1
|
Tani H, Moxon-Emre I, Forde NJ, Neufeld NH, Bingham KS, Whyte EM, Meyers BS, Alexopoulos GS, Hoptman MJ, Rothschild AJ, Uchida H, Flint AJ, Mulsant BH, Voineskos AN. Brain metabolite levels in remitted psychotic depression with consideration of effects of antipsychotic medication. Brain Imaging Behav 2024; 18:117-129. [PMID: 37917311 PMCID: PMC10844359 DOI: 10.1007/s11682-023-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The neurobiology of psychotic depression is not well understood and can be confounded by antipsychotics. Magnetic resonance spectroscopy (MRS) is an ideal tool to measure brain metabolites non-invasively. We cross-sectionally assessed brain metabolites in patients with remitted psychotic depression and controls. We also longitudinally assessed the effects of olanzapine versus placebo on brain metabolites. METHODS Following remission, patients with psychotic depression were randomized to continue sertraline + olanzapine (n = 15) or switched to sertraline + placebo (n = 18), at which point they completed an MRS scan. Patients completed a second scan either 36 weeks later, relapse, or discontinuation. Where water-scaled metabolite levels were obtained and a Point-RESolved Spectroscopy sequence was utilized, choline, myo-inositol, glutamate + glutamine (Glx), N-acetylaspartate, and creatine were measured in the left dorsolateral prefrontal cortex (L-DLPFC) and dorsal anterior cingulate cortex (dACC). An ANCOVA was used to compare metabolites between patients (n = 40) and controls (n = 46). A linear mixed-model was used to compare olanzapine versus placebo groups. RESULTS Cross-sectionally, patients (compared to controls) had higher myo-inositol (standardized mean difference [SMD] = 0.84; 95%CI = 0.25-1.44; p = 0.005) in the dACC but not different Glx, choline, N-acetylaspartate, and creatine. Longitudinally, patients randomized to placebo (compared to olanzapine) showed a significantly greater change with a reduction of creatine (SMD = 1.51; 95%CI = 0.71-2.31; p = 0.0002) in the dACC but not glutamate + glutamine, choline, myo-inositol, and N-acetylaspartate. CONCLUSIONS Patients with remitted psychotic depression have higher myo-inositol than controls. Olanzapine may maintain creatine levels. Future studies are needed to further disentangle the mechanisms of action of olanzapine.
Collapse
Affiliation(s)
- Hideaki Tani
- Centre for Addiction and Mental Health and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Iska Moxon-Emre
- Centre for Addiction and Mental Health and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Natalie J Forde
- Centre for Addiction and Mental Health and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Nicholas H Neufeld
- Centre for Addiction and Mental Health and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Kathleen S Bingham
- University Health Network and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Ellen M Whyte
- Department of Psychiatry, University of Pittsburgh School of Medicine and UPMC Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Barnett S Meyers
- Department of Psychiatry, Weill Medical College of Cornell University and New York Presbyterian Hospital, White Plains, NY, USA
| | - George S Alexopoulos
- Department of Psychiatry, Weill Medical College of Cornell University and New York Presbyterian Hospital, White Plains, NY, USA
| | - Matthew J Hoptman
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Anthony J Rothschild
- University of Massachusetts Medical School and UMass Memorial Health Care, Worcester, MA, USA
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Alastair J Flint
- University Health Network and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Benoit H Mulsant
- Centre for Addiction and Mental Health and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Aristotle N Voineskos
- Centre for Addiction and Mental Health and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Neufeld NH, Oliver LD, Mulsant BH, Alexopoulos GS, Hoptman MJ, Tani H, Marino P, Meyers BS, Rothschild AJ, Whyte EM, Bingham KS, Flint AJ, Voineskos AN. Effects of antipsychotic medication on functional connectivity in major depressive disorder with psychotic features. Mol Psychiatry 2023; 28:3305-3313. [PMID: 37258617 DOI: 10.1038/s41380-023-02118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
The effect of antipsychotic medication on resting state functional connectivity in major depressive disorder (MDD) is currently unknown. To address this gap, we examined patients with MDD with psychotic features (MDDPsy) participating in the Study of the Pharmacotherapy of Psychotic Depression II. All participants were treated with sertraline plus olanzapine and were subsequently randomized to continue sertraline plus olanzapine or be switched to sertraline plus placebo. Participants completed an MRI at randomization and at study endpoint (study completion at Week 36, relapse, or early termination). The primary outcome was change in functional connectivity measured within and between specified networks and the rest of the brain. The secondary outcome was change in network topology measured by graph metrics. Eighty-eight participants completed a baseline scan; 73 completed a follow-up scan, of which 58 were usable for analyses. There was a significant treatment X time interaction for functional connectivity between the secondary visual network and rest of the brain (t = -3.684; p = 0.0004; pFDR = 0.0111). There was no significant treatment X time interaction for graph metrics. Overall, functional connectivity between the secondary visual network and the rest of the brain did not change in participants who stayed on olanzapine but decreased in those switched to placebo. There were no differences in changes in network topology measures when patients stayed on olanzapine or switched to placebo. This suggests that olanzapine may stabilize functional connectivity, particularly between the secondary visual network and the rest of the brain.
