1
|
Assadiasl S, Nicknam MH. Intestinal transplantation: Significance of immune responses. Arab J Gastroenterol 2024; 25:330-337. [PMID: 39289083 DOI: 10.1016/j.ajg.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/06/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024]
Abstract
Intestinal allografts, with many resident immune cells and as a destination for circulating lymphocytes of the recipient, appear to be the most challenging solid organ transplants. The high incidence of acute rejection and frequent reports of fatal graft-versus-host disease (GvHD) after intestinal transplantation call for more research to describe the molecular mechanisms involved in the immunopathogenesis of post-transplant complications to define new therapeutic targets. In addition, according to the rapid development of immunosuppressive agents, it is time to consider novel therapeutic approaches in managing treatment-refractory patients with rejection or severe GvHD. Herein, the main immunological challenges before and after intestinal transplant including, brain-dead donor inflammation, acute rejection, antibody-mediated, and chronic rejections, as well as GvHD have been described. Besides, the new immune-based therapies used in experimental and clinical settings to improve tolerance toward intestinal allograft, and cases of operational tolerance have been reviewed.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Iranian Tissue Bank and Research Center, Tehran University of Medical Science, Tehran, Iran.
| | - Mohammad Hossein Nicknam
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Hong JS, Shamim A, Atta H, Nonnecke EB, Merl S, Patwardhan S, Manell E, Gunes E, Jordache P, Chen B, Lu W, Shen B, Dionigi B, Kiran RP, Sykes M, Zorn E, Bevins CL, Weiner J. Application of enzyme-linked immunosorbent assay to detect antimicrobial peptides in human intestinal lumen. J Immunol Methods 2024; 525:113599. [PMID: 38081407 PMCID: PMC10956375 DOI: 10.1016/j.jim.2023.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Intestinal transplantation is the definitive treatment for intestinal failure. However, tissue rejection and graft-versus-host disease are relatively common complications, necessitating aggressive immunosuppression that can itself pose further complications. Tracking intraluminal markers in ileal effluent from standard ileostomies may present a noninvasive and sensitive way to detect developing pathology within the intestinal graft. This would be an improvement compared to current assessments, which are limited by poor sensitivity and specificity, contributing to under or over-immunosuppression, respectively, and by the need for invasive biopsies. Herein, we report an approach to reproducibly analyze ileal fluid obtained through stoma sampling for antimicrobial peptide/protein concentrations, reasoning that these molecules may provide an assessment of intestinal homeostasis and levels of intestinal inflammation over time. Concentrations of lysozyme (LYZ), myeloperoxidase (MPO), calprotectin (S100A8/A9) and β-defensin 2 (DEFB2) were assessed using adaptations of commercially available enzyme-linked immunosorbent assays (ELISAs). The concentration of α-defensin 5 (DEFA5) was assessed using a newly developed sandwich ELISA. Our data support that with proper preparation of ileal effluent specimens, precise and replicable determination of antimicrobial peptide/protein concentrations can be achieved for each of these target molecules via ELISA. This approach may prove to be reliable as a clinically useful assessment of intestinal homeostasis over time for patients with ileostomies.
Collapse
Affiliation(s)
- Julie S Hong
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America.
| | - Abrar Shamim
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; College of Dental Medicine, Columbia University, New York, NY, United States of America
| | - Hussein Atta
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Eric B Nonnecke
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Sarah Merl
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
| | - Satyajit Patwardhan
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Elin Manell
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Esad Gunes
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Philip Jordache
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Bryan Chen
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Wuyuan Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Bo Shen
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Beatrice Dionigi
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Ravi P Kiran
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Megan Sykes
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Emmanuel Zorn
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Charles L Bevins
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Joshua Weiner
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW The role of intestinal transplant has expanded in recent years and is no longer only considered for patients with no other options remaining. 5 year survival in high-volume centres is over 80% for certain graft types. The aim of this review is to update the audience on the current state of intestinal transplant, with a focus on recent medical and surgical advances. RECENT FINDINGS There has been a greater understanding of the interplay and balance of host and graft immune responses, which may facilitate individualized immunosuppression. Some centres are now performing 'no-stoma' transplants, with preliminary data showing no adverse effects from this strategy and other surgical advances have lessened the physiological insult of the transplant operation. Earlier referrals are encouraged by transplant centres, such that vascular access or liver disease has not progressed too much to increase the technical and physiological challenge of the procedure. SUMMARY Clinicians should consider intestinal transplant as a viable option for patients with intestinal failure, benign unresectable abdominal tumours or acute abdominal catastrophes.
Collapse
Affiliation(s)
| | - Neil K Russell
- Department of Transplant Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
4
|
Rumbo M, Oltean M. Intestinal Transplant Immunology and Intestinal Graft Rejection: From Basic Mechanisms to Potential Biomarkers. Int J Mol Sci 2023; 24:ijms24054541. [PMID: 36901975 PMCID: PMC10003356 DOI: 10.3390/ijms24054541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Intestinal transplantation (ITx) remains a lifesaving option for patients suffering from irreversible intestinal failure and complications from total parenteral nutrition. Since its inception, it became obvious that intestinal grafts are highly immunogenic, due to their high lymphoid load, the abundance in epithelial cells and constant exposure to external antigens and microbiota. This combination of factors and several redundant effector pathways makes ITx immunobiology unique. To this complex immunologic situation, which leads to the highest rate of rejection among solid organs (>40%), there is added the lack of reliable non-invasive biomarkers, which would allow for frequent, convenient and reliable rejection surveillance. Numerous assays, of which several were previously used in inflammatory bowel disease, have been tested after ITx, but none have shown sufficient sensibility and/or specificity to be used alone for diagnosing acute rejection. Herein, we review and integrate the mechanistic aspects of graft rejection with the current knowledge of ITx immunobiology and summarize the quest for a noninvasive biomarker of rejection.
