammation induced by brain death experimental model. Transpl Immunol 2022; 75:101710. [PMID: 36096418 DOI: 10.1016/j.trim.2022.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Brain death (BD) is characterized by a complex inflammatory response, resulting in dysfunction of potentially transplantable organs. This process is modulated by cytokines, which amplify graft immunogenicity. We have investigated the inflammatory response in an animal model of BD and analyzed the effects of thalidomide, a drug with powerful immunomodulatory properties. METHODS BD was induced in male Lewis rats. We studied three groups: Control (sham-operated rats) (n = 6), BD (rats subjected to brain death) (n = 6) and BD + Thalid (BD rats treated with one dose of thalidomide (200 mg/Kg), administered by gavage) (n = 6). Six hours after BD, serum levels of urea and creatinine, as well as systemic and renal tissue protein levels of TNF-α and IL-6, were analyzed. We also determined the mRNA expression of ET-1, and macrophage infiltration by immunohistochemistry. RESULTS BD induced a striking inflammatory status, demonstrated by a significant increase of plasma cytokines: TNF-α (2.8 ± 4.3 pg/mL [BD] vs. 9.4 ± 2.8 pg/mL [Control]), and IL-6 (6219.5 ± 1380.6 pg/mL [BD] vs. 1854.7 ± 822.6 pg/mL [Control]), and in the renal tissue: TNF-α (2.5 ± 0.3 relative expression [BD] vs. 1.0 ± 0.4 relative expression [Control]; p < 0.05), and IL-6 (4.0 ± 0.4 relative expression [BD] vs. 1.0 ± 0.3 relative expression [Control]; p < 0.05). Moreover, BD increased macrophages infiltration (2.47 ± 0.07 cells/field [BD] vs. 1.20 ± 0.05 cells/field [Control]; p < 0.05), and ET-1 gene expression (2.5 ± 0.3 relative expression [BD] vs. 1.0 ± 0.2 relative expression [Control]; p < 0.05). In addition, we have observed deterioration in renal function, characterized by an increase of urea (194.7 ± 25.0 mg/dL [BD] vs. 108.0 ± 14.2 mg/dL [Control]; p < 0.05) and creatinine (1.4 ± 0.04 mg/dL [BD] vs. 1.0 ± 0.07 mg/dL [Control]; p < 0.05) levels. Thalidomide administration significantly reduced plasma cytokines: TNF-α (5.1 ± 1.4 pg/mL [BD + Thalid] vs. BD; p < 0.05), and IL-6 (1056.5 ± 488.3 pg/mL [BD + Thalid] vs. BD; p < 0.05), as well as in the renal tissue: TNF-α (1.5 ± 0.2 relative expression [BD + Thalid] vs. BD; p < 0.05), and IL-6 (2.1 ± 0.3 relative expression [BD + Thalid] vs. BD; p < 0.05). Thalidomide treatment also induced a significant decrease in the expression of ET-1 (1.4 ± 0.3 relative expression [BD + Thalid] vs. BD; p < 0.05), and macrophages infiltration (1.17 ± 0.06 cells/field [BD + Thalid] vs. BD; p < 0.05). Also thalidomide prevented kidney function failure by reduced urea (148.3 ± 4.4 mg/dL [BD + Thalid] vs. BD; p < 0.05), and creatinine (1.1 ± 0.14 mg/dL [BD + Thalid] vs. BD; p < 0.05). CONCLUSIONS The immunomodulatory properties of thalidomide were effective in decreasing systemic and local immunologic response, leading to diminished renal damage, as reflected in the decrease of urea and creatinine levels. These results suggest that use of thalidomide may represent a potential strategy for treating in BD kidney organ donors.
Collapse
Affiliation(s)
- Alexandre Chagas Santana
- Neurological Surgery Department, University of São Paulo, School of Medicine, São Paulo, Brazil; Organ Procurement Organization, Hospital das Clínicas, University of São Paulo, School of Medicine, São Paulo, Brazil.
| | - Wellington Andraus
- Gastroenterology Department, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | | | | | | | - Regiane Feliciano
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Rafael Pepineli
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Humberto Dellê
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Liliane Moreira Ruiz
- Cardiopneumology Department, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | | | | | | | - Edvaldo Leal de Moraes
- Organ Procurement Organization, Hospital das Clínicas, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Sergio Brasil
- Neurological Surgery Department, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
5
|
Kuzmin DO, Manukovsky VA, Bagnenko SF, Reznik ON, Ananiev AN, Vorobyeva OA, Vorobyev SL, Gogolev DV, Daineko VS, Kutenkov AA, Chichagova NA, Uliankina IV. Use of polyclonal antibodies in brain-dead donors in kidney transplantation. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2022. [DOI: 10.15825/1995-1191-2022-4-124-134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective. The objective of this study is to develop a therapeutic strategy for protecting grafts in order to improve the efficiency of kidney transplantation (KT) using polyclonal antibodies (pAbs) through elimination of activated forms of neutrophils, chemo- and cytokines from the donor’s bloodstream, and a decrease in the level of expression of adhesion molecules on the renal vascular endothelium at the pre-transplant stage.Materials and methods. In 2017, we developed and for the first time applied a therapeutic strategy for ischemia-reperfusion injury (IRI) in a brain-dead donor (BDD). Given the limited time interval after brain death has been diagnosed, Timoglobulin (Sanofi Genzyme, France) was administered to the donor at a dose of 8 mg/kg intravenously for 6 hours. Before drug administration and immediately before the start of cold perfusion, a complete blood count and renal transplant biopsy were performed. The study group included 10 BDDs (mean age 39.3 ± 4.4 years) who received anti-thymocyte globulin (ATG). The comparison group included 10 BDDs (mean age 38.5 ± 4.3 years) who did not undergo the new strategy. Donor kidneys were transplanted to 40 recipients (average age 47.5 ± 4.3 years), who were also divided into 2 groups, depending on the graft received (with and without ATG). At the organ donation center, a biobank of specimens from donors of various categories, including those using the IRI therapeutic strategy and recipients for retrospective assessment of the effectiveness of pAbs, was formed.Results. Clinical blood test results show that in the ATG group, there was stable leukopenia (neutropenia and lymphopenia) of 1.46 ± 0.18x109/l. Fifteen (75%) recipients of kidneys obtained from donors with ATG had immediate graft function; in the control group – 10 (50%) recipients.Conclusion. Data obtained testify to the prospects of implementing the proposed strategy in clinical practice, which will improve the quality of the resulting grafts and their suitability for subsequent transplantation, prolong graft functioning due to elimination of leukocytes as a factor of IRI, prevention of early allograft nephropathy, increase in the donor pool by using expanded criteria donors (ECDs).
Collapse
Affiliation(s)
- D. O. Kuzmin
- St. Petersburg Research Institute of Emergency Medicine; Pavlov First St. Petersburg State Medical University
| | | | | | - O. N. Reznik
- St. Petersburg Research Institute of Emergency Medicine; Pavlov First St. Petersburg State Medical University; North-Western State Medical University
| | - A. N. Ananiev
- St. Petersburg Research Institute of Emergency Medicine; Pavlov First St. Petersburg State Medical University
| | | | | | - D. V. Gogolev
- St. Petersburg Research Institute of Emergency Medicine; Pavlov First St. Petersburg State Medical University
| | - V. S. Daineko
- St. Petersburg Research Institute of Emergency Medicine; North-Western State Medical University
| | - A. A. Kutenkov
- St. Petersburg Research Institute of Emergency Medicine; Pavlov First St. Petersburg State Medical University
| | - N. A. Chichagova
- St. Petersburg Research Institute of Emergency Medicine; Pavlov First St. Petersburg State Medical University
| | - I. V. Uliankina
- St. Petersburg Research Institute of Emergency Medicine; Pavlov First St. Petersburg State Medical University
| |
Collapse
|
6
|
Ponticelli C, Citterio F. Non-Immunologic Causes of Late Death-Censored Kidney Graft Failure: A Personalized Approach. J Pers Med 2022; 12:1271. [PMID: 36013220 PMCID: PMC9410103 DOI: 10.3390/jpm12081271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Despite continuous advances in surgical and immunosuppressive protocols, the long-term survival of transplanted kidneys is still far from being satisfactory. Antibody-mediated rejection, recurrent autoimmune diseases, and death with functioning graft are the most frequent causes of late-kidney allograft failure. However, in addition to these complications, a number of other non-immunologic events may impair the function of transplanted kidneys and directly or indirectly lead to their failure. In this narrative review, we will list and discuss the most important nonimmune causes of late death-censored kidney graft failure, including quality of the donated kidney, adherence to prescriptions, drug toxicities, arterial hypertension, dyslipidemia, new onset diabetes mellitus, hyperuricemia, and lifestyle of the renal transplant recipient. For each of these risk factors, we will report the etiopathogenesis and the potential consequences on graft function, keeping in mind that in many cases, two or more risk factors may negatively interact together.
Collapse
Affiliation(s)
| | - Franco Citterio
- Renal Transplant Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
7
|
Novel Soluble Mediators of Innate Immune System Activation in Solid Allograft Rejection. Transplantation 2022; 106:500-509. [PMID: 34049364 DOI: 10.1097/tp.0000000000003834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the past years, solid allograft rejection has been considered the consequence of either cellular- or antibody-mediated reaction both being part of the adaptive immune response, whereas the role of innate immunity has been mostly considered less relevant. Recently, a large body of evidence suggested that the innate immune response and its soluble mediators may play a more important role during solid allograft rejection than originally thought. This review will highlight the role of novel soluble mediators that are involved in the activation of innate immunity during alloimmune response and solid allograft rejection. We will also discuss emerging strategies to alleviate the aforementioned events. Hence, novel, feasible, and safe clinical therapies are needed to prevent allograft loss in solid organ transplantation. Fully understanding the role of soluble mediators of innate immune system activation may help to mitigate solid allograft rejection and improve transplanted recipients' outcomes.