Collapse
Affiliation(s)
- Nicholas H Neufeld
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Benoit H Mulsant
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - George S Alexopoulos
- Department of Psychiatry, Weill Cornell Medicine, Weill Cornell Medical College, Westchester Behavioral Health Center, White Plains, NY, USA
| | - Matthew J Hoptman
- Division of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Hideaki Tani
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Patricia Marino
- Department of Psychiatry, Weill Cornell Medicine, Weill Cornell Medical College, Westchester Behavioral Health Center, White Plains, NY, USA
| | - Barnett S Meyers
- Department of Psychiatry, Weill Cornell Medicine, Weill Cornell Medical College, Westchester Behavioral Health Center, White Plains, NY, USA
| | - Anthony J Rothschild
- Department of Psychiatry, University of Massachusetts Chan Medical School and UMass Memorial Health Care, Worcester, MA, USA
| | - Ellen M Whyte
- Department of Psychiatry, University of Pittsburgh School of Medicine and UPMC Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Kathleen S Bingham
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
| | - Alastair J Flint
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
3
|
Babic I, Sellers D, Else PL, Nealon J, Osborne AL, Pai N, Weston-Green K. Effect of liraglutide on neural and peripheral markers of metabolic function during antipsychotic treatment in rats. J Psychopharmacol 2021; 35:284-302. [PMID: 33570012 DOI: 10.1177/0269881120981377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Liraglutide is a glucagon-like peptide-1 (GLP-1) receptor agonist that prevents metabolic side effects of the antipsychotic drugs (APDs) olanzapine and clozapine through unknown mechanisms. AIM This study aimed to investigate the effect of chronic APD and liraglutide co-treatment on key neural and peripheral metabolic signals, and acute liraglutide co-treatment on clozapine-induced hyperglycaemia. METHODS In study 1, rats were administered olanzapine (2 mg/kg), clozapine (12 mg/kg), liraglutide (0.2 mg/kg), olanzapine + liraglutide co-treatment, clozapine + liraglutide co-treatment or vehicle for six weeks. Feeding efficiency was examined weekly. Examination of brain tissue (dorsal vagal complex (DVC) and mediobasal hypothalamus (MBH)), plasma metabolic hormones and peripheral (liver and kidney) cellular metabolism and oxidative stress was conducted. In study 2, rats were administered a single dose of clozapine (12 mg/kg), liraglutide (0.4 mg/kg), clozapine + liraglutide co-treatment or vehicle. Glucose tolerance and plasma hormone levels were assessed. RESULTS Liraglutide co-treatment prevented the time-dependent increase in feeding efficiency caused by olanzapine, which plateaued by six weeks. There was no effect of chronic treatment on melanocortinergic, GABAergic, glutamatergic or endocannabionoid markers in the MBH or DVC. Peripheral hormones and cellular metabolic markers were unaltered by chronic APD treatment. Acute liraglutide co-treatment was unable to prevent clozapine-induced hyperglycaemia, but it did alter catecholamine levels. CONCLUSION The unexpected lack of change to central and peripheral markers following chronic treatment, despite the presence of weight gain, may reflect adaptive mechanisms. Further studies examining alterations across different time points are required to continue to elucidate the mechanisms underlying the benefits of liraglutide on APD-induced metabolic side effects.