Collapse
Affiliation(s)
- Martin Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata—CONICET, Boulevard 120 y 62, La Plata 1900, Argentina
| | - Mihai Oltean
- The Transplant Institute, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Surgery at Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
5
|
Wang J, Zhang X, Li M, Li R, Zhao M. Shifts in Intestinal Metabolic Profile Among Kidney Transplantation Recipients with Antibody-Mediated Rejection. Ther Clin Risk Manag 2023; 19:207-217. [PMID: 36896026 PMCID: PMC9990454 DOI: 10.2147/tcrm.s401414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Background Antibody-mediated rejection (AMR) is emerging as the main cause of graft loss after kidney transplantation. Our previous study revealed the gut microbiota alternation associated with AMR in kidney transplant recipients, which was predicted to affect the metabolism-related pathways. Methods To further investigate the shifts in intestinal metabolic profile among kidney transplantation recipients with AMR, fecal samples from kidney transplant recipients and patients with end-stage renal disease (ESRD) were subjected to untargeted LC-MS-based metabolomics. Results A total of 86 individuals were enrolled in this study, including 30 kidney transplantation recipients with AMR, 35 kidney transplant recipients with stable renal function (KT-SRF), and 21 participants with ESRD. Fecal metabolome in patients with ESRD and kidney transplantation recipients with KT-SRF were parallelly detected as controls. Our results demonstrated that intestinal metabolic profile of patients with AMR differed significantly from those with ESRD. A total of 172 and 25 differential metabolites were identified in the KT-AMR group, when compared with the ESRD group and the KT-SRF group, respectively, and 14 were common to the pairwise comparisons, some of which had good discriminative ability for AMR. KEGG pathway enrichment analysis demonstrated that the different metabolites between the KT-AMR and ESRD groups or between KT-AMR and KT-SRF groups were significantly enriched in 33 or 36 signaling pathways, respectively. Conclusion From the metabolic point of view, our findings may provide key clues for developing effective diagnostic biomarkers and therapeutic targets for AMR after kidney transplantation.
Collapse
Affiliation(s)
- Junpeng Wang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.,Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Xiaofan Zhang
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Mengjun Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ruoying Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Li X, Li R, Ji B, Zhao L, Wang J, Yan T. Integrative metagenomic and metabolomic analyses reveal the role of gut microbiota in antibody-mediated renal allograft rejection. J Transl Med 2022; 20:614. [PMID: 36564805 PMCID: PMC9784291 DOI: 10.1186/s12967-022-03825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Antibody-mediated rejection (AMR) remains one of the major barriers for graft survival after kidney transplantation. Our previous study suggested a gut microbiota dysbiosis in kidney transplantation recipients with AMR. However, alternations in gut microbial function and structure at species level have not been identified. In the present study, we investigated the metagenomic and metabolic patterns of gut microbiota in AMR patients to provide a comprehensive and in-depth understanding of gut microbiota dysbiosis in AMR. METHODS We enrolled 60 kidney transplantation recipients, 28 showed AMR and 32 were non-AMR controls with stable post-transplant renal functions. Shotgun sequencing and untargeted LC/MS metabolomic profiling of fecal samples were performed in kidney transplantation recipients with AMR and controls. RESULTS Totally, we identified 311 down-regulated and 27 up-regulated gut microbial species associated with AMR after kidney transplantation, resulting in the altered expression levels of 437 genes enriched in 22 pathways, of which 13 were related to metabolism. Moreover, 32 differential fecal metabolites were found in recipients with AMR. Among them, alterations in 3b-hydroxy-5-cholenoic acid, L-pipecolic acid, taurocholate, and 6k-PGF1alpha-d4 directly correlated with changes in gut microbial species and functions. Specific differential fecal species and metabolites were strongly associated with clinical indexes (Cr, BUN, etc.), and could distinguish the recipients with AMR from controls as potential biomarkers. CONCLUSIONS Altogether, our findings provided a comprehensive and in-depth understanding of the correlation between AMR and gut microbiota, which is important for the etiological and diagnostic study of AMR after kidney transplantation.