Collapse
|
8
|
Assadiasl S, Fatahi Y, Nicknam MH. T helper-9 cells and Interleukin-9 in transplantation: The open question. Hum Immunol 2022; 83:499-508. [DOI: 10.1016/j.humimm.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
|
9
|
Dashti-Khavidaki S, Saidi R, Lu H. Current status of glucocorticoid usage in solid organ transplantation. World J Transplant 2021; 11:443-465. [PMID: 34868896 PMCID: PMC8603633 DOI: 10.5500/wjt.v11.i11.443] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids (GCs) have been the mainstay of immunosuppressive therapy in solid organ transplantation (SOT) for decades, due to their potent effects on innate immunity and tissue protective effects. However, some SOT centers are reluctant to administer GCs long-term because of the various related side effects. This review summarizes the advantages and disadvantages of GCs in SOT. PubMed and Scopus databases were searched from 2011 to April 2021 using search syntaxes covering “transplantation” and “glucocorticoids”. GCs are used in transplant recipients, transplant donors, and organ perfusate solution to improve transplant outcomes. In SOT recipients, GCs are administered as induction and maintenance immunosuppressive therapy. GCs are also the cornerstone to treat acute antibody- and T-cell-mediated rejections. Addition of GCs to organ perfusate solution and pretreatment of transplant donors with GCs are recommended by some guidelines and protocols, to reduce ischemia-reperfusion injury peri-transplant. GCs with low bioavailability and high potency for GC receptors, such as budesonide, nanoparticle-mediated targeted delivery of GCs to specific organs, and combination use of dexamethasone with inducers of immune-regulatory cells, are new methods of GC application in SOT patients to reduce side effects or induce immune-tolerance instead of immunosuppression. Various side effects involving different non-targeted organs/tissues, such as bone, cardiovascular, neuromuscular, skin and gastrointestinal tract, have been noted for GCs. There are also potential drug-drug interactions for GCs in SOT patients.
Collapse
Affiliation(s)
- Simin Dashti-Khavidaki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155, Iran
| | - Reza Saidi
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
10
|
Györi GP, Mathe Z, Jelencsics K, Geroldinger A, Gerlei Z, Berlakovich GA. Steroid pretreatment of deceased donors and liver allograft function - Ten years follow-up of a blinded randomized placebo controlled trial. Int J Surg 2021; 94:106095. [PMID: 34517135 DOI: 10.1016/j.ijsu.2021.106095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/10/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Within the last decade numerous attempts have been reported in order to expand the donor pool and alleviate organ shortage in the setting of liver transplantation. Aim of this blinded randomized controlled trial was to evaluate the effect of donor steroid pretreatment on outcomes after liver transplantation. METHODS We performed an international, multi-center double-blinded randomized placebo controlled trial. Donors received 1000 mg methylprednisone or placebo before organ procurement. Primary endpoint were patient and graft survival. Secondary end points were rate of BPAR and liver functions trajectories after transplantation. Follow up was 10 years. RESULTS There was no effect of steroid pretreatment vs. placebo on overall patient survival (50% vs. 46%, p = n.s.) as well as graft survival (47% vs. 51%, p= n.s.). Further donor steroid pretreatment did not alter the rate of biopsy proven acute rejections (34% steroid group vs. 36% placebo, p = n.s.). Evaluating short term and long term graft function, steroid pretreatment had minor effect on immediate liver function trajectories within the first 2 weeks after transplantation. This was not seen in long-term follow up. CONCLUSION In conclusion we found no evidence that donor steroid pretreatment translates in improved outcomes after liver transplantation.
Collapse
Affiliation(s)
- Georg P Györi
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Austria Division of Nephrology, Department of Internal Medicine III, Medical University of Vienna, Austria Center for Medical Statistics and Informatics, Medical University of Vienna, Austria Semmelweis University Budapest, Dept. of Transplantation and Surgery, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
11
|
Ramírez-Guerrero G, Baghetti-Hernández R, Ronco C. Acute Kidney Injury at the Neurocritical Care Unit. Neurocrit Care 2021; 36:640-649. [PMID: 34518967 DOI: 10.1007/s12028-021-01345-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022]
Abstract
Neurocritical care has advanced substantially in recent decades, allowing doctors to treat patients with more complicated conditions who require a multidisciplinary approach to achieve better clinical outcomes. In neurocritical patients, nonneurological complications such as acute kidney injury (AKI) are independent predictors of worse clinical outcomes. Different research groups have reported an AKI incidence of 11.6% and an incidence of stage 3 AKI, according to the Kidney Disease: Improving Global Outcomes, that requires dialysis of 3% to 12% in neurocritical patients. These patients tend to be younger, have less comorbidity, and have a different risk profile, given the diagnostic and therapeutic procedures they undergo. Trauma-induced AKI, sepsis, sympathetic overstimulation, tubular epitheliopathy, hyperchloremia, use of nephrotoxic drugs, and renal hypoperfusion are some of the causes of AKI in neurocritical patients. AKI is the result of a sum of events, although the mechanisms underlying many of them remain uncertain; however, two important causes that merit mention are direct alteration of the physiological brain-kidney connection and exposure to injury as a result of the specific medical management and well-established therapies that neurocritical patients are subjected to. This review will focus on AKI in neurocritical care patients. Specifically, it will discuss its epidemiology, causes, associated mechanisms, and relationship to the brain-kidney axis. Additionally, the use and risks of extracorporeal therapies in this group of patients will be reviewed.
Collapse
Affiliation(s)
- Gonzalo Ramírez-Guerrero
- Critical Care Unit, Carlos Van Buren Hospital, Valparaíso, Chile.
- Dialysis and Renal Transplant Unit, Carlos Van Buren Hospital, Valparaíso, Chile.
- Deparment of Medicine, Universidad de Valparaíso, Valparaíso, Chile.
| | - Romyna Baghetti-Hernández
- Critical Care Unit, Carlos Van Buren Hospital, Valparaíso, Chile
- Deparment of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudio Ronco
- Department of Medicine, Università di Padova, Padua, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
- International Renal Research Institute of Vicenza, Vicenza, Italy
| |
Collapse
|
12
|
Lei B, Sleiman MM, Cheng Q, Tu Z, Zhu P, Goddard M, Martins PN, Langerude L, Nadig S, Tomlinson S, Atkinson C. In Situ Pre-Treatment of Vascularized Composite Allografts With a Targeted Complement Inhibitor Protects Against Brain Death and Ischemia Reperfusion Induced Injuries. Front Immunol 2021; 12:630581. [PMID: 34394069 PMCID: PMC8358649 DOI: 10.3389/fimmu.2021.630581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Donor brain death (BD) is an unavoidable component of vascularized composite allograft (VCA) transplantation and a key contributor to ischemia-reperfusion injury (IRI). Complement is activated and deposited within solid organ grafts as a consequence of BD and has been shown to exacerbate IRI, although the role of BD and complement in VCA and the role it plays in IRI and VCA rejection has not been studied. Methods BD was induced in Balb/c donors, and the VCA perfused prior to graft procurement with UW solution supplemented with or without CR2-Crry, a C3 convertase complement inhibitor that binds at sites of complement activation, such as that induced on the endothelium by induction of BD. Following perfusion, donor VCAs were cold stored for 6 hours before transplantation into C57BL/6 recipients. Donor VCAs from living donors (LD) were also procured and stored. Analyses included CR2-Crry graft binding, complement activation, toxicity, injury/inflammation, graft gene expression and survival. Results Compared to LD VCAs, BD donor VCAs had exacerbated IRI and rejected earlier. Following pretransplant in-situ perfusion of the donor graft, CR2-Crry bound within the graft and was retained post-transplantation. CR2-Crry treatment significantly reduced complement deposition, inflammation and IRI as compared to vehicle-treated BD donors. Treatment of BD donor VCAs with CR2-Crry led to an injury profile not dissimilar to that seen in recipients of LD VCAs. Conclusion Pre-coating a VCA with CR2-Crry in a clinically relevant treatment paradigm provides localized, and therefore minimally immunosuppressive, protection from the complement-mediated effects of BD induced exacerbated IRI.
Collapse
Affiliation(s)
- Biao Lei
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - M. Mahdi Sleiman
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Qi Cheng
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Surgery, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Institute of Organ Transplantation, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenxiao Tu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Surgery, Hepatic and Vascular Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Surgery, Hepatic and Vascular Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Martin Goddard
- Pathology Department, Papworth Hospital NHS Trust, Cambridge, United Kingdom
| | - Paulo N. Martins
- UMass Memorial Medical Center, Department of Surgery, Transplant Division, University of Massachusetts, Worcester, MA, United States
| | - Logan Langerude
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL, United States
| | - Satish Nadig
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Microbiology and Immunology, Charleston, SC, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Microbiology and Immunology, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL, United States
- Department of Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Microbiology and Immunology, Charleston, SC, United States
| |
Collapse
|
13
|
Mezzolla V, Pontrelli P, Fiorentino M, Stasi A, Pesce F, Franzin R, Rascio F, Grandaliano G, Stallone G, Infante B, Gesualdo L, Castellano G. Emerging biomarkers of delayed graft function in kidney transplantation. Transplant Rev (Orlando) 2021; 35:100629. [PMID: 34118742 DOI: 10.1016/j.trre.2021.100629] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 01/10/2023]
Abstract
Delayed Graft Function (DGF) is one of the most common early complications in kidney transplantation, associated with poor graft outcomes, prolonged post-operative hospitalization and higher rejection rates. Given the severe shortage of high-quality organs for transplantation, DGF incidence is expected to raise in the next years because of the use of nonstandard kidneys from Extended Criteria Donors (ECD) and from Donors after Circulatory Death (DCD). Alongside conventional methods for the evaluation of renal allograft [e.g. serum creatinine Glomerular Filtration Rate (GFR), needle biopsy], recent advancements in omics technologies, including proteomics, metabolomics and transcriptomics, may allow to discover novel biomarkers associated with DGF occurrence, in order to identify early preclinical signs of renal dysfunction and to improve the quality of graft management. Here, we gather contributions from basic scientists and clinical researchers to describe new omics studies in renal transplantation, reporting the emerging biomarkers of DGF that may implement and improve conventional approaches.
