1
|
Yang LJ, Wu W, Jiang WR, Zhu CL, Yao ZH. Upregulation of RasGRF1 ameliorates spatial cognitive dysfunction in mice after chronic cerebral hypoperfusion. Aging (Albany NY) 2023; 15:2999-3020. [PMID: 37053022 DOI: 10.18632/aging.204654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Chronic cerebral hypoperfusion (CCH)-mediated cognitive impairment is a serious problem worldwide. However, given its complexity, the underlying mechanisms by which CCH induces cognitive dysfunction remain unclear, resulting in a lack of effective treatments. In this study, we aimed to determine whether changes in the expression of RasGRF1, an important protein associated with cognition and synaptic plasticity, underlie the associated impairments in cognition after CCH. We found that RasGRF1 levels markedly decreased following CCH. Through prediction and validation studies, we observed that miRNA-323-3p was upregulated after CCH and could bind to the 3'-untranslated region of Rasgrf1 mRNA and regulate its expression in vitro. Moreover, the inhibition of miRNA-323-3p upregulated Rasgrf1 expression in the hippocampus after CCH, which was reversed by Rasgrf1 siRNA. This suggests that miRNA-323-3p is an important regulator of Rasgrf1. The Morris water maze and Y maze tests showed that miRNA-323-3p inhibition and Rasgrf1 upregulation improved spatial learning and memory, and electrophysiological measurements revealed deficits in long-term potentiation after CCH that were reversed by Rasgrf1 upregulation. Dendritic spine density and mature mushroom spine density were also improved after miRNA-323-3p inhibition and Rasgrf1 upregulation. Furthermore, Rasgrf1 upregulation by miRNA-323-3p inhibition improved dendritic spine density and mature mushroom spine density and ameliorated the deterioration of synapses and postsynaptic density. Overall, RasGRF1 regulation attenuated cognitive impairment, helped maintain structural and functional synaptic plasticity, and prevented synapse deterioration after CCH. These results suggest that Rasgrf1 downregulation by miRNA-323-3p plays an important role in cognitive impairment after CCH. Thus, RasGRF1 and miRNA-323-3p may represent potential therapeutic targets for cognitive impairment after CCH.
Collapse
Affiliation(s)
- Li-Jie Yang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Wu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wan-Rong Jiang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Cheng-Liang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhao-Hui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
2
|
Gutherz OR, Deyssenroth M, Li Q, Hao K, Jacobson JL, Chen J, Jacobson SW, Carter RC. Potential roles of imprinted genes in the teratogenic effects of alcohol on the placenta, somatic growth, and the developing brain. Exp Neurol 2021; 347:113919. [PMID: 34752786 DOI: 10.1016/j.expneurol.2021.113919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
Despite several decades of research and prevention efforts, fetal alcohol spectrum disorders (FASD) remain the most common preventable cause of neurodevelopmental disabilities worldwide. Animal and human studies have implicated fetal alcohol-induced alterations in epigenetic programming as a chief mechanism in FASD. Several studies have demonstrated fetal alcohol-related alterations in methylation and expression of imprinted genes in placental, brain, and embryonic tissue. Imprinted genes are epigenetically regulated in a parent-of-origin-specific manner, in which only the maternal or paternal allele is expressed, and the other allele is silenced. The chief functions of imprinted genes are in placental development, somatic growth, and neurobehavior-three domains characteristically affected in FASD. In this review, we summarize the growing body of literature characterizing prenatal alcohol-related alterations in imprinted gene methylation and/or expression and discuss potential mechanistic roles for these alterations in the teratogenic effects of prenatal alcohol exposure. Future research is needed to examine potential physiologic mechanisms by which alterations in imprinted genes disrupt development in FASD, which may, in turn, elucidate novel targets for intervention. Furthermore, mechanistic alterations in imprinted gene expression and/or methylation in FASD may inform screening assays that identify individuals with FASD neurobehavioral deficits who may benefit from early interventions.