Collapse
Affiliation(s)
- Xin Li
- grid.207374.50000 0001 2189 3846Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Ruoying Li
- grid.207374.50000 0001 2189 3846Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Bingqing Ji
- grid.414011.10000 0004 1808 090XDepartment of Urology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, 450003 Henan China
| | - Lili Zhao
- grid.207374.50000 0001 2189 3846Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Junpeng Wang
- grid.414011.10000 0004 1808 090XDepartment of Urology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, 450003 Henan China ,grid.417404.20000 0004 1771 3058Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 Guangdong China
| | - Tianzhong Yan
- grid.414011.10000 0004 1808 090XDepartment of Urology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, 450003 Henan China
| |
Collapse
|
7
|
Girlanda R, Liggett JR, Jayatilake M, Kroemer A, Guerra JF, Hawksworth JS, Radkani P, Matsumoto CS, Zasloff M, Fishbein TM. The Microbiome and Metabolomic Profile of the Transplanted Intestine with Long-Term Function. Biomedicines 2022; 10:biomedicines10092079. [PMID: 36140180 PMCID: PMC9495872 DOI: 10.3390/biomedicines10092079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
We analyzed the fecal microbiome by deep sequencing of the 16S ribosomal genes and the metabolomic profiles of 43 intestinal transplant recipients to identify biomarkers of graft function. Stool samples were collected from 23 patients with stable graft function five years or longer after transplant, 15 stable recipients one-year post-transplant and four recipients with refractory rejection and graft loss within one-year post-transplant. Lactobacillus and Streptococcus species were predominant in patients with stable graft function both in the short and long term, with a microbiome profile consistent with the general population. Conversely, Enterococcus species were predominant in patients with refractory rejection as compared to the general population, indicating profound dysbiosis in the context of graft dysfunction. Metabolomic analysis demonstrated significant differences between the three groups, with several metabolites in rejecting recipients clustering as a distinct set. Our study suggests that the bacterial microbiome profile of stable intestinal transplants is similar to the general population, supporting further application of this non-invasive approach to identify biomarkers of intestinal graft function.
Collapse
Affiliation(s)
- Raffaelle Girlanda
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
- Correspondence:
| | - Jedson R. Liggett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
- Department of Surgery, Naval Medical Center Portsmouth, Portsmouth, VA 23704, USA
| | - Meth Jayatilake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Juan Francisco Guerra
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Jason Solomon Hawksworth
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD 20812, USA
| | - Pejman Radkani
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Cal S. Matsumoto
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Michael Zasloff
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Thomas M. Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
8
|
Tang Y, Wang J, Zhang Y, Li J, Chen M, Gao Y, Dai M, Lin S, He X, Wu C, Shi X. Single-Cell RNA Sequencing Identifies Intra-Graft Population Heterogeneity in Acute Heart Allograft Rejection in Mouse. Front Immunol 2022; 13:832573. [PMID: 35222420 PMCID: PMC8866760 DOI: 10.3389/fimmu.2022.832573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Transplant rejection remains a major barrier to graft survival and involves a diversity of cell types. However, the heterogeneity of each cell type in the allograft remains poorly defined. In the present study, we used single-cell RNA sequencing technology to analyze graft-infiltrating cells to describe cell types and states associated with acute rejection in a mouse heart transplant model. Unsupervised clustering analysis revealed 21 distinct cell populations. Macrophages formed five cell clusters: two resident macrophage groups, two infiltrating macrophage groups and one dendritic cell-like monocyte group. Infiltrating macrophages were predominantly from allogeneic grafts. Nevertheless, only one infiltrating macrophage cluster was in an active state with the upregulation of CD40, Fam26f and Pira2, while the other was metabolically silent. Re-clustering of endothelial cells identified five subclusters. Interestingly, one of the endothelial cell populations was almost exclusively from allogeneic grafts. Further analysis of this population showed activation of antigen processing and presentation pathway and upregulation of MHC class II molecules. In addition, Ubiquitin D was specifically expressed in such endothelial cell population. The upregulation of Ubiquitin D in rejection was validated by staining of mouse heart grafts and human kidney biopsy specimens. Our findings present a comprehensive analysis of intra-graft cell heterogeneity, describe specific macrophage and endothelial cell populations which mediate rejection, and provide a potential predictive biomarker for rejection in the clinic.
Collapse
Affiliation(s)
- Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jiali Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jun Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yifang Gao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Meiqin Dai
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Shengjie Lin
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Chenglin Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaomin Shi
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
9
|
The Proteomic Signature of Intestinal Acute Rejection in the Mouse. Metabolites 2021; 12:metabo12010023. [PMID: 35050145 PMCID: PMC8780989 DOI: 10.3390/metabo12010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/04/2022] Open
Abstract
Intestinal acute rejection (AR) lacks a reliable non-invasive biomarker and AR surveillance is conducted through frequent endoscopic biopsies. Although citrulline and calprotectin have been suggested as AR biomarkers, these have limited clinical value. Using a mouse model of intestinal transplantation (ITx), we performed a proteome-wide analysis and investigated rejection-related proteome changes that may eventually be used as biomarkers. ITx was performed in allogenic (Balb/C to C57Bl) and syngeneic (C57Bl) combinations. Graft samples were obtained three and six days after transplantation (n = 4/time point) and quantitative proteomic analysis with iTRAQ-labeling and mass spectrometry of whole tissue homogenates was performed. Histology showed moderate AR in all allografts post-transplantation at day six. Nine hundred and thirty-eight proteins with at least three unique peptides were identified in the intestinal grafts. Eighty-six proteins varying by >20% between time points and/or groups had an alteration pattern unique to the rejecting allografts: thirty-seven proteins and enzymes (including S100-A8 and IDO-1) were significantly upregulated whereas forty-nine (among other chromogranin, ornithine aminotransferase, and arginase) were downregulated. Numerous proteins showed altered expression during intestinal AR, several of which were previously identified to be involved in acute rejection, although our results also identified previously unreported proteome changes. The metabolites and downstream metabolic pathways of some of these proteins and enzymes may become potential biomarkers for intestinal AR.