Collapse
Affiliation(s)
- Valeria Mezzolla
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari 70124, Italy
| | - Paola Pontrelli
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari 70124, Italy
| | - Marco Fiorentino
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari 70124, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari 70124, Italy
| | - Francesco Pesce
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari 70124, Italy
| | - Rossana Franzin
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari 70124, Italy
| | - Federica Rascio
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari 70124, Italy
| | - Giuseppe Grandaliano
- Department of Translational Medicine and Surgery, Università Cattolica Sacro Cuore, Rome, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari 70124, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Italy.
| |
Collapse
|
14
|
Ponticelli C, Campise MR. The inflammatory state is a risk factor for cardiovascular disease and graft fibrosis in kidney transplantation. Kidney Int 2021; 100:536-545. [PMID: 33932457 DOI: 10.1016/j.kint.2021.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Several factors, such as donor brain death, ischemia-reperfusion injury, rejection, infection, and chronic allograft dysfunction, may induce an inflammatory state in kidney transplantation. Furthermore, inflammatory cells, cytokines, growth factors, complement and coagulation cascade create an unbalanced interaction with innate and adaptive immunity, which are both heavily involved in atherogenesis. The crosstalk between inflammation and thrombosis may lead to a prothrombotic state and impaired fibrinolysis in kidney transplant recipients increasing the risk of cardiovascular disease. Inflammation is also associated with elevated levels of fibroblast growth factor 23 and low levels of Klotho, which contribute to major adverse cardiovascular events. Hyperuricemia, glucose intolerance, arterial hypertension, dyslipidemia, and physical inactivity may create a condition called metaflammation that concurs in atherogenesis. Another major consequence of the inflammatory state is the development of chronic hypoxia that through the mediation of interleukins 1 and 6, angiotensin II, and transforming growth factor beta can result in excessive accumulation of extracellular matrix, which can disrupt and replace functional parenchyma, leading to interstitial fibrosis and chronic allograft dysfunction. Lifestyle and regular physical activity may reduce inflammation. Several drugs have been proposed to control the graft inflammatory state, including low-dose aspirin, statins, renin-angiotensin inhibitors, xanthine-oxidase inhibitors, vitamin D supplements, and interleukin-6 blockade. However, no prospective controlled trial with these measures has been conducted in kidney transplantation.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Division of Nephrology, Ospedale Maggiore Policlinico, Milano, Italy (retired).
| | - Maria Rosaria Campise
- Division of Nephrology and Dialysis, Ca' Granda Foundation, Scientific Institute Ospedale Maggiore Policlinico di Milano, Milano, Italy
| |
Collapse
|
15
|
Halpern SE, Rush CK, Edwards RW, Brennan TV, Barbas AS, Pollara J. Systemic Complement Activation in Donation After Brain Death Versus Donation After Circulatory Death Organ Donors. EXP CLIN TRANSPLANT 2021; 19:635-644. [PMID: 33877036 DOI: 10.6002/ect.2020.0425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Complement activation in organs from deceased donors is associated with allograft injury and acute rejection. Because use of organs from donors after circulatory death is increasing, we characterized relative levels of complement activation in organs from donors after brain death and after circulatory death and examined associations between donor complement factor levels and outcomes after kidney and liver transplant. MATERIALS AND METHODS Serum samples from 65 donors (55 donations after brain death, 10 donations after circulatory death) were analyzed for classical, lectin, alternative, and terminal pathway components by Luminex multiplex assays. Complement factor levels were compared between groups, and associations with posttransplant outcomes were explored. RESULTS Serum levels of the downstream complement activation product C5a were similar in organs from donors after circulatory death versus donors after brain death. In organs from donors after circulatory death, complement activation occurred primarily via the alternative pathway; the classical, lectin, and alternative pathways all contributed in organs from donors after brain death. Donor complement levels were not associated with outcomes after kidney transplant. Lower donor complement levels were associated with need for transfusion, reintervention, hospital readmission, and acute rejection after liver transplant. CONCLUSIONS Complement activation occurs at similar levels in organs donated from donors after circulatory death versus those after brain death. Lower donor complement levels may contribute to adverse outcomes after liver transplant. Further study is warranted to better understand how donor complement activation contributes to posttransplant outcomes.
Collapse
Affiliation(s)
- Samantha E Halpern
- From the School of Medicine, Duke University, Durham, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abbasi Dezfouli S, Nikdad M, Ghamarnejad O, Khajeh E, Arefidoust A, Mohammadi S, Majlesara A, Sabagh M, Gharabaghi N, Kentar M, Younsi A, Eckert C, Poth T, Golriz M, Mehrabi A, Nickkholgh A. Oral Preconditioning of Donors After Brain Death With Calcineurin Inhibitors vs. Inhibitors of Mammalian Target for Rapamycin in Pig Kidney Transplantation. Front Immunol 2020; 11:1222. [PMID: 32625210 PMCID: PMC7316124 DOI: 10.3389/fimmu.2020.01222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/15/2020] [Indexed: 12/01/2022] Open
Abstract
Background: The systemic inflammatory cascade triggered in donors after brain death enhances the ischemia-reperfusion injury after organ transplantation. Intravenous steroids are routinely used in the intensive care units for the donor preconditioning. Immunosuppressive medications could be potentially used for this purpose as well. Data regarding donor preconditioning with calcineurin inhibitors or inhibitors of mammalian target for Rapamycin is limited. The aim of this project is to investigate the effects of (oral) donor preconditioning with a calcineurin inhibitor (Cyclosporine) vs. an inhibitor of mammalian target for Rapamycin (Everolimus) compared to the conventional administration of steroid in the setting of donation after brain death in porcine renal transplantation. Methods: Six hours after the induction of brain death, German landrace donor pigs (33.2 ± 3.9 kg) were randomly preconditioned with either Cyclosporine (n = 9) or Everolimus (n = 9) administered via nasogastric tube with a repeated dose just before organ procurement. Control donors received intravenous Methylprednisolone (n = 8). Kidneys were procured, cold-stored in Histidine-Tryptophane-Ketoglutarate solution at 4°C and transplanted in nephrectomized recipients after a mean cold ischemia time of 18 h. No post-transplant immunosuppression was given to avoid confounding bias. Blood samples were obtained at 4 h post reperfusion and daily until postoperative day 5 for complete blood count, blood urea nitrogen, creatinine, and electrolytes. Graft protocol biopsies were performed 4 h after reperfusion to assess early histological and immunohistochemical changes. Results: There was no difference in the hemodynamic parameters, hemoglobin/hematocrit and electrolytes between the groups. Serum blood urea nitrogen and creatinine peaked on postoperative day 1 in all groups and went back to the preoperative levels at the conclusion of the study on postoperative day 5. Histological assessment of the kidney grafts revealed no significant differences between the groups. TNF-α expression was significantly lower in the study groups compared with Methylprednisolone group (p = 0.01) Immunohistochemistry staining for cytochrome c showed no difference between the groups. Conclusion: Oral preconditioning with Cyclosporine or Everolimus is feasible in donation after brain death pig kidney transplantation and reduces the expression of TNF-α. Future studies are needed to further delineate the role of oral donor preconditioning against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Sepehr Abbasi Dezfouli
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Mohammadsadegh Nikdad
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Omid Ghamarnejad
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Elias Khajeh
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Alireza Arefidoust
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Sara Mohammadi
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Ali Majlesara
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Mohammadsadegh Sabagh
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Negin Gharabaghi
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Modar Kentar
- Department of Neurosurgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Christoph Eckert
- Institute of Pathology, Ruprecht-Karls University, Heidelberg, Germany
| | - Tanja Poth
- Institute of Pathology, Ruprecht-Karls University, Heidelberg, Germany
| | - Mohammad Golriz
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Arash Nickkholgh
- Department of General, Abdominal and Transplant Surgery, Ruprecht-Karls University, Heidelberg, Germany
| |
Collapse
|
17
|
Chan Chun Kong D, Akbari A, Malcolm J, Doyle MA, Hoar S. Determinants of Poor Glycemic Control in Patients with Kidney Transplants: A Single-Center Retrospective Cohort Study in Canada. Can J Kidney Health Dis 2020; 7:2054358120922628. [PMID: 32477582 PMCID: PMC7235535 DOI: 10.1177/2054358120922628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/27/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Kidney transplant immunosuppressive medications are known to impair glucose metabolism, causing worsened glycemic control in patients with pre-transplant diabetes mellitus (PrTDM) and new onset of diabetes after transplant (NODAT). Objectives: To determine the incidence, risk factors, and outcomes of both PrTDM and NODAT patients. Design: This is a single-center retrospective observational cohort study. Setting: The Ottawa Hospital, Ontario, Canada. Participant: A total of 132 adult (>18 years) kidney transplant patients from 2013 to 2015 were retrospectively followed 3 years post-transplant. Measurements: Patient characteristics, transplant information, pre- and post-transplant HbA1C and random glucose, follow-up appointments, complications, and readmissions. Methods: We looked at the prevalence of poor glycemic control (HbA1c >8.5%) in the PrTDM group before and after transplant and compared the prevalence, follow-up appointments, and rate of complications and readmission rates in both the PrTDM and NODAT groups. We determined the risk factors of developing poor glycemic control in PrTDM patients and NODAT. Student t-test was used to compare means, chi-squared test was used to compare percentages, and univariate analysis to determine risk factors was performed by logistical regression. Results: A total of 42 patients (31.8%) had PrTDM and 12 patients (13.3%) developed NODAT. Poor glycemic control (HbA1c >8.5%) was more prevalent in the PrTDM (76.4%) patients compared to those with NODAT (16.7%; P < .01). PrTDM patients were more likely to receive follow-up with an endocrinologist (P < .01) and diabetes nurse (P < .01) compared to those with NODAT. There were no differences in the complication and readmission rates for PrTDM and NODAT patients. Receiving a transplant from a deceased donor was associated with having poor glycemic control, odds ratio (OR) = 3.34, confidence interval (CI = 1.08, 10.4), P = .04. Both patient age, OR = 1.07, CI (1.02, 1.3), P < .01, and peritoneal dialysis prior to transplant, OR = 4.57, CI (1.28, 16.3), P = .02, were associated with NODAT. Limitations: Our study was limited by our small sample size. We also could not account for any diabetes screening performed outside of our center or follow-up appointments with family physicians or community endocrinologists. Conclusion: Poor glycemic control is common in the kidney transplant population. Glycemic targets for patients with PrTDM are not being met in our center and our study highlights the gap in the literature focusing on the prevalence and outcomes of poor glycemic control in these patients. Closer follow-up and attention may be needed for those who are at risk for worse glycemic control, which include older patients, those who received a deceased donor kidney, and/or prior peritoneal dialysis.