Collapse
Affiliation(s)
- Ilijana Babic
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| | - Dominic Sellers
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Paul L Else
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Jessica Nealon
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Ashleigh L Osborne
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Nagesh Pai
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| | - Katrina Weston-Green
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| |
Collapse
|
4
|
Bryll A, Krzyściak W, Karcz P, Śmierciak N, Kozicz T, Skrzypek J, Szwajca M, Pilecki M, Popiela TJ. The Relationship between the Level of Anterior Cingulate Cortex Metabolites, Brain-Periphery Redox Imbalance, and the Clinical State of Patients with Schizophrenia and Personality Disorders. Biomolecules 2020; 10:E1272. [PMID: 32899276 PMCID: PMC7565827 DOI: 10.3390/biom10091272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023] Open
Abstract
Schizophrenia is a complex mental disorder whose course varies with periods of deterioration and symptomatic improvement without diagnosis and treatment specific for the disease. So far, it has not been possible to clearly define what kinds of functional and structural changes are responsible for the onset or recurrence of acute psychotic decompensation in the course of schizophrenia, and to what extent personality disorders may precede the appearance of the appropriate symptoms. The work combines magnetic resonance spectroscopy imaging with clinical evaluation and laboratory tests to determine the likely pathway of schizophrenia development by identifying peripheral cerebral biomarkers compared to personality disorders. The relationship between the level of metabolites in the brain, the clinical status of patients according to International Statistical Classification of Diseases and Related Health Problems, 10th Revision ICD-10, duration of untreated psychosis (DUP), and biochemical indices related to redox balance (malondialdehyde), the efficiency of antioxidant systems (FRAP), and bioenergetic metabolism of mitochondria, were investigated. There was a reduction in the level of brain N-acetyl-aspartate and glutamate in the anterior cingulate gyrus of patients with schisophrenia compared to the other groups that seems more to reflect a biological etiopathological factor of psychosis. Decreased activity of brain metabolites correlated with increased peripheral oxidative stress (increased malondialdehyde MDA) associated with decreased efficiency of antioxidant systems (FRAP) and the breakdown of clinical symptoms in patients with schizophrenia in the course of psychotic decompensation compared to other groups. The period of untreated psychosis correlated negatively with glucose value in the brain of people with schizophrenia, and positively with choline level. The demonstrated differences between two psychiatric units, such as schizophrenia and personality disorders in relation to healthy people, may be used to improve the diagnosis and prognosis of schizophrenia compared to other heterogenous psychopathology in the future. The collapse of clinical symptoms of patients with schizophrenia in the course of psychotic decompensation may be associated with the occurrence of specific schizotypes, the determination of which is possible by determining common relationships between changes in metabolic activity of particular brain structures and peripheral parameters, which may be an important biological etiopathological factor of psychosis. Markers of peripheral redox imbalance associated with disturbed bioenergy metabolism in the brain may provide specific biological factors of psychosis however, they need to be confirmed in further studies.
Collapse
Affiliation(s)
- Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland;
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Paulina Karcz
- Department of Electroradiology, Jagiellonian University Medical College, Michałowskiego 12, 31-126 Krakow, Poland;
| | - Natalia Śmierciak
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Tamas Kozicz
- Department of Clinical Genomics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Justyna Skrzypek
- Department of Medical Diagnostics, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Marta Szwajca
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Maciej Pilecki
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Tadeusz J. Popiela
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland;
| |
Collapse
|
5
|
Holper L, Ben-Shachar D, Mann JJ. Psychotropic and neurological medication effects on mitochondrial complex I and IV in rodent models. Eur Neuropsychopharmacol 2019; 29:986-1002. [PMID: 31320210 DOI: 10.1016/j.euroneuro.2019.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/29/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH-dehydrogenase) and complex IV (cytochrome-c-oxidase) are reported to be affected by drugs used to treat psychiatric or neurodegenerative diseases, including antidepressants, antipsychotics, anxiolytics, mood stabilizers, stimulants, antidementia, and antiparkinsonian drugs. We conducted meta-analyses examining the effects of each drug category on complex I and IV. The electronic databases Pubmed, EMBASE, CENTRAL, and Google Scholar were searched for studies published between 1970 and 2018. Of 3105 screened studies, 68 articles covering 53 drugs were included in the meta-analyses. All studies assessed complex I and IV in rodent brain at the level of enzyme activity. Results revealed that selected antidepressants increase or decrease complex I and IV, antipsychotics and stimulants decrease complex I but increase complex IV, whereas anxiolytics, mood stabilizers, antidementia, and antiparkinsonian drugs preserve or even enhance both complex I and IV. Potential contributions to the drug effects were found to be related to the drugs' neurotransmitter receptor profiles with adrenergic (α1B), dopaminergic (D1/2), glutaminergic (NMDA1,3), histaminergic (H1), muscarinic (M1,3), opioid (OP1-3), serotonergic (5-HT2A, 5-HT2C, 5-HT3A) and sigma (σ1) receptors having the greatest effects. The findings are discussed in relation to pharmacological mechanisms of action that might have relevance for clinical and research applications.