Collapse
|
10
|
Ferrara F, Zoupanou S, Primiceri E, Ali Z, Chiriacò MS. Beyond liquid biopsy: Toward non-invasive assays for distanced cancer diagnostics in pandemics. Biosens Bioelectron 2021; 196:113698. [PMID: 34688113 PMCID: PMC8527216 DOI: 10.1016/j.bios.2021.113698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Liquid biopsy technologies have seen a significant improvement in the last decade, offering the possibility of reliable analysis and diagnosis from several biological fluids. The use of these technologies can overcome the limits of standard clinical methods, related to invasiveness and poor patient compliance. Along with this there are now mature examples of lab-on-chips (LOC) which are available and could be an emerging and breakthrough technology for the present and near-future clinical demands that provide sample treatment, reagent addition and analysis in a sample-in/answer-out approach. The possibility of combining non-invasive liquid biopsy and LOC technologies could greatly assist in the current need for minimizing exposure and transmission risks. The recent and ongoing pandemic outbreak of SARS-CoV-2, indeed, has heavily influenced all aspects of life worldwide. Ordinary tasks have been forced to switch from “in presence” to “distanced”, limiting the possibilities for a large number of activities in all fields of life outside of the home. Unfortunately, one of the settings in which physical distancing has assumed noteworthy consequences is the screening, diagnosis and follow-up of diseases. In this review, we analyse biological fluids that are easily collected without the intervention of specialized personnel and the possibility that they may be used -or not-for innovative diagnostic assays. We consider their advantages and limitations, mainly due to stability and storage and their integration into Point-of-Care diagnostics, demonstrating that technologies in some cases are mature enough to meet current clinical needs.
Collapse
Affiliation(s)
- Francesco Ferrara
- STMicroelectronics s.r.l., via per Monteroni, 73100, Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy.
| | - Sofia Zoupanou
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy; University of Salento, Dept. of Mathematics & Physics E. de Giorgi, Via Arnesano, 73100, Lecce, Italy
| | - Elisabetta Primiceri
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | - Zulfiqur Ali
- University of Teesside, School of Health & Life Sciences, Healthcare Innovation Centre, Middlesbrough, TS1 3BX, Tees Valley, England, UK
| | | |
Collapse
|
11
|
Varkey J. Graft assessment for acute rejection after intestinal transplantation: current status and future perspective. Scand J Gastroenterol 2021; 56:13-19. [PMID: 33202155 DOI: 10.1080/00365521.2020.1847318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal transplantation has since its inception evolved as a lifesaving treatment option for patients with irreversible intestinal failure who can no longer be sustained on parenteral nutrition. Improvement in short-term survival after transplantation has also justified the expansion of treatment indications. Unfortunately, success is somewhat limited by a plateau observed in long-term survival. The reason for this sub-optimal long-term result experienced in this cohort may in part be attributed to the intestinal graft with the lymphoid content it carries inflicting the host with multiple complications where acute cellular rejection is one of the most common causes for graft loss. Graft monitoring is for this reason of paramount importance and detection of rejection at an early stage essential to enable early instigation of treatment and successful reversal of the pathology. Due to the challenges in diagnosing acute rejection with a noninvasive marker we are still limited to a surveillance protocol using endoscopy and biopsies for the diagnosis of rejection. The purpose of our paper is to review the adequacy of different methods in monitoring the graft for acute rejection using biomarkers, endoscopy and imaging. In conclusion, the evidence base continues to support the use of histology for the diagnosis of acute rejection. The role of biomarkers are still debatable, although markers such as calprotectin might be beneficial in excluding an ongoing process.
Collapse
Affiliation(s)
- Jonas Varkey
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Intestinal Failure and Transplant Centre, Gothenburg, Sweden
| |
Collapse
|
12
|
Chetwynd AJ, Ogilvie LA, Nzakizwanayo J, Pazdirek F, Hoch J, Dedi C, Gilbert D, Abdul-Sada A, Jones BV, Hill EM. The potential of nanoflow liquid chromatography-nano electrospray ionisation-mass spectrometry for global profiling the faecal metabolome. J Chromatogr A 2019; 1600:127-136. [PMID: 31047664 DOI: 10.1016/j.chroma.2019.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023]
Abstract
Faeces are comprised of a wide array of metabolites arising from the circulatory system as well as the human microbiome. A global metabolite analysis (metabolomics) of faecal extracts offers the potential to uncover new compounds which may be indicative of the onset of bowel diseases such as colorectal cancer (CRC). To date, faecal metabolomics is still in its infancy and the compounds of low abundance present in faecal extracts poorly characterised. In this study, extracts of faeces from healthy subjects were profiled using a sensitive nanoflow-nanospray LC-MS platform which resulted in highly repeatable peak retention times (<2% CV) and intensities (<15% CV). Analysis of the extracts revealed wide coverage of the faecal metabolome including detection of low abundant signalling compounds such as sex steroids and eicosanoids, alongside highly abundant pharmaceuticals and tetrapyrrole metabolites. A small pilot study investigating differences in metabolomics profiles of faecal samples obtained from 7 CRC, 25 adenomatous polyp and 26 healthy groups revealed that secondary bile acids, conjugated androgens, eicosanoids, phospholipids and an unidentified haem metabolite were potential classes of metabolites that discriminated between the CRC and control sample groups. However, much larger follow up studies are needed to confirm which components of the faecal metabolome are associated with actual CRC disease rather than dietary influences. This study reveals the potential of nanospray-nanoflow LC-MS profiling of faecal samples from large scale cohort studies for uncovering the role of the faecal metabolome in colorectal disease formation.