Collapse
Affiliation(s)
| | - Ayub Akbari
- Faculty of Medicine, University of Ottawa, ON, Canada.,Division of Nephrology, The Ottawa Hospital, ON, Canada
| | - Janine Malcolm
- Faculty of Medicine, University of Ottawa, ON, Canada.,Division of Endocrinology, The Ottawa Hospital, ON, Canada
| | - Mary-Anne Doyle
- Faculty of Medicine, University of Ottawa, ON, Canada.,Division of Endocrinology, The Ottawa Hospital, ON, Canada
| | - Stephanie Hoar
- Faculty of Medicine, University of Ottawa, ON, Canada.,Division of Nephrology, The Ottawa Hospital, ON, Canada
| |
Collapse
|
18
|
Smeets S, Stangé G, Leuckx G, Roelants L, Cools W, De Paep DL, Ling Z, De Leu N, In't Veld P. Evidence of Tissue Repair in Human Donor Pancreas After Prolonged Duration of Stay in Intensive Care. Diabetes 2020; 69:401-412. [PMID: 31843955 DOI: 10.2337/db19-0529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/10/2019] [Indexed: 11/13/2022]
Abstract
M2 macrophages play an important role in tissue repair and regeneration. They have also been found to modulate β-cell replication in mouse models of pancreatic injury and disease. We previously reported that β-cell replication is strongly increased in a subgroup of human organ donors characterized by prolonged duration of stay in an intensive care unit (ICU) and increased number of leukocytes in the pancreatic tissue. In the present study we investigated the relationship between duration of stay in the ICU, M2 macrophages, vascularization, and pancreatic cell replication. Pancreatic organs from 50 donors without diabetes with different durations of stay in the ICU were analyzed by immunostaining and digital image analysis. The number of CD68+CD206+ M2 macrophages increased three- to sixfold from ≥6 days' duration of stay in the ICU onwards. This was accompanied by a threefold increased vascular density and a four- to ninefold increase in pancreatic cells positive for the replication marker Ki67. A strong correlation was observed between the number of M2 macrophages and β-cell replication. These results show that a prolonged duration of stay in the ICU is associated with an increased M2 macrophage number, increased vascular density, and an overall increase in replication of all pancreatic cell types. Our data show evidence of marked levels of tissue repair in the human donor pancreas.
Collapse
Affiliation(s)
- Silke Smeets
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Stangé
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gunter Leuckx
- Beta Cell Neogenesis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lisbeth Roelants
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wilfried Cools
- Interfaculty Center Data processing and Statistics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Diedert Luc De Paep
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Beta Cell Bank, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Department of Surgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Beta Cell Bank, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Nico De Leu
- Beta Cell Neogenesis, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Peter In't Veld
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
19
|
The Neglectable Impact of Delayed Graft Function on Long-term Graft Survival in Kidneys Donated After Circulatory Death Associates With Superior Organ Resilience. Ann Surg 2019; 270:877-883. [DOI: 10.1097/sla.0000000000003515] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Garla V, Kanduri S, Yanes-Cardozo L, Lién LF. Management of diabetes mellitus in chronic kidney disease. MINERVA ENDOCRINOL 2019; 44:273-287. [DOI: 10.23736/s0391-1977.19.03015-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Reindl‐Schwaighofer R, Kainz A, Jelencsics K, Heinzel A, Berlakovich G, Remport Á, Heinze G, Langer R, Oberbauer R. Steroid pretreatment of organ donors does not impact on early rejection and long-term kidney allograft survival: Results from a multicenter randomized, controlled trial. Am J Transplant 2019; 19:1770-1776. [PMID: 30614649 PMCID: PMC6563104 DOI: 10.1111/ajt.15252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/30/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
Abstract
Steroid pretreatment of deceased donors reduces inflammation in allografts and is recommended by organ procurement guidelines. The impact on long-term graft outcome, however, remains elusive. In this multicenter randomized controlled trial, 306 deceased donors providing organs for 455 renal transplant recipients were randomized to 1000 mg of methylprednisolone or placebo prior to organ procurement (ISRCTN78828338). The incidence of biopsy-confirmed rejection (Banff>1) at 3 months was 23 (10%) in the steroid group and 26 (12%) in the placebo group (P = .468). Five-year functional graft survival was 84% and 82% for the steroid group and placebo group, respectively (P-value = .941). The hazard ratio of functional graft loss was 0.90 (95% confidence interval 0.57-1.42, P = .638) for steroid vs placebo in a multivariate Cox model. We did not observe effect modification by any of the predictors of graft survival and treatment modality. A robust sandwich estimate was used to account for paired grafts of some donors. The mean estimated GFR at 5 years was 47 mL/min per 1.73 m2 in the steroid group and 48 mL/min per 1.73 m2 in the placebo group (P = .756). We conclude that steroid pretreatment does not impact on long-term graft survival. In a donor population with higher risk of delayed graft function, however, repetitive and higher doses of steroid treatment may result in different findings.
Collapse
Affiliation(s)
| | - Alexander Kainz
- Department of NephrologyMedical University of ViennaViennaAustria
| | - Kira Jelencsics
- Department of NephrologyMedical University of ViennaViennaAustria
| | - Andreas Heinzel
- Department of NephrologyMedical University of ViennaViennaAustria
| | | | - Ádám Remport
- Department of NephrologySemmelweis UniversityBudapestHungary
| | - Georg Heinze
- Center for Medical StatisticsInformatics and Intelligent Systems (CEMSIIS)Medical University of ViennaViennaAustria
| | - Robert Langer
- Department of SurgeryElisabethinen KrankenhausLinzAustria
| | - Rainer Oberbauer
- Department of NephrologyMedical University of ViennaViennaAustria
| |
Collapse
|
22
|
Anwar ASMT, Lee JM. Medical Management of Brain-Dead Organ Donors. Acute Crit Care 2019; 34:14-29. [PMID: 31723901 PMCID: PMC6849043 DOI: 10.4266/acc.2019.00430] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 11/30/2022] Open
Abstract
With improving healthcare services, the demand for organ transplants has been increasing daily worldwide. Deceased organ donors serve as a good alternative option to meet this demand. The first step in this process is identifying potential organ donors. Specifically, brain-dead patients require aggressive and intensive care from the declaration of brain death until organ retrieval. Currently, there are no specific protocols in place for this, and there are notable variations in the management strategies implemented across different transplant centers. Some transplant centers follow their own treatment protocols, whereas other countries, such as Bangladesh, do not have any protocols for potential organ donor care. In this review, we discuss how to identify brain-dead donors and describe the physiological changes that occur following brain death. We then summarize the management of brain-dead organ donors and, on the basis of a review of the literature, we propose recommendations for a treatment protocol to be developed in the future.
Collapse
Affiliation(s)
- A S M Tanim Anwar
- Department of Nephrology, Dhaka Medical College Hospital, Dhaka, Bangladesh
| | - Jae-Myeong Lee
- Department of Acute Care Surgery, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
23
|
Schaapherder A, Wijermars LG, de Vries DK, de Vries AP, Bemelman FJ, van de Wetering J, van Zuilen AD, Christiaans MH, Hilbrands LH, Baas MC, Nurmohamed AS, Berger SP, Alwayn IP, Bastiaannet E, Lindeman JH. Equivalent Long-term Transplantation Outcomes for Kidneys Donated After Brain Death and Cardiac Death: Conclusions From a Nationwide Evaluation. EClinicalMedicine 2018; 4-5:25-31. [PMID: 31193600 PMCID: PMC6537547 DOI: 10.1016/j.eclinm.2018.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Despite growing waiting lists for renal transplants, hesitations persist with regard to the use of deceased after cardiac death (DCD) renal grafts. We evaluated the outcomes of DCD donations in The Netherlands, the country with the highest proportion of DCD procedures (42.9%) to test whether these hesitations are justified. METHODS This study included all procedures with grafts donated after brain death (DBD) (n = 3611) and cardiac death (n = 2711) performed between 2000 and 2017. Transplant outcomes were compared by Kaplan Meier and Cox regression analysis, and factors associated with short (within 90 days of transplantation) and long-term graft loss evaluated in multi-variable analyses. FINDINGS Despite higher incidences of early graft loss (+ 50%) and delayed graft function (+ 250%) in DCD grafts, 10-year graft and recipient survival were similar for the two graft types (Combined 10-year graft survival: 73.9% (95% CI: 72.5-75.2), combined recipient survival: 64.5% (95 CI: 63.0-66.0%)). Long-term outcome equivalence was explained by a reduced impact of delayed graft function on DCD graft survival (RR: 0.69 (95% CI: 0.55-0.87), p < 0.001). Mid and long-term graft function (eGFR), and the impact of incident delayed graft function on eGFR were similar for DBD and DCD grafts. INTERPRETATION Mid and long term outcomes for DCD grafts are equivalent to DBD kidneys. Poorer short term outcomes are offset by a lesser impact of delayed graft function on DCD graft survival. This nation-wide evaluation does not justify the reluctance to use of DCD renal grafts. A strong focus on short-term outcome neglects the superior recovery potential of DCD grafts.