Collapse
Affiliation(s)
- Olivia R Gutherz
- Institute of Human Nutrition, Columbia University Medical Center, United States of America
| | - Maya Deyssenroth
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, United States of America
| | - Qian Li
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Ke Hao
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, United States of America; Department of Human Biology, University of Cape Town Faculty of Health Sciences, South Africa
| | - Jia Chen
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, United States of America; Department of Human Biology, University of Cape Town Faculty of Health Sciences, South Africa
| | - R Colin Carter
- Institute of Human Nutrition, Columbia University Medical Center, United States of America; Departments of Emergency Medicine and Pediatrics, Columbia University Medical Center, United States of America.
| |
Collapse
|
3
|
Fernández-Medarde A, Santos E. Ras GEF Mouse Models for the Analysis of Ras Biology and Signaling. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:361-395. [PMID: 33977490 DOI: 10.1007/978-1-0716-1190-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animal models have become in recent years a crucial tool to understand the physiological and pathological roles of many cellular proteins. They allow analysis of the functional consequences of [1] complete or partial (time- or organ-limited) removal of specific proteins (knockout animals), [2] the exchange of a wild-type allele for a mutant or truncated version found in human illnesses (knock-in), or [3] the effect of overexpression of a given protein in the whole body or in specific organs (transgenic mice). In this regard, the study of phenotypes in Ras GEF animal models has allowed researchers to find specific functions for otherwise very similar proteins, uncovering their role in physiological contexts such as memory formation, lymphopoiesis, photoreception, or body homeostasis. In addition, mouse models have been used to unveil the functional role of Ras GEFs under pathological conditions, including Noonan syndrome, skin tumorigenesis, inflammatory diseases, diabetes, or ischemia among others. In the following sections, we will describe the methodological approaches employed for Ras GEF animal model analyses, as well as the main discoveries made.
Collapse
Affiliation(s)
- Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Salamanca, Spain.
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Salamanca, Spain
| |
Collapse
|
4
|
Mills RH, Wozniak JM, Vrbanac A, Campeau A, Chassaing B, Gewirtz A, Knight R, Gonzalez DJ. Organ-level protein networks as a reference for the host effects of the microbiome. Genome Res 2020; 30:276-286. [PMID: 31992612 PMCID: PMC7050531 DOI: 10.1101/gr.256875.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Connections between the microbiome and health are rapidly emerging in a wide range of diseases. However, a detailed mechanistic understanding of how different microbial communities are influencing their hosts is often lacking. One method researchers have used to understand these effects are germ-free (GF) mouse models. Differences found within the organ systems of these model organisms may highlight generalizable mechanisms that microbiome dysbioses have throughout the host. Here, we applied multiplexed, quantitative proteomics on the brains, spleens, hearts, small intestines, and colons of conventionally raised and GF mice, identifying associations to colonization state in over 7000 proteins. Highly ranked associations were constructed into protein-protein interaction networks and visualized onto an interactive 3D mouse model for user-guided exploration. These results act as a resource for microbiome researchers hoping to identify host effects of microbiome colonization on a given organ of interest. Our results include validation of previously reported effects in xenobiotic metabolism, the innate immune system, and glutamate-associated proteins while simultaneously providing organism-wide context. We highlight organism-wide differences in mitochondrial proteins including consistent increases in NNT, a mitochondrial protein with essential roles in influencing levels of NADH and NADPH, in all analyzed organs of conventional mice. Our networks also reveal new associations for further exploration, including protease responses in the spleen, high-density lipoproteins in the heart, and glutamatergic signaling in the brain. In total, our study provides a resource for microbiome researchers through detailed tables and visualization of the protein-level effects of microbial colonization on several organ systems.