Collapse
Affiliation(s)
- Andrew J Chetwynd
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Lesley A Ogilvie
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Jonathan Nzakizwanayo
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Filip Pazdirek
- Surgery Department, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jiří Hoch
- Surgery Department, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech Republic
| | - Cinzia Dedi
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Duncan Gilbert
- Sussex Cancer Centre, Royal Sussex County Hospital, Brighton, BN2 5DA, UK
| | - Alaa Abdul-Sada
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Brian V Jones
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK; Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Elizabeth M Hill
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
13
|
Xu J, Zhang QF, Zheng J, Yuan BF, Feng YQ. Mass spectrometry-based fecal metabolome analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Karu N, Deng L, Slae M, Guo AC, Sajed T, Huynh H, Wine E, Wishart DS. A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Anal Chim Acta 2018; 1030:1-24. [DOI: 10.1016/j.aca.2018.05.031] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
|
15
|
Chen MX, Wang SY, Kuo CH, Tsai IL. Metabolome analysis for investigating host-gut microbiota interactions. J Formos Med Assoc 2018; 118 Suppl 1:S10-S22. [PMID: 30269936 DOI: 10.1016/j.jfma.2018.09.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Dysbiosis of the gut microbiome is associated with host health conditions. Many diseases have shown to have correlations with imbalanced microbiota, including obesity, inflammatory bowel disease, cancer, and even neurodegeneration disorders. Metabolomics studies targeting small molecule metabolites that impact the host metabolome and their biochemical functions have shown promise for studying host-gut microbiota interactions. Metabolome analysis determines the metabolites being discussed for their biological implications in host-gut microbiota interactions. To facilitate understanding the critical aspects of metabolome analysis, this article reviewed (1) the sample types used in host-gut microbiome studies; (2) mass spectrometry (MS)-based analytical methods and (3) useful tools for MS-based data processing/analysis. In addition to the most frequently used sample type, feces, we also discussed others biosamples, such as urine, plasma/serum, saliva, cerebrospinal fluid, exhaled breaths, and tissues, to better understand gut metabolite systemic effects on the whole organism. Gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and capillary electrophoresis-mass spectrometry (CE-MS), three powerful tools that can be utilized to study host-gut microbiota interactions, are included with examples of their applications. After obtaining big data from MS-based instruments, noise removal, peak detection, missing value imputation, and data analysis are all important steps for acquiring valid results in host-gut microbiome research. The information provided in this review will help new researchers aiming to join this field by providing a global view of the analytical aspects involved in gut microbiota-related metabolomics studies.
Collapse
Affiliation(s)
- Michael X Chen
- Department of Laboratory Medicine and Pathology, The University of British Columbia, Canada; Island Medical Program, University of Victoria, Canada
| | - San-Yuan Wang
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, NTU Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Lin Tsai
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Gürkan A. Advances in small bowel transplantation. Turk J Surg 2017; 33:135-141. [PMID: 28944322 DOI: 10.5152/turkjsurg.2017.3544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022]
Abstract
Small bowel transplantation is a life-saving surgery for patients with intestinal failure. The biggest problem in intestinal transplantation is graft rejection. Graft rejection is the main reason for morbidity and mortality. Rejection has a negative effect on the survival of the graft. While 50%-75% of small bowel transplantation patients experience acute rejection, chronic rejection occurs in approximately 15% of patients. Immune monitoring is crucial after small bowel transplantation. Unlike other types of transplantation, there are no non-invasive or reliable markers to predict rejection in small bowel transplantation. The diagnosis of AR is confirmed by clinical symptoms, endoscopic appearance, and pathological specimens taken by endoscopy. Thus, histopathological examinations obtained by protocol biopsies remain as the gold standard for intestinal graft monitoring; however, biopsies have some complications, especially in small grafts. In addition to the high complication rate, biopsies are non-diagnostic; thus, multiple biopsies should be performed to exclude rejection. Therefore, auxiliary assays, such as measurements of citrulline and calprotectin in the blood, cytofluorographic examination of peripheral blood immune cells, cytokine profiling, and distinct gene-set-change measurements, are increasingly being used in small bowel transplantation. Developments in the understanding of genes seem to be promising that limited gene sets, taken from blood or from intestinal biopsies, will enhance pathological diagnosis. Bone marrow mesenchymal stem cell transplantation with SBT and tissue engineering are also promising procedures.