Collapse
Affiliation(s)
- Alexander Schaapherder
- Department of Transplant Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Leonie G.M. Wijermars
- Department of Transplant Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Dorottya K. de Vries
- Department of Transplant Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Aiko P.J. de Vries
- Department of Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Arjan D. van Zuilen
- Department of Nephrology, University Medical Center Utrecht, the Netherlands
| | | | - Luuk H. Hilbrands
- Department of Nephrology, Radboud University Medical Center, the Netherlands
| | - Marije C. Baas
- Department of Nephrology, Radboud University Medical Center, the Netherlands
| | | | - Stefan P. Berger
- Department of Nephrology, University Medical Center Groningen, the Netherlands
| | - Ian P. Alwayn
- Department of Transplant Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Esther Bastiaannet
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan H.N. Lindeman
- Department of Transplant Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Corresponding author at: Department of Surgery, K6-R, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
24
|
Van Loon E, Heylen L, Naesens M. Time to Cast the Prejudices Towards Transplantation of Kidneys Donated After Cardiac Death? EClinicalMedicine 2018; 4-5:4-5. [PMID: 31193707 PMCID: PMC6537571 DOI: 10.1016/j.eclinm.2018.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 11/02/2022] Open
Affiliation(s)
- Elisabet Van Loon
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Line Heylen
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Abstract
BACKGROUND Kidneys derived from brain-dead (BD) donors have lower graft survival rates compared with kidneys from living donors. Complement activation plays an important role in brain death. The aim of our study was therefore to investigate the effect of C1-inhibitor (C1-INH) on BD-induced renal injury. METHODS Brain death was induced in rats by inflating a subdurally placed balloon catheter. Thirty minutes after BD, rats were treated with saline, low-dose or high-dose C1-INH. Sham-operated rats served as controls. After 4 hours of brain death, renal function, injury, inflammation, and complement activation were assessed. RESULTS High-dose C1-INH treatment of BD donors resulted in significantly lower renal gene expression and serum levels of IL-6. Treatment with C1-INH also improved renal function and reduced renal injury, reflected by the significantly lower kidney injury marker 1 gene expression and lower serum levels of lactate dehydrogenase and creatinine. Furthermore, C1-INH effectively reduced complement activation by brain death and significantly increased functional levels. However, C1-INH treatment did not prevent renal cellular influx. CONCLUSIONS Targeting complement activation after the induction of brain death reduced renal inflammation and improved renal function before transplantation. Therefore, strategies targeting complement activation in human BD donors might clinically improve donor organ viability and renal allograft survival.
Collapse
|
26
|
Schumann-Bischoff A, Schmitz J, Scheffner I, Schmitt R, Broecker V, Haller H, Bräsen JH, Gwinner W. Distinct morphological features of acute tubular injury in renal allografts correlate with clinical outcome. Am J Physiol Renal Physiol 2018; 315:F701-F710. [PMID: 29638160 DOI: 10.1152/ajprenal.00189.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acute tubular injury (ATI) is common in renal allografts and is related to inferior long-term allograft function. However, it is unknown which of the morphological features of ATI can predict outcome and how they should be graded. Here, we examine features of ATI systematically in protocol biopsies and biopsies for cause to define the most predictive features. Analyses included 521 protocol biopsies taken at 6 wk, 3 mo, and 6 mo after transplantation and 141 biopsies for cause from 204 patients. Features of ATI included brush border loss, tubular epithelial lucency, flattening, pyknosis, nuclei loss, and luminal debris, each graded semiquantitatively. Additional immunohistochemical stainings were performed for markers of cell injury (neutrophil gelatinase-associated lipocalin), cell death [cleaved caspase-3, fatty acid-coenzyme A ligase 4 (FACL4)], and proliferation (Ki-67). Interobserver reliability was good for pyknosis, flattening, and brush border loss and poor for lucency, nuclei loss, and luminal debris. In protocol biopsies between 6 wk and 6 mo, the degree of ATI remained virtually unchanged. Biopsies for cause had generally higher injury scores. Deceased donor source, delayed graft function, ganciclovir/valganciclovir treatment, and urinary tract infection correlated with ATI. The degree of pyknosis, flattening, and brush border loss correlated best with impaired allograft function. FACL4 expression was observed in areas of ATI. Only patients with Ki-67 expression showed stable or improved allograft function in the longitudinal assessment. Reliable assessment of ATI is possible by semiquantitative grading of tubular epithelial cell brush border loss, flattening, and pyknosis. Examination of Ki-67 expression can help determine the potential for recovery from this damage.
Collapse
Affiliation(s)
- Andrea Schumann-Bischoff
- Division of Nephrology, Department of Internal Medicine, Hannover Medical School , Hannover , Germany
| | - Jessica Schmitz
- Department of Pathology, Hannover Medical School , Hannover , Germany
| | - Irina Scheffner
- Division of Nephrology, Department of Internal Medicine, Hannover Medical School , Hannover , Germany
| | - Roland Schmitt
- Division of Nephrology, Department of Internal Medicine, Hannover Medical School , Hannover , Germany
| | - Verena Broecker
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Hermann Haller
- Division of Nephrology, Department of Internal Medicine, Hannover Medical School , Hannover , Germany
| | - Jan H Bräsen
- Department of Pathology, Hannover Medical School , Hannover , Germany
| | - Wilfried Gwinner
- Division of Nephrology, Department of Internal Medicine, Hannover Medical School , Hannover , Germany
| |
Collapse
|
27
|
Hottenrott MC, Krebs J, Pelosi P, Luecke T, Rocco PRM, Sticht C, Breedijk A, Yard B, Tsagogiorgas C. Effects of mechanical ventilation on gene expression profiles in renal allografts from brain dead rats. Respir Physiol Neurobiol 2017; 246:17-25. [PMID: 28768153 DOI: 10.1016/j.resp.2017.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
Pathophysiological changes of brain death (BD) are impairing distal organ function and harming potential renal allografts. Whether ventilation strategies influence the quality of renal allografts from BD donors has not been thoroughly studied. 28 adult male Wistar rats were randomly assigned to four groups: 1) no brain death (NBD) with low tidal volume/low positive endexpiratory pressure (PEEP) titrated to minimal static elastance of the respiratory system (LVT/OLPEEP); 2) NBD with high tidal volume/low PEEP (HVT/LPEEP); 3) brain death (BD) with LVT/OLPEEP; and 4) BD with HVT/LPEEP. We hypothesized that HVT/LPEEP in BD leads to increased interleukin 6 (IL-6) gene expression and impairs potential renal allografts after six hours of mechanical ventilation. We assessed inflammatory cytokines in serum, genome wide gene expression profiles and quantitative PCR (qPCR) in kidney tissue. The influence of BD on renal gene-expression profiles was greater than the influence of the ventilation strategy. In BD, LVT ventilation did not influence the inflammatory parameters or kidney function in our experimental model.
Collapse
Affiliation(s)
- Maximilia C Hottenrott
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Internal Medicine V, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Joerg Krebs
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, IRCCS AOU San Martino- IST, University of Genoa, Genoa, Italy
| | - Thomas Luecke
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carsten Sticht
- Centre for Medical Research (ZMF), University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Annette Breedijk
- Department of Internal Medicine V, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Benito Yard
- Department of Internal Medicine V, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Charalambos Tsagogiorgas
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
28
|
Preimplantation Kidney Biopsies of Extended Criteria Donors Have a Heavier Inflammatory Burden Than Kidneys From Standard Criteria Donors. Transplant Direct 2017; 3:e180. [PMID: 28706983 PMCID: PMC5498021 DOI: 10.1097/txd.0000000000000671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/28/2017] [Indexed: 01/14/2023] Open
Abstract
Background Donors after brain death develop a systemic proinflammatory state that may predispose the kidneys to injury after transplantation. Because it is not known whether this inflammatory environment similarly affects the kidneys from expanded criteria donor (ECD) and standard criteria donors (SCD), we sought to evaluate differences in the gene expression of inflammatory cytokines in preimplantation biopsies (PIBx) from ECD and SCD kidneys. Methods Cytokines gene expression was measured in 80 PIBx (SCD, 52; ECD, 28) and associated with donor variables. Results Normal histology and chronic histological lesions were not different between both types of kidneys. ECD kidneys showed significant increase in the transcripts of MCP-1, RANTES, TGF-β1, and IL-10 when compared with SCD. Kidneys presenting normal histology had similar inflammatory profile except by a higher expression of RANTES observed in ECD (P = 0.04). Interstitial fibrosis and tubular atrophy (interstitial fibrosis and tubular atrophy ≥ 1) were associated with higher expression of TGF-β1, RANTES, and IL-10 in ECD compared with SCD kidneys. Cold ischemia time of 24 hours or longer was significantly associated with upregulation of FOXP3, MCP-1, RANTES, and IL10, whereas longer duration of donor hospitalization significantly increased gene expression of all markers. High FOXP3 expression was also associated with lower level of serum creatinine at 1 year. Donor age was not associated with any of the transcripts studied. Conclusions PIBx of ECD exhibit a higher gene expression of inflammatory cytokines when compared with SCD kidneys. This molecular profile may be a specific ECD kidney response to brain death and may help to predict the posttransplant outcomes of ECD recipients.
Collapse
|
29
|
|
30
|
Kwiatkowska E, Domanski L, Bober J, Safranow K, Pawlik A, Ciechanowski K. Activity of urine arylsulfatase A in brain-dead graft donors is a predictor of early and late graft function. POSTEP HIG MED DOSW 2017. [DOI: 10.5604/01.3001.0010.3784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
<b>Objective:</b> Human lysosomal arylsulfatase A (ASA) is a member of the sulfatase family. Arylsulfatase A is required to degrade sulfatides. Sulfatides occur in the myelin sheets of the central and peripheral nervous system. In this study we evaluated the urine activity of lysosomal enzyme arylsulfatase A in brain-dead donors as a marker and predictor of short – and long-term renal allograft function. <b>Patients/Methods: </b> We analyzed data from kidney recipients who received organs from brain‑dead donors. Data from 40 donors and 68 recipients were analyzed. <b>Results: </b> Urine activity of arylsulfatase A in graft donors correlated positively with creatinine clearance in graft recipients after transplantation: : significantly after 30 days (Rs=0.38, p=0.004) and after 3 years (Rs=0.38, p=0.03), and with borderline significance after 14 days (Rs=0.25, p=0.08) and after one year (Rs=0.23, p=0.07). <b>Conclusions: </b> The results of this study suggest that arylsulfatase A has a protective effect on kidney allograft, and the urine activity of this enzyme in kidney donors correlates positively with graft function.