Collapse
Affiliation(s)
- L Holper
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, 8032 Zurich, Switzerland.
| | - D Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion IIT, Haifa, Israel
| | - J J Mann
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, USA
| |
Collapse
|
6
|
Bærentzen S, Casado-Sainz A, Lange D, Shalgunov V, Tejada IM, Xiong M, L'Estrade ET, Edgar FG, Lee H, Herth MM, Palner M. The Chemogenetic Receptor Ligand Clozapine N-Oxide Induces in vivo Neuroreceptor Occupancy and Reduces Striatal Glutamate Levels. Front Neurosci 2019; 13:187. [PMID: 31001069 PMCID: PMC6456655 DOI: 10.3389/fnins.2019.00187] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/15/2019] [Indexed: 12/24/2022] Open
Abstract
Chemogenetic studies with the ligand clozapine N-oxide (CNO) are predicated upon the assumption that CNO is devoid of actions at natural neuroreceptors. However, recent evidence shows that CNO may be converted back to clozapine (CLZ) in vivo, which could yield plasma concentrations that may be sufficient to occupy inter alia dopamine D2/3 and serotonin 5HT2A receptors in living brain. To test this phenomenon, we measured striatal dopamine D2/3 receptor occupancy with [18F]fallypride PET and serotonin 5HT2A occupancy ex vivo using [18F]MH.MZ. We found a CNO dose-dependent effect on the availability of both neuroreceptor sites. In parallel MR spectroscopy experiments, we found that CNO reduced creatine + phosphcreatine (Cr+PCr) and increased N-acetylaspartate + N-acetylaspartylglutamate (NAA+NAAG) signals in the prefrontal cortex, and also reduced the glutamate signal in dorsal striatum, with peak effect at 2 mg/kg. Thus, our findings suggest that conversion of CNO to CLZ in living rats imparts significant occupancy at endogenous neuroreceptors and significant changes to neurometabolite levels.
Collapse
Affiliation(s)
- Simone Bærentzen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark.,Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Agata Casado-Sainz
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Denise Lange
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark.,Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Mengfei Xiong
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Elina T L'Estrade
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Lund, Sweden
| | - Fraser G Edgar
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hedok Lee
- Department of Anesthesiology and Pediatric Anesthesiology, Yale University, New Haven, CT, United States
| | - Matthias M Herth
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark.,Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Tran HQ, Park SJ, Shin EJ, Tran TV, Sharma N, Lee YJ, Jeong JH, Jang CG, Kim DJ, Nabeshima T, Kim HC. Clozapine attenuates mitochondrial burdens and abnormal behaviors elicited by phencyclidine in mice via inhibition of p47 phox; Possible involvements of phosphoinositide 3-kinase/Akt signaling. J Psychopharmacol 2018; 32:1233-1251. [PMID: 30207504 DOI: 10.1177/0269881118795244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Oxidative stress and mitochondrial dysfunction have been implicated in the pathophysiology of schizophrenia. AIMS We investigated whether antipsychotic clozapine modulates nicotinamide adenine dinucleotide phosphate oxidase and mitochondrial burdens induced by phencyclidine in mice. METHODS We examined the effect of clozapine on nicotinamide adenine dinucleotide phosphate oxidase activation, mitochondrial burdens (i.e. oxidative stress and mitochondrial dysfunction), and activities of enzymatic antioxidant in the prefrontal cortex, and subsequent abnormal behaviors induced by repeated treatment with phencyclidine. p47 phox Knockout mice and LY294002, a phosphoinositide 3-kinase inhibitor, were employed to elucidate the pharmacological mechanism of clozapine. RESULTS Phencyclidine treatment resulted in an early increase nicotinamide adenine dinucleotide phosphate oxidase activity, membrane translocation of p47 phox, interaction between p-Akt and p47 phox, and mitochondrial burdens in wild-type mice. Although these increases returned to near control level four days post-phencyclidine, mitochondrial superoxide dismutase and glutathione peroxidase activities were decreased at that time. Clozapine, LY294002, or p47 phox knockout significantly ameliorated social withdrawal and recognition memory deficits produced by phencyclidine. Importantly, LY294002 did not significantly alter the effects of clozapine against abnormal behaviors and the interaction between p-Akt and p47 phox induced by phencyclidine. Furthermore, neither LY294002 nor clozapine exhibited any additive effects to the protection afforded by p47 phox knockout against phencyclidine insult. CONCLUSION Our results suggest that p47 phox gene mediates phencyclidine-induced mitochondrial burdens and abnormal behaviors, and that the interactive modulation between p47 phox and phosphoinositide 3-kinase/Akt is important for the understanding on the pharmacological mechanism of clozapine.
Collapse
Affiliation(s)
- Hai-Quyen Tran
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Se J Park
- 2 School of Natural Resources and Environmental Sciences, Kangwon National University, Chunchon, Republic of Korea
| | - Eun-Joo Shin
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - The-Vinh Tran
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Naveen Sharma
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Yu J Lee
- 3 Clinical Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Ji H Jeong
- 4 Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- 5 Department of Pharmacology, Sungkyunkwan University, Suwon, Korea
| | - Dae-Joong Kim
- 6 Department of Anatomy and Cell Biology, Kangwon National University, Chunchon, Korea
| | - Toshitaka Nabeshima
- 7 Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan.,9 Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Hyoung-Chun Kim
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| |
Collapse
|