Collapse
Affiliation(s)
- Alp Gürkan
- Department of General Surgery, Çamlıca Medicana Hospital, İstanbul, Turkey.,Department of General Surgery, İstanbul Aydın University School of Medicine, İstanbul, Turkey
| |
Collapse
|
17
|
Diagnostic Lessons from a Complex Case of Postintestinal Transplantation Enteropathy. Case Rep Transplant 2017; 2017:2498423. [PMID: 28845319 PMCID: PMC5563400 DOI: 10.1155/2017/2498423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/04/2017] [Accepted: 07/04/2017] [Indexed: 11/20/2022] Open
Abstract
Recent advances in the field of intestinal transplantation have been mitigated by the incidence of allograft rejection. In such events, early identification and appropriate timing of antirejection therapy are crucial in retaining graft function. We present the case of a patient who suffered severe postintestinal transplantation allograft enteropathy, primarily characterized by extensive mucosal ulcerations, and was refractory to all conventional therapy. This progressed as chronic rejection; however crucially this was not definitively diagnosed until allograft function had irreversibly diminished. We argue that the difficulties encountered in this case can be attributed to the inability of our current array of investigative studies and diagnostic guidelines to provide adequate clinical guidance. This case illustrates the importance of developing reliable and specific markers for guiding the diagnosis of rejection and the use of antirejection therapeutics in this rapidly evolving field of transplant surgery.
Collapse
|
18
|
5-gene differential expression predicts stability of human intestinal allografts. Exp Mol Pathol 2017; 103:163-171. [PMID: 28843648 DOI: 10.1016/j.yexmp.2017.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/25/2017] [Accepted: 08/19/2017] [Indexed: 12/19/2022]
Abstract
In intestinal allografts, endoscopy and histology detect the injury once changes in the bowel wall architecture have occurred. We aimed to identify a molecular signature that could predict early deterioration, within histologically indistinguishable biopsies with "minimal changes" (MC) pathology. Sixty biopsies from 12 adult recipients were longitudinally taken during 8years post-transplant. They were classified as either stable (STA) or non-stable (NSTA) according to the prospectively recorded number, frequency and severity of rejection events of the allograft. In a discovery set of MC samples analyzed by RNA-Seq, 816 genes were differentially expressed in STA vs NSTA biopsies. A group of 5 genes (ADH1C, SLC39A4, CYP4F2, OPTN and PDZK1) correctly classified all NSTA biopsies in the discovery set and all STA biopsies from an independent set. These results were validated by qPCR in a new group of MC biopsies. Based on a logistic regression model, a cutoff of 0.28 predicted the probability of being a NSTA biopsy with 85% sensitivity and 69% specificity. In conclusion, by analyzing MC samples early after transplantation, the expression of a 5-gene set may predict the evolution of the bowel allograft. This prognostic biomarker may be of help to personalize care of the intestinal transplant recipient.
Collapse
|
19
|
Rojo D, Méndez-García C, Raczkowska BA, Bargiela R, Moya A, Ferrer M, Barbas C. Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol Rev 2017; 41:453-478. [PMID: 28333226 PMCID: PMC5812509 DOI: 10.1093/femsre/fuw046] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Our microbiota presents peculiarities and characteristics that may be altered by multiple factors. The degree and consequences of these alterations depend on the nature, strength and duration of the perturbations as well as the structure and stability of each microbiota. The aim of this review is to sketch a very broad picture of the factors commonly influencing different body sites, and which have been associated with alterations in the human microbiota in terms of composition and function. To do so, first, a graphical representation of bacterial, fungal and archaeal genera reveals possible associations among genera affected by different factors. Then, the revision of sequence-based predictions provides associations with functions that become part of the active metabolism. Finally, examination of microbial metabolite contents and fluxes reveals whether metabolic alterations are a reflection of the differences observed at the level of population structure, and in the last step, link microorganisms to functions under perturbations that differ in nature and aetiology. The utilisation of complementary technologies and methods, with a special focus on metabolomics research, is thoroughly discussed to obtain a global picture of microbiota composition and microbiome function and to convey the urgent need for the standardisation of protocols.
Collapse
Affiliation(s)
- David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, 28668 Madrid, Spain
| | | | - Beata Anna Raczkowska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Rafael Bargiela
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Andrés Moya
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community Public Health (FISABIO), 46020 Valencia, Spain
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), 28029 Madrid, Spain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Paterna, 46980 Valencia, Spain
- These authors contributed equally to this work
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Corresponding author: Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain. Tel: (+34) 915854872; E-mail:
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, 28668 Madrid, Spain
- These authors contributed equally to this work
| |
Collapse
|
20
|
Bharadwaj S, Tandon P, Gohel TD, Brown J, Steiger E, Kirby DF, Khanna A, Abu-Elmagd K. Current status of intestinal and multivisceral transplantation. Gastroenterol Rep (Oxf) 2017; 5:20-28. [PMID: 28130374 PMCID: PMC5444259 DOI: 10.1093/gastro/gow045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Clinical-nutritional autonomy is the ultimate goal of patients with intestinal failure (IF). Traditionally, patients with IF have been relegated to lifelong parenteral nutrition (PN) once surgical and medical rehabilitation attempts at intestinal adaptation have failed. Over the past two decades, however, outcome improvements in intestinal transplantation have added another dimension to the therapeutic armamentarium in the field of gut rehabilitation. This has become possible through relentless efforts in the standardization of surgical techniques, advancements in immunosuppressive therapies and induction protocols and improvement in postoperative patient care. Four types of intestinal transplants include isolated small bowel transplant, liver-small bowel transplant, multivisceral transplant and modified multivisceral transplant. Current guidelines restrict intestinal transplantation to patients who have had significant complications from PN including liver failure and repeated infections. From an experimental stage to the currently established therapeutic modality for patients with advanced IF, outcome improvements have also been possible due to the introduction of tacrolimus in the early 1990s. Studies have shown that intestinal transplant is cost-effective within 1-3 years of graft survival compared with PN. Improved survival and quality of life as well as resumption of an oral diet should enable intestinal transplantation to be an important option for patients with IF in addition to continued rehabilitation. Future research should focus on detecting biomarkers of early rejection, enhanced immunosuppression protocols, improved postoperative care and early referral to transplant centers.