Collapse
Affiliation(s)
- Ewa Kwiatkowska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Leszek Domanski
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Joanna Bober
- Department of Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Kazimierz Ciechanowski
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| |
Collapse
|
31
|
Wijermars LGM, Bakker JA, de Vries DK, van Noorden CJF, Bierau J, Kostidis S, Mayboroda OA, Tsikas D, Schaapherder AF, Lindeman JHN. The hypoxanthine-xanthine oxidase axis is not involved in the initial phase of clinical transplantation-related ischemia-reperfusion injury. Am J Physiol Renal Physiol 2016; 312:F457-F464. [PMID: 28031169 DOI: 10.1152/ajprenal.00214.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 02/02/2023] Open
Abstract
The hypoxanthine-xanthine oxidase (XO) axis is considered to be a key driver of transplantation-related ischemia-reperfusion (I/R) injury. Whereas interference with this axis effectively quenches I/R injury in preclinical models, there is limited efficacy of XO inhibitors in clinical trials. In this context, we considered clinical evaluation of a role for the hypoxanthine-XO axis in human I/R to be relevant. Patients undergoing renal allograft transplantation were included (n = 40) and classified based on duration of ischemia (short, intermediate, and prolonged). Purine metabolites excreted by the reperfused kidney (arteriovenous differences) were analyzed by the ultra performance liquid chromatography-tandem mass spectrometer (UPLCMS/MS) method and tissue XO activity was assessed by in situ enzymography. We confirmed progressive hypoxanthine accumulation (P < 0.006) during ischemia, using kidney transplantation as a clinical model of I/R. Yet, arteriovenous concentration differences of uric acid and in situ enzymography of XO did not indicate significant XO activity in ischemic and reperfused kidney grafts. Furthermore, we tested a putative association between hypoxanthine accumulation and renal oxidative stress by assessing renal malondialdehyde and isoprostane levels and allantoin formation during the reperfusion period. Absent release of these markers is not consistent with an association between ischemic hypoxanthine accumulation and postreperfusion oxidative stress. On basis of these data for the human kidney we hypothesize that the role for the hypoxanthine-XO axis in clinical I/R injury is less than commonly thought, and as such the data provide an explanation for the apparent limited clinical efficacy of XO inhibitors.
Collapse
Affiliation(s)
- Leonie G M Wijermars
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap A Bakker
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Dorottya K de Vries
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis J F van Noorden
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Dimitrios Tsikas
- Bioanalytical Research Laboratory for NO, Oxidative Stress, and Eicosanoids, Centre of Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | | | - Jan H N Lindeman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands;
| |
Collapse
|
32
|
Defective postreperfusion metabolic recovery directly associates with incident delayed graft function. Kidney Int 2016; 90:181-91. [DOI: 10.1016/j.kint.2016.02.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/18/2016] [Accepted: 02/25/2016] [Indexed: 01/09/2023]
|
33
|
Qiang Y, Liang G, Yu L. Human amniotic mesenchymal stem cells alleviate lung injury induced by ischemia and reperfusion after cardiopulmonary bypass in dogs. J Transl Med 2016; 96:537-46. [PMID: 26927516 DOI: 10.1038/labinvest.2016.37] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/06/2016] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
Transplantation of mesenchymal stem cells may inhibit pathological immune processes contributing to ischemia/reperfusion (I/R) injury. This study aimed to assess the capacity of human amniotic MSC (hAMSCs) to ameliorate I/R injury in a dog model of cardiopulmonary bypass (CPB). Dissociated hAMSCs were cultured ex vivo, and their immunophenotypes were assessed by flow cytometry and immunohistochemistry. A dog model of CPB was established by surgical blockage of the aorta for 1 h. Dogs either underwent mock surgery (Sham group), CPB (model group), or CPB, followed by femoral injection of 2 × 10(7) hAMSCs (n=6). Anti-human nuclei staining revealed hAMSCs in the lungs 3 h after surgery. Oxygen index (OI) and respiratory index (RI) of arterial blood were measured using a biochemical analyzer. Venous blood TNF-α, IL-8, MMP-9, and IL-10 concentrations were measured by ELISA. Pathological changes in the lung were assessed by light microscopy. Third-generation-cultured hAMSCs expressed high levels of CD29, CD44, CD49D, CD73, and CD166 levels, but low CD34 or CD45 amounts and their cytoplasm contained Vimentin. In CPB model animals, OI was elevated and RI reduced; TNF-α, IL-8, and MMP-9 levels were elevated, and IL-10 levels reduced within 3h (P<0.05), but hAMSC transplantation significantly ameliorated these changes (P<0.05). Pathological changes observed in the hAMSC group were significantly less severe than those in the CPB group. In conclusion, hAMSC transplantation can downregulate proinflammatory factors and reduce MMP-9 levels, whereas upregulating the anti-inflammatory molecule IL-10, thus reducing I/R lung injury in a dog model of CPB.
Collapse
Affiliation(s)
- Yong Qiang
- Department of Cardiothoracic Surgery, Nanjing General Hospital of Nanjing Military Command, Nanjing, Jiangsu Province, China
| | - Guiyou Liang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Limei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| |
Collapse
|
34
|
Shivaswamy V, Boerner B, Larsen J. Post-Transplant Diabetes Mellitus: Causes, Treatment, and Impact on Outcomes. Endocr Rev 2016; 37:37-61. [PMID: 26650437 PMCID: PMC4740345 DOI: 10.1210/er.2015-1084] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Post-transplant diabetes mellitus (PTDM) is a frequent consequence of solid organ transplantation. PTDM has been associated with greater mortality and increased infections in different transplant groups using different diagnostic criteria. An international consensus panel recommended a consistent set of guidelines in 2003 based on American Diabetes Association glucose criteria but did not exclude the immediate post-transplant hospitalization when many patients receive large doses of corticosteroids. Greater glucose monitoring during all hospitalizations has revealed significant glucose intolerance in the majority of recipients immediately after transplant. As a result, the international consensus panel reviewed its earlier guidelines and recommended delaying screening and diagnosis of PTDM until the recipient is on stable doses of immunosuppression after discharge from initial transplant hospitalization. The group cautioned that whereas hemoglobin A1C has been adopted as a diagnostic criterion by many, it is not reliable as the sole diabetes screening method during the first year after transplant. Risk factors for PTDM include many of the immunosuppressant medications themselves as well as those for type 2 diabetes. The provider managing diabetes and associated dyslipidemia and hypertension after transplant must be careful of the greater risk for drug-drug interactions and infections with immunosuppressant medications. Treatment goals and therapies must consider the greater risk for fluctuating and reduced kidney function, which can cause hypoglycemia. Research is actively focused on strategies to prevent PTDM, but until strategies are found, it is imperative that immunosuppression regimens are chosen based on their evidence to prolong graft survival, not to avoid PTDM.
Collapse
Affiliation(s)
- Vijay Shivaswamy
- Division of Diabetes, Endocrinology, and Metabolism (V.S., B.B., J.L.), Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198; and VA Nebraska-Western Iowa Health Care System (V.S.), Omaha, Nebraska 68105
| | - Brian Boerner
- Division of Diabetes, Endocrinology, and Metabolism (V.S., B.B., J.L.), Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198; and VA Nebraska-Western Iowa Health Care System (V.S.), Omaha, Nebraska 68105
| | - Jennifer Larsen
- Division of Diabetes, Endocrinology, and Metabolism (V.S., B.B., J.L.), Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198; and VA Nebraska-Western Iowa Health Care System (V.S.), Omaha, Nebraska 68105
| |
Collapse
|
35
|
de Kretser DM, Bensley JG, Phillips DJ, Levvey BJ, Snell GI, Lin E, Hedger MP, O’Hehir RE. Substantial Increases Occur in Serum Activins and Follistatin during Lung Transplantation. PLoS One 2016; 11:e0140948. [PMID: 26820896 PMCID: PMC4731072 DOI: 10.1371/journal.pone.0140948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/03/2015] [Indexed: 01/08/2023] Open
Abstract
Background Lung transplantation exposes the donated lung to a period of anoxia. Re-establishing the circulation after ischemia stimulates inflammation causing organ damage. Since our published data established that activin A is a key pro-inflammatory cytokine, we assessed the roles of activin A and B, and their binding protein, follistatin, in patients undergoing lung transplantation. Methods Sera from 46 patients participating in a published study of remote ischemia conditioning in lung transplantation were used. Serum activin A and B, follistatin and 11 other cytokines were measured in samples taken immediately after anaesthesia induction, after remote ischemia conditioning or sham treatment undertaken just prior to allograft reperfusion and during the subsequent 24 hours. Results Substantial increases in serum activin A, B and follistatin occurred after the baseline sample, taken before anaesthesia induction and peaked immediately after the remote ischemia conditioning/sham treatment. The levels remained elevated 15 minutes after lung transplantation declining thereafter reaching baseline 2 hours post-transplant. Activin B and follistatin concentrations were lower in patients receiving remote ischemia conditioning compared to sham treated patients but the magnitude of the decrease did not correlate with early transplant outcomes. Conclusions We propose that the increases in the serum activin A, B and follistatin result from a combination of factors; the acute phase response, the reperfusion response and the use of heparin-based anti-coagulants.