Collapse
Affiliation(s)
- Robert H Mills
- Department of Pharmacology, University of California, San Diego, California 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093, USA
- Department of Pediatrics, and Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, California 92093, USA
| | - Jacob M Wozniak
- Department of Pharmacology, University of California, San Diego, California 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093, USA
| | - Alison Vrbanac
- Department of Pediatrics, and Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA
| | - Anaamika Campeau
- Department of Pharmacology, University of California, San Diego, California 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093, USA
| | - Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
- INSERM, U1016, 75014 Paris, France
- Université de Paris, 75006 Paris, France
| | - Andrew Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, USA
| | - Rob Knight
- Department of Pediatrics, and Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, California 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, California 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, California 92093, USA
| |
Collapse
|
5
|
Generation of Bimaternal and Bipaternal Mice from Hypomethylated Haploid ESCs with Imprinting Region Deletions. Cell Stem Cell 2018; 23:665-676.e4. [PMID: 30318303 DOI: 10.1016/j.stem.2018.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/16/2018] [Accepted: 09/05/2018] [Indexed: 11/24/2022]
Abstract
Unisexual reproduction is widespread among lower vertebrates, but not in mammals. Deletion of the H19 imprinted region in immature oocytes produced bimaternal mice with defective growth; however, bipaternal reproduction has not been previously achieved in mammals. We found that cultured parthenogenetic and androgenetic haploid embryonic stem cells (haESCs) display DNA hypomethylation resembling that of primordial germ cells. Through MII oocyte injection or sperm coinjection with hypomethylated haploid ESCs carrying specific imprinted region deletions, we obtained live bimaternal and bipaternal mice. Deletion of 3 imprinted regions in parthenogenetic haploid ESCs restored normal growth of fertile bimaternal mice, whereas deletion of 7 imprinted regions in androgenetic haploid ESCs enabled production of live bipaternal mice that died shortly after birth. Phenotypic analyses of organ and body size of these mice support the genetic conflict theory of genomic imprinting. Taken together, our results highlight the factors necessary for crossing same-sex reproduction barriers in mammals.
Collapse
|
6
|
Ehrhardt A, Wang B, Leung MJ, Schrader JW. Absence of M-Ras modulates social behavior in mice. BMC Neurosci 2015; 16:68. [PMID: 26490652 PMCID: PMC4618870 DOI: 10.1186/s12868-015-0209-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/08/2015] [Indexed: 12/23/2022] Open
Abstract
Background The molecular mechanisms that determine social behavior are poorly understood. Pheromones play a critical role in social recognition in most animals, including mice, but how these are converted into behavioral responses is largely unknown. Here, we report that the absence of the small GTPase M-Ras affects social behavior in mice. Results In their interactions with other males, Mras−/− males exhibited high levels of territorial aggression and social investigations, and increased fear-related behavior. They also showed increased mating behavior with females. Curiously, increased aggression and mating behaviors were only observed when Mras−/− males were paired with Mras−/− partners, but were significantly reduced when paired with wild-type (WT) mice. Since mice use pheromonal cues to identify other individuals, we explored the possibility that pheromone detection may be altered in Mras−/− mice. Unlike WT mice, Mras−/− did not show a preference for exploring unfamiliar urinary pheromones or unfamiliar isogenic mice. Although this could indicate that vomeronasal function and/or olfactory learning may be compromised in Mras−/− mice, these observations were not fully consistent with the differential behavioral responses to WT and Mras−/− interaction partners by Mras−/− males. In addition, induction of c-fos upon pheromone exposure or in response to mating was similar in WT and Mras−/− mice, as was the ex vivo expansion of neural progenitors with EGF. This indicated that acute pheromone detection and processing was likely intact. However, urinary metabolite profiles differed between Mras−/− and WT males. Conclusions The changes in behaviors displayed by Mras−/− mice are likely due to a complex combination of factors that may include an inherent predisposition to increased aggression and sexual behavior, and the production of distinct pheromones that could override the preference for unfamiliar social odors. Olfactory and/or social learning processes may thus be compromised in Mras−/− mice. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0209-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annette Ehrhardt
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| | - Bin Wang
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| | - Marie J Leung
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| | - John W Schrader
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
7
|
Hoffmann A, Daniel G, Schmidt-Edelkraut U, Spengler D. Roles of imprinted genes in neural stem cells. Epigenomics 2015; 6:515-32. [PMID: 25431944 DOI: 10.2217/epi.14.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Imprinted genes and neural stem cells (NSC) play an important role in the developing and mature brain. A central theme of imprinted gene function in NSCs is cell survival and G1 arrest to control cell division, cell-cycle exit, migration and differentiation. Moreover, genomic imprinting can be epigenetically switched off at some genes to ensure stem cell quiescence and differentiation. At the genome scale, imprinted genes are organized in dynamic networks formed by interchromosomal interactions and transcriptional coregulation of imprinted and nonimprinted genes. Such multilayered networks may synchronize NSC activity with the demand from the niche resembling their roles in adjusting fetal size.