Collapse
Affiliation(s)
- Shishira Bharadwaj
- Center for Gut Rehabilitation and Transplantation, the Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Parul Tandon
- Center for Gut Rehabilitation and Transplantation, the Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tushar D Gohel
- Center for Gut Rehabilitation and Transplantation, the Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jill Brown
- Center for Gut Rehabilitation and Transplantation, the Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ezra Steiger
- Center for Gut Rehabilitation and Transplantation, the Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Donald F Kirby
- Center for Gut Rehabilitation and Transplantation, the Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ajai Khanna
- Center for Gut Rehabilitation and Transplantation, the Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kareem Abu-Elmagd
- Center for Gut Rehabilitation and Transplantation, the Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
21
|
Hashimoto K, Costa G, Khanna A, Fujiki M, Quintini C, Abu-Elmagd K. Recent Advances in Intestinal and Multivisceral Transplantation. Adv Surg 2016; 49:31-63. [PMID: 26299489 DOI: 10.1016/j.yasu.2015.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Koji Hashimoto
- Center for Gut Rehabilitation and Transplantation, Transplant Center, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Guilherme Costa
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Ajai Khanna
- Center for Gut Rehabilitation and Transplantation, Transplant Center, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Masato Fujiki
- Center for Gut Rehabilitation and Transplantation, Transplant Center, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Cristiano Quintini
- Center for Gut Rehabilitation and Transplantation, Transplant Center, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Kareem Abu-Elmagd
- Center for Gut Rehabilitation and Transplantation, Transplant Center, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
22
|
Abstract
Intestinal failure (IF) is a state in which the nutritional demands are not met by the gastrointestinal absorptive surface. A majority of IF cases are associated with short-bowel syndrome, which is a result of malabsorption after significant intestinal resection for numerous reasons, some of which include Crohn's disease, vascular thrombosis, and radiation enteritis. IF can also be caused by obstruction, dysmotility, and congenital defects. Recognition and management of IF can be challenging, given the complex nature of this condition. This review discusses the management of IF with a focus on intestinal rehabilitation, parenteral nutrition, and transplantation.
Collapse
|
23
|
Bonneau E, Tétreault N, Robitaille R, Boucher A, De Guire V. Metabolomics: Perspectives on potential biomarkers in organ transplantation and immunosuppressant toxicity. Clin Biochem 2016; 49:377-84. [DOI: 10.1016/j.clinbiochem.2016.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/23/2015] [Accepted: 01/07/2016] [Indexed: 12/27/2022]
|
24
|
Deda O, Gika HG, Wilson ID, Theodoridis GA. An overview of fecal sample preparation for global metabolic profiling. J Pharm Biomed Anal 2015; 113:137-50. [DOI: 10.1016/j.jpba.2015.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 01/25/2023]
|
25
|
Abu-Elmagd K. The concept of gut rehabilitation and the future of visceral transplantation. Nat Rev Gastroenterol Hepatol 2015; 12:108-20. [PMID: 25601664 DOI: 10.1038/nrgastro.2014.216] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the 1990s, the introduction of visceral transplantation fuelled interest in other innovative therapeutic modalities for gut rehabilitation. Ethanol lock and omega-3 lipid formulations were introduced to reduce the risks associated with total parenteral nutrition (TPN). Autologous surgical reconstruction and bowel lengthening have been increasingly utilized for patients with complex abdominal pathology and short-bowel syndrome. Glucagon-like peptide 2 analogue, along with growth hormone, are available to enhance gut adaptation and achieve nutritional autonomy. Intestinal transplantation continues to be limited to a rescue therapy for patients with TPN failure. Nonetheless, survival outcomes have substantially improved with advances in surgical techniques, immunosuppressive strategies and postoperative management. Furthermore, both nutritional autonomy and quality of life can be restored for more than two decades in most survivors, with social support and inclusion of the liver being favourable predictors of long-term outcome. One of the current challenges is the discovery of biomarkers to diagnose early rejection and further improve liver-free allograft survival. Currently, chronic rejection with persistence of preformed and development of de novo donor-specific antibodies is a major barrier to long-term graft function; this issue might be overcome with innovative immunological and tolerogenic strategies. This Review discusses advances in the field of gut rehabilitation, including intestinal transplantation, and highlights future challenges. With the growing interest in individualized medicine and the value of health care, a novel management algorithm is proposed to optimize patient care through an integrated multidisciplinary team approach.