Collapse
Affiliation(s)
- David M. de Kretser
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
- * E-mail:
| | - Jonathan G. Bensley
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | | | - Bronwyn J. Levvey
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Melbourne, Victoria, Australia
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Greg I. Snell
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Melbourne, Victoria, Australia
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Enjarn Lin
- Department of Anaesthesia and Perioperative Medicine, Alfred Hospital, Melbourne, Victoria, Australia
| | - Mark P. Hedger
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Robyn E. O’Hehir
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Melbourne, Victoria, Australia
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Fung A, Zhao H, Yang B, Lian Q, Ma D. Ischaemic and inflammatory injury in renal graft from brain death donation: an update review. J Anesth 2016; 30:307-16. [DOI: 10.1007/s00540-015-2120-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/08/2015] [Indexed: 12/20/2022]
|
37
|
Shiao CC, Wu PC, Huang TM, Lai TS, Yang WS, Wu CH, Lai CF, Wu VC, Chu TS, Wu KD. Long-term remote organ consequences following acute kidney injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:438. [PMID: 26707802 PMCID: PMC4699348 DOI: 10.1186/s13054-015-1149-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute kidney injury (AKI) has been a global health epidemic problem with soaring incidence, increased long-term risks for multiple comorbidities and mortality, as well as elevated medical costs. Despite the improvement of patient outcomes following the advancements in preventive and therapeutic strategies, the mortality rates among critically ill patients with AKI remain as high as 40–60 %. The distant organ injury, a direct consequence of deleterious systemic effects, following AKI is an important explanation for this phenomenon. To date, most evidence of remote organ injury in AKI is obtained from animal models. Whereas the observations in humans are from a limited number of participants in a relatively short follow-up period, or just focusing on the cytokine levels rather than clinical solid outcomes. The remote organ injury is caused with four underlying mechanisms: (1) “classical” pattern of acute uremic state; (2) inflammatory nature of the injured kidneys; (3) modulating effect of AKI of the underlying disease process; and (4) healthcare dilemma. While cytokines/chemokines, leukocyte extravasation, oxidative stress, and certain channel dysregulation are the pathways involving in the remote organ damage. In the current review, we summarized the data from experimental studies to clinical outcome studies in the field of organ crosstalk following AKI. Further, the long-term consequences of distant organ-system, including liver, heart, brain, lung, gut, bone, immune system, and malignancy following AKI with temporary dialysis were reviewed and discussed.
Collapse
Affiliation(s)
- Chih-Chung Shiao
- Division of Nephrology, Department of Internal Medicine, Saint Mary's Hospital Luodong, 160 Chong-Cheng South Road, Luodong, Yilan, 265, Taiwan.,Saint Mary's Medicine, Nursing and Management College, 160 Chong-Cheng South Road, Luodong, Yilan, 265, Taiwan
| | - Pei-Chen Wu
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
| | - Tao-Min Huang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, 579, Sec. 2, Yunlin Road, Douliu City, Yunlin County, 640, Taiwan
| | - Tai-Shuan Lai
- Department of Internal Medicine, National Taiwan University Hospital, Bei-Hu Branch, 87 Neijiang Street, Taipei, 108, Taiwan
| | - Wei-Shun Yang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Hisn-Chu Branch, No.25, Lane 442, Sec. 1, Jingguo Road, Hsin-Chu City, 300, Taiwan
| | - Che-Hsiung Wu
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chun-Fu Lai
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Zhong-Zheng District, Taipei, 100, Taiwan
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Zhong-Zheng District, Taipei, 100, Taiwan.
| | - Tzong-Shinn Chu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Zhong-Zheng District, Taipei, 100, Taiwan
| | - Kwan-Dun Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Zhong-Zheng District, Taipei, 100, Taiwan
| | | |
Collapse
|
38
|
Impact of Donation Mode on the Proportion and Function of T Lymphocytes in the Liver. PLoS One 2015; 10:e0139791. [PMID: 26513368 PMCID: PMC4626218 DOI: 10.1371/journal.pone.0139791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/17/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Liver T-cells respond to the inflammatory insult generated during organ procurement and contribute to the injury following reperfusion. The mode of liver donation alters various metabolic and inflammatory pathways but the way it affects intrahepatic T-cells is still unclear. METHODS We investigated the modifications occurring in the proportion and function of T-cells during liver procurement for transplantation. We isolated hepatic mononuclear cells (HMC) from liver perfusate of living donors (LD) and donors after brain death (DBD) or cardiac death (DCD) and assessed the frequency of T-cell subsets, their cytokine secretion profile and CD8 T-cell cytotoxicity function, responsiveness to a danger associated molecular pattern (High Mobility Group Box1, HMGB1) and association with donor and recipient clinical parameters and immediate graft outcome. RESULTS We found that T-cells in healthy human livers were enriched in memory CD8 T-cells exhibiting a phenotype of non-circulating tissue-associated lymphocytes, functionally dominated by more cytotoxicity and IFN-γ-production in DBD donors, including upon activation by HMGB1 and correlating with peak of post-transplant AST. This liver-specific pattern of CD8 T-cell was prominent in DBD livers compared to DCD and LD livers suggesting that it was influenced by events surrounding brain death, prior to retrieval. CONCLUSION Mode of liver donation can affect liver T-cells with increased liver damage in DBD donors. These findings may be relevant in designing therapeutic strategies aimed at organ optimization prior to transplantation.
Collapse
|
39
|
Pawlus J, Sierocka A, Tejchman K, Ziętek Z, Romanowski M, Pawlik A, Sieńko J, Żukowski M, Ciechanowski K, Ostrowski M, Sulikowski T. The impact of interleukin 12B (1188A>C), interleukin 16 (-295T>C), and interleukin 18 (607C>A, 137G>C) gene polymorphisms on long-term renal transplant function and recipient outcomes. Transplant Proc 2015; 46:2079-82. [PMID: 25131111 DOI: 10.1016/j.transproceed.2014.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Inflammatory mediators play an important role in kidney graft outcome. The cytokine and chemokine gene polymorphisms are associated with variable production, activity, expression, or ligand-receptor affinity. Genetic variation in the DNA sequence of the interleukin 12B (IL12B), interleukin 16 (IL16), and interleukin 18 (IL18) genes may lead to altered cytokine production and activity. These variations can lead to changes in individual patient outcomes after kidney transplantation. It is known that polymorphisms of interleukins have an influence on inflammatory diseases, eg, Crohn's disease, diabetes, and asthma. AIM The aim of this study was to evaluate the correlation between IL12B, IL16, and IL18 gene polymorphisms with delayed graft function (DGF), acute rejection episodes (AR), and chronic rejection episodes (CR). MATERIALS AND METHODS A total of 267 (38.6% women, 61.4% men) recipients were included in the study. Cadaveric kidney transplantations were performed at the Department of General Surgery and Transplantation. Polymerase chain reaction was used to determine gene polymorphisms of IL12B (rs3212227), IL16 (4778889), and IL18 (rs1946518, rs187238) in 2 mL of serum. Statistical significance (P < .05) was analyzed by logit regression, ANOVA and odds ratio (OR) of χ(2) with Yates correction (95% confidence interval). RESULTS Regression analysis revealed no significance between AR/DGF/CR and IL-2B, IL16, IL18rs1946518, and IL18-rs187238 (P > .05). The CR group, AA vs CC genotype of IL18 (rs1946518), had an OR = 2.35 (P = .04). AR and DGF groups had no significance in OR. CONCLUSIONS There was no statistical significance between IL12B, IL16, and IL18 (rs187238) gene polymorphisms and kidney graft outcome after transplantation. Presence of AA genotype (IL18-rs1946518) is connected with a 2.35 times higher risk of CR occurrence.
Collapse
Affiliation(s)
- J Pawlus
- Department of General Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - A Sierocka
- Department of General Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - K Tejchman
- Department of General Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Z Ziętek
- Department of Anatomy, Pomeranian Medical University, Szczecin, Poland
| | - M Romanowski
- Department of General Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - A Pawlik
- Department of Pharmacokinetics and drugs Monitoring, Pomeranian Medical University, Szczecin, Poland
| | - J Sieńko
- Department of General Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - M Żukowski
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University, Szczecin, Poland
| | - K Ciechanowski
- Department of Nephrology, Transplantology and Internal Diseases, Pomeranian Medical University, Szczecin, Poland
| | - M Ostrowski
- Department of General Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - T Sulikowski
- Department of General Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
40
|
Affiliation(s)
- Ina Jochmans
- From the Department of Abdominal Transplant Surgery, University Hospitals Leuven, and Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium (I.J.); and the University of Cambridge Department of Surgery and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom (C.J.E.W.)
| | | |
Collapse
|
41
|
Mori DN, Kreisel D, Fullerton JN, Gilroy DW, Goldstein DR. Inflammatory triggers of acute rejection of organ allografts. Immunol Rev 2015; 258:132-44. [PMID: 24517430 DOI: 10.1111/imr.12146] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Solid organ transplantation is a vital therapy for end stage diseases. Decades of research have established that components of the adaptive immune system are critical for transplant rejection, but the role of the innate immune system in organ transplantation is just emerging. Accumulating evidence indicates that the innate immune system is activated at the time of organ implantation by the release of endogenous inflammatory triggers. This review discusses the nature of these triggers in organ transplantation and also potential mediators that may enhance inflammation resolution after organ implantation.
Collapse
Affiliation(s)
- Daniel N Mori
- Departments of Internal Medicine and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
42
|
Anthony DC, Couch Y. The systemic response to CNS injury. Exp Neurol 2014; 258:105-11. [PMID: 25017891 DOI: 10.1016/j.expneurol.2014.03.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/11/2014] [Accepted: 03/21/2014] [Indexed: 12/29/2022]
Abstract
Inflammation within the brain or spinal cord has the capacity to damage neurons and is known to contribute to long-term disability in a spectrum of central nervous system (CNS) pathologies. However, there is a more profound increase in the recruitment of potentially damaging populations of leukocytes to the spinal cord than to the brain after equivalent injuries. Increased levels of inflammatory cytokines and chemokines in the spinal cord underpin this dissimilarity after injury, which also appears to be very sensitive to processes that operate within organs distant from the primary injury site such as the liver, lung and spleen. Indeed, CNS injury per se can generate profound changes in gene expression and the cellularity of these organs, which, as a consequence, gives rise to secondary organ damage. Our understanding of the local inflammatory processes that can damage neurons is becoming clearer, but our understanding of how the peripheral immune system coordinates the response to CNS injury and how any concomitant infections or injury might impact on the outcome of CNS injury is not so well developed. It is clear that the orientation of the response to peripheral challenges, be it a pro- or anti-inflammatory effect, appears to be dependent on the nature and timing of events. Here, the importance of the inter-relationship between inflammation in the CNS and the consequent inflammatory response in peripheral tissues is highlighted.