Collapse
Affiliation(s)
- Anke Hoffmann
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | | | | | | |
Collapse
|
8
|
Daniel G, Schmidt-Edelkraut U, Spengler D, Hoffmann A. Imprinted Zac1 in neural stem cells. World J Stem Cells 2015; 7:300-314. [PMID: 25815116 PMCID: PMC4369488 DOI: 10.4252/wjsc.v7.i2.300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/24/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Neural stem cells (NSCs) and imprinted genes play an important role in brain development. On historical grounds, these two determinants have been largely studied independently of each other. Recent evidence suggests, however, that NSCs can reset select genomic imprints to prevent precocious depletion of the stem cell reservoir. Moreover, imprinted genes like the transcriptional regulator Zac1 can fine tune neuronal vs astroglial differentiation of NSCs. Zac1 binds in a sequence-specific manner to pro-neuronal and imprinted genes to confer transcriptional regulation and furthermore coregulates members of the p53-family in NSCs. At the genome scale, Zac1 is a central hub of an imprinted gene network comprising genes with an important role for NSC quiescence, proliferation and differentiation. Overall, transcriptional, epigenomic, and genomic mechanisms seem to coordinate the functional relationships of NSCs and imprinted genes from development to maturation, and possibly aging.
Collapse
|
9
|
Lorenc A, Linnenbrink M, Montero I, Schilhabel MB, Tautz D. Genetic differentiation of hypothalamus parentally biased transcripts in populations of the house mouse implicate the Prader-Willi syndrome imprinted region as a possible source of behavioral divergence. Mol Biol Evol 2014; 31:3240-9. [PMID: 25172960 PMCID: PMC4245819 DOI: 10.1093/molbev/msu257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Parentally biased expression of transcripts (genomic imprinting) in adult tissues, including the brain, can influence and possibly drive the evolution of behavioral traits. We have previously found that paternally determined cues are involved in population-specific mate choice decisions between two populations of the Western house mouse (Mus musculus domesticus). Here, we ask whether this could be mediated by genomically imprinted transcripts that are subject to fast differentiation between these populations. We focus on three organs that are of special relevance for mate choice and behavior: The vomeronasal organ (VNO), the hypothalamus, and the liver. To first identify candidate transcripts at a genome-wide scale, we used reciprocal crosses between M. m. domesticus and M. m. musculus inbred strains and RNA sequencing of the respective tissues. Using a false discovery cutoff derived from mock reciprocal cross comparisons, we find a total of 66 imprinted transcripts, 13 of which have previously not been described as imprinted. The largest number of imprinted transcripts were found in the hypothalamus; fewer were found in the VNO, and the least were found in the liver. To assess molecular differentiation and imprinting in the wild-derived M. m. domesticus populations, we sequenced the RNA of the hypothalamus from individuals of these populations. This confirmed the presence of the above identified transcripts also in wild populations and allowed us to search for those that show a high genetic differentiation between these populations. Our results identify the Ube3a–Snrpn imprinted region on chromosome 7 as a region that encompasses the largest number of previously not described transcripts with paternal expression bias, several of which are at the same time highly differentiated. For four of these, we confirmed their imprinting status via single nucleotide polymorphism-specific pyrosequencing assays with RNA from reciprocal crosses. In addition, we find the paternally expressed Peg13 transcript within the Trappc9 gene region on chromosome 15 to be highly differentiated. Interestingly, both regions have been implicated in Prader–Willi nervous system disorder phenotypes in humans. We suggest that these genomically imprinted regions are candidates for influencing the population-specific mate-choice in mice.