Collapse
Affiliation(s)
- Kareem Abu-Elmagd
- Transplant Center, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
26
|
Xu W, Chen D, Wang N, Zhang T, Zhou R, Huan T, Lu Y, Su X, Xie Q, Li L, Li L. Development of High-Performance Chemical Isotope Labeling LC–MS for Profiling the Human Fecal Metabolome. Anal Chem 2014; 87:829-36. [PMID: 25486321 DOI: 10.1021/ac503619q] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wei Xu
- State
Key Laboratory and Collaborative Innovation Center for Diagnosis and
Treatment of Infectious Diseases, The First Affiliated Hospital, College
of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Deying Chen
- State
Key Laboratory and Collaborative Innovation Center for Diagnosis and
Treatment of Infectious Diseases, The First Affiliated Hospital, College
of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Nan Wang
- State
Key Laboratory and Collaborative Innovation Center for Diagnosis and
Treatment of Infectious Diseases, The First Affiliated Hospital, College
of Medicine, Zhejiang University, Hangzhou 310003, China
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ting Zhang
- State
Key Laboratory and Collaborative Innovation Center for Diagnosis and
Treatment of Infectious Diseases, The First Affiliated Hospital, College
of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ruokun Zhou
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tao Huan
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yingfeng Lu
- State
Key Laboratory and Collaborative Innovation Center for Diagnosis and
Treatment of Infectious Diseases, The First Affiliated Hospital, College
of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaoling Su
- State
Key Laboratory and Collaborative Innovation Center for Diagnosis and
Treatment of Infectious Diseases, The First Affiliated Hospital, College
of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qing Xie
- State
Key Laboratory and Collaborative Innovation Center for Diagnosis and
Treatment of Infectious Diseases, The First Affiliated Hospital, College
of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Liang Li
- State
Key Laboratory and Collaborative Innovation Center for Diagnosis and
Treatment of Infectious Diseases, The First Affiliated Hospital, College
of Medicine, Zhejiang University, Hangzhou 310003, China
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lanjuan Li
- State
Key Laboratory and Collaborative Innovation Center for Diagnosis and
Treatment of Infectious Diseases, The First Affiliated Hospital, College
of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
27
|
Hibi T, Shinoda M, Itano O, Kitagawa Y. Current status of the organ replacement approach for malignancies and an overture for organ bioengineering and regenerative medicine. Organogenesis 2014; 10:241-9. [PMID: 24836922 DOI: 10.4161/org.29245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Significant achievements in the organ replacement approach for malignancies over the last 2 decades opened new horizons, and the age of "Transplant Oncology" has dawned. The indications of liver transplantation for malignancies have been carefully expanded by a strict patient selection to assure comparable outcomes with non-malignant diseases. Currently, the Milan criteria, gold standard for hepatocellular carcinoma, are being challenged by high-volume centers worldwide. Neoadjuvant chemoradiation therapy and liver transplantation for unresectable hilar cholangiocarcinoma has been successful in specialized institutions. For other primary and metastatic liver tumors, clinical evidence to establish standardized criteria is lacking. Intestinal and multivisceral transplantation is an option for low-grade neoplasms deemed unresectable by conventional surgery. However, the procedure itself is in the adolescent stage. Solid organ transplantation for malignancies inevitably suffers from "triple distress," i.e., oncological, immunological, and technical. Organ bioengineering and regenerative medicine should serve as the "triple threat" therapy and revolutionize "Transplant Oncology."
Collapse
Affiliation(s)
- Taizo Hibi
- Department of Surgery; Keio University School of Medicine; Tokyo, Japan
| | - Masahiro Shinoda
- Department of Surgery; Keio University School of Medicine; Tokyo, Japan
| | - Osamu Itano
- Department of Surgery; Keio University School of Medicine; Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery; Keio University School of Medicine; Tokyo, Japan
| |
Collapse
|
28
|
Zhao X, Chen J, Ye L, Xu G. Serum Metabolomics Study of the Acute Graft Rejection in Human Renal Transplantation Based on Liquid Chromatography–Mass Spectrometry. J Proteome Res 2014; 13:2659-67. [DOI: 10.1021/pr5001048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xinjie Zhao
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jihong Chen
- Department
of Nephrology, the first hospital affiliated of Xinjiang Medical University, 137 Liyushannan Road, Urumqi 830054, China
| | - Lei Ye
- Department
of Nephrology, the first hospital affiliated of Xinjiang Medical University, 137 Liyushannan Road, Urumqi 830054, China
| | - Guowang Xu
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
29
|
Denoroy L, Zimmer L, Renaud B, Parrot S. Ultra high performance liquid chromatography as a tool for the discovery and the analysis of biomarkers of diseases: A review. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 927:37-53. [DOI: 10.1016/j.jchromb.2012.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 12/25/2022]
|
30
|
Nicholson JK, Holmes E, Kinross JM, Darzi AW, Takats Z, Lindon JC. Metabolic phenotyping in clinical and surgical environments. Nature 2012; 491:384-92. [PMID: 23151581 DOI: 10.1038/nature11708] [Citation(s) in RCA: 363] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metabolic phenotyping involves the comprehensive analysis of biological fluids or tissue samples. This analysis allows biochemical classification of a person's physiological or pathological states that relate to disease diagnosis or prognosis at the individual level and to disease risk factors at the population level. These approaches are currently being implemented in hospital environments and in regional phenotyping centres worldwide. The ultimate aim of such work is to generate information on patient biology using techniques such as patient stratification to better inform clinicians on factors that will enhance diagnosis or the choice of therapy. There have been many reports of direct applications of metabolic phenotyping in a clinical setting.
Collapse
Affiliation(s)
- Jeremy K Nicholson
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | | | | | | | | | | |
Collapse
|