Collapse
Affiliation(s)
| | - Yvonne Couch
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Renal ischemia-reperfusion induces release of angiopoietin-2 from human grafts of living and deceased donors. Transplantation 2014; 96:282-9. [PMID: 23839000 DOI: 10.1097/tp.0b013e31829854d5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Recent insights suggest that endothelial cell (EC) activation plays a major role in renal ischemia-reperfusion (I/R) injury. Interactions between ECs and pericytes via signaling molecules, including angiopoietins, are involved in maintenance of the vascular integrity. Experimental data have shown that enhancement of Angiopoietin (Ang)-1 signaling might be beneficial in renal I/R injury. However, little is known about the role of angiopoietins in human renal I/R injury. METHODS In this study, EC activation and changes in angiopoeitins are assessed in human living-donor (LD) and deceased-donor (DD) kidney transplantation. Local release of angiopoietins was measured by unique, dynamic arteriovenous measurements over the reperfused kidney. RESULTS Renal I/R is associated with acute EC activation shown by a vast Ang-2 release from both LD and DD shortly after reperfusion. Its counterpart Ang-1 was not released. Histologic analysis of kidney biopsies showed EC loss after reperfusion. Baseline protein and mRNA Ang-1 expression was significantly reduced in DD compared with LD and declined further after reperfusion. CONCLUSIONS Human renal I/R injury induces EC activation after reperfusion reflected by Ang-2 release from the kidney. Interventions aimed at maintenance of vascular integrity by modulating angiopoietin signaling may be promising in human clinical kidney transplantation.
Collapse
|
44
|
Miyoshi T, Kitamura K. [Acute kidney injury: progress in diagnosis and treatments. Topics: IV. Pathophysiology and treatments; 8. Distant organ dysfunction associated with AKI]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2014; 103:1123-1129. [PMID: 25026783 DOI: 10.2169/naika.103.1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
45
|
van Rijt WG, Secher N, Keller AK, Møldrup U, Chynau Y, Ploeg RJ, van Goor H, Nørregaard R, Birn H, Frøkiaer J, Nielsen S, Leuvenink HGD, Jespersen B. α-Melanocyte stimulating hormone treatment in pigs does not improve early graft function in kidney transplants from brain dead donors. PLoS One 2014; 9:e94609. [PMID: 24728087 PMCID: PMC3984270 DOI: 10.1371/journal.pone.0094609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/17/2014] [Indexed: 01/24/2023] Open
Abstract
Delayed graft function and primary non-function are serious complications following transplantation of kidneys derived from deceased brain dead (DBD) donors. α-melanocyte stimulating hormone (α-MSH) is a pleiotropic neuropeptide and its renoprotective effects have been demonstrated in models of acute kidney injury. We hypothesized that α-MSH treatment of the recipient improves early graft function and reduces inflammation following DBD kidney transplantation. Eight Danish landrace pigs served as DBD donors. After four hours of brain death both kidneys were removed and stored for 18 hours at 4°C in Custodiol preservation solution. Sixteen recipients were randomized in a paired design into two treatment groups, transplanted simultaneously. α-MSH or a vehicle was administered at start of surgery, during reperfusion and two hours post-reperfusion. The recipients were observed for ten hours following reperfusion. Blood, urine and kidney tissue samples were collected during and at the end of follow-up. α-MSH treatment reduced urine flow and impaired recovery of glomerular filtration rate (GFR) compared to controls. After each dose of α-MSH, a trend towards reduced mean arterial blood pressure and increased heart rate was observed. α-MSH did not affect expression of inflammatory markers. Surprisingly, α-MSH impaired recovery of renal function in the first ten hours following DBD kidney transplantation possibly due to hemodynamic changes. Thus, in a porcine experimental model α-MSH did not reduce renal inflammation and did not improve short-term graft function following DBD kidney transplantation.
Collapse
Affiliation(s)
- Willem G. van Rijt
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| | - Niels Secher
- Department of Anesthesiology, Aarhus University Hospital, Aarhus, Denmark
| | - Anna K. Keller
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Ulla Møldrup
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Yahor Chynau
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Rutger J. Ploeg
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Birn
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- The Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jørgen Frøkiaer
- The Water and Salt Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Nielsen
- The Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
46
|
Abstract
Brain death is associated with complex physiologic changes that may impact the management of the potential organ donor. Medical management is critical to actualizing the individual or family’s intent to donate and maximizing the benefit of that intent. This interval of care in the PICU begins with brain death and consent to donation and culminates with surgical organ procurement. During this phase, risks for hemodynamic instability and compromise of end organ function are high. The brain dead organ donor is in a distinct and challenging pathophysiologic condition that culminates in multifactorial shock. The potential benefits of aggressive medical management of the organ donor may include increased number of donors providing transplantable organs and increased number of organs transplanted per donor. This may improve graft function, graft survival, and patient survival in those transplanted. In this chapter, pathophysiologic changes occurring after brain death are reviewed. General and organ specific donor management strategies and logistic considerations are discussed. There is a significant opportunity for enhancing donor multi-organ function and improving organ utilization with appropriate PICU management.
Collapse
|
47
|
de Vries DK, Wijermars LGM, Reinders MEJ, Lindeman JHN, Schaapherder AFM. Donor pre-treatment in clinical kidney transplantation: a critical appraisal. Clin Transplant 2013; 27:799-808. [DOI: 10.1111/ctr.12261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2013] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Jan H. N. Lindeman
- Department of Surgery; Leiden University Medical Center; Leiden The Netherlands
| | | |
Collapse
|
48
|
de Vries DK, Kortekaas KA, Tsikas D, Wijermars LGM, van Noorden CJF, Suchy MT, Cobbaert CM, Klautz RJM, Schaapherder AFM, Lindeman JHN. Oxidative damage in clinical ischemia/reperfusion injury: a reappraisal. Antioxid Redox Signal 2013; 19:535-45. [PMID: 23305329 PMCID: PMC3717197 DOI: 10.1089/ars.2012.4580] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS Ischemia/reperfusion (I/R) injury is a common clinical problem. Although the pathophysiological mechanisms underlying I/R injury are unclear, oxidative damage is considered a key factor in the initiation of I/R injury. Findings from preclinical studies consistently show that quenching reactive oxygen and nitrogen species (RONS), thus limiting oxidative damage, alleviates I/R injury. Results from clinical intervention studies on the other hand are largely inconclusive. In this study, we systematically evaluated the release of established biomarkers of oxidative and nitrosative damage during planned I/R of the kidney and heart in a wide range of clinical conditions. RESULTS Sequential arteriovenous concentration differences allowed specific measurements over the reperfused organ in time. None of the biomarkers of oxidative and nitrosative damage (i.e., malondialdehyde, 15(S)-8-iso-prostaglandin F2α, nitrite, nitrate, and nitrotyrosine) were released upon reperfusion. Cumulative urinary measurements confirmed plasma findings. As of these negative findings, we tested for oxidative stress during I/R and found activation of the nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of oxidative stress signaling. INNOVATION This comprehensive, clinical study evaluates the role of RONS in I/R injury in two different human organs (kidney and heart). Results show oxidative stress, but do not provide evidence for oxidative damage during early reperfusion, thereby challenging the prevailing paradigm on RONS-mediated I/R injury. CONCLUSION Findings from this study suggest that the contribution of oxidative damage to human I/R may be less than commonly thought and propose a re-evaluation of the mechanism of I/R.
Collapse
Affiliation(s)
- Dorottya K de Vries
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Acute but transient release of terminal complement complex after reperfusion in clinical kidney transplantation. Transplantation 2013; 95:816-20. [PMID: 23348894 DOI: 10.1097/tp.0b013e31827e31c9] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ischemia/reperfusion (I/R) injury has a major impact on kidney graft function and survival. Animal studies have suggested a role for complement activation in mediating I/R injury; however, results are not unambiguous. Whether complement activation is involved in clinical I/R injury in humans is still unclear. METHODS In the present study, we assessed the formation and release of C5b-9 during early reperfusion in clinical kidney transplantation in living donor, brain-dead donor, and cardiac dead donor kidney transplantation. By arteriovenous measurements and histologic studies, local terminal complement activation in the reperfused kidney was assessed. RESULTS There was no release of soluble C5b-9 (sC5b-9) from living donor kidneys, nor was there a release of C5a. In contrast, instantly after reperfusion, there was a significant but transient venous release of sC5b-9 from the reperfused kidney graft in brain-dead donor and cardiac dead donor kidney transplantation. This short-term activation of the terminal complement cascade in deceased-donor kidney transplantation was not reflected by renal tissue deposition of C5b-9 in biopsies taken 45 min after reperfusion. CONCLUSIONS This systematic study in human kidney transplantation shows an acute but nonsustained sC5b-9 release on reperfusion in deceased-donor kidney transplantation. This instantaneous, intravascular terminal complement activation may be induced by intravascular cellular debris and hypoxic or injured endothelium.
Collapse
|
50
|
Inflammatory signalling associated with brain dead organ donation: from brain injury to brain stem death and posttransplant ischaemia reperfusion injury. J Transplant 2013; 2013:521369. [PMID: 23691272 PMCID: PMC3649190 DOI: 10.1155/2013/521369] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 01/26/2023] Open
Abstract
Brain death is associated with dramatic and serious pathophysiologic changes that adversely affect both the quantity and quality of organs available for transplant. To fully optimise the donor pool necessitates a more complete understanding of the underlying pathophysiology of organ dysfunction associated with transplantation. These injurious processes are initially triggered by catastrophic brain injury and are further enhanced during both brain death and graft transplantation. The activated inflammatory systems then contribute to graft dysfunction in the recipient. Inflammatory mediators drive this process in concert with the innate and adaptive immune systems. Activation of deleterious immunological pathways in organ grafts occurs, priming them for further inflammation after engraftment. Finally, posttransplantation ischaemia reperfusion injury leads to further generation of inflammatory mediators and consequent activation of the recipient's immune system. Ongoing research has identified key mediators that contribute to the inflammatory milieu inherent in brain dead organ donation. This has seen the development of novel therapies that directly target the inflammatory cascade.
Collapse
|