Collapse
Affiliation(s)
- Anna Lorenc
- Max-Planck Institute for Evolutionary Biology, Department Evolutionary Genetics, Plön, Germany
| | - Miriam Linnenbrink
- Max-Planck Institute for Evolutionary Biology, Department Evolutionary Genetics, Plön, Germany
| | - Inka Montero
- Max-Planck Institute for Evolutionary Biology, Department Evolutionary Genetics, Plön, Germany
| | - Markus B Schilhabel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, Department Evolutionary Genetics, Plön, Germany
| |
Collapse
|
10
|
Roth TL, Raineki C, Salstein L, Perry R, Sullivan-Wilson TA, Sloan A, Lalji B, Hammock E, Wilson DA, Levitt P, Okutani F, Kaba H, Sullivan RM. Neurobiology of secure infant attachment and attachment despite adversity: a mouse model. GENES BRAIN AND BEHAVIOR 2013; 12:673-80. [PMID: 23927771 DOI: 10.1111/gbb.12067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/19/2013] [Accepted: 07/31/2013] [Indexed: 01/05/2023]
Abstract
Attachment to an abusive caregiver has wide phylogenetic representation, suggesting that animal models are useful in understanding the neural basis underlying this phenomenon and subsequent behavioral outcomes. We previously developed a rat model, in which we use classical conditioning to parallel learning processes evoked during secure attachment (odor-stroke, with stroke mimicking tactile stimulation from the caregiver) or attachment despite adversity (odor-shock, with shock mimicking maltreatment). Here we extend this model to mice. We conditioned infant mice (postnatal day (PN) 7-9 or 13-14) with presentations of peppermint odor and either stroking or shock. We used (14) C 2-deoxyglucose (2-DG) to assess olfactory bulb and amygdala metabolic changes following learning. PN7-9 mice learned to prefer an odor following either odor-stroke or shock conditioning, whereas odor-shock conditioning at PN13-14 resulted in aversion/fear learning. 2-DG data indicated enhanced bulbar activity in PN7-9 preference learning, whereas significant amygdala activity was present following aversion learning at PN13-14. Overall, the mouse results parallel behavioral and neural results in the rat model of attachment, and provide the foundation for the use of transgenic and knockout models to assess the impact of both genetic (biological vulnerabilities) and environmental factors (abusive) on attachment-related behaviors and behavioral development.
Collapse
Affiliation(s)
- T L Roth
- Department of Psychology, University of Delaware, Newark, DE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Ras-GRF1 (GRF1) and Ras-GRF2 (GRF2) constitute a family of guanine nucleotide exchange factors (GEFs). The main isoforms, p140-GRF1 and p135-GRF2, have 2 GEF domains that give them the capacity to activate both Ras and Rac GTPases in response to signals from a variety of neurotransmitter receptors. GRF1 and GRF2 proteins are found predominantly in adult neurons of the central nervous system, although they can also be detected in a limited number of other tissues. p140-GRF1 and p135-GRF2 contain calcium/calmodulin-binding IQ domains that allow them to act as calcium sensors to mediate the actions of NMDA-type and calcium-permeable AMPA-type glutamate receptors. p140-GRF1 also mediates the action of dopamine receptors that signal through cAMP. Although p140-GRF1 and p135-GRF2 have similar functional domains, studies of GRF knockout mice show that they can play strikingly different roles in regulating MAP kinase family members, neuronal synaptic plasticity, specific forms of learning and memory, and behavioral responses to psychoactive drugs. In addition, the function of GRF proteins may vary in different regions of the brain. Alternative splice variants yielding smaller GRF1 gene isoforms with fewer functional domains also exist; however, their distinct roles in neurons have not been revealed. Continuing studies of these proteins should yield important insights into the biochemical basis of brain function as well as novel concepts to explain how complex signal transduction proteins, like Ras-GRFs, integrate multiple upstream signals into specific downstream outputs to control brain function.
Collapse
Affiliation(s)
- Larry A Feig
- Departments of Biochemistry and Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|