1
|
Loh Z, Huan X, Awate S, Schrittwieser M, Renia L, Ren EC. Molecular Characterization of MHC Class I Alpha 1 and 2 Domains in Asian Seabass ( Lates calcarifer). Int J Mol Sci 2022; 23:10688. [PMID: 36142628 PMCID: PMC9500968 DOI: 10.3390/ijms231810688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
The Asian seabass is of importance both as a farmed and wild animal. With the emergence of infectious diseases, there is a need to understand and characterize the immune system. In humans, the highly polymorphic MHC class I (MHC-I) molecules play an important role in antigen presentation for the adaptive immune system. In the present study, we characterized a single MHC-I gene in Asian seabass (Lates calcarifer) by amplifying and sequencing the MHC-I alpha 1 and alpha 2 domains, followed by multi-sequence alignment analyses. The results indicated that the Asian seabass MHC-I α1 and α2 domain sequences showed an overall similarity within Asian seabass and retained the majority of the conserved binding residues of human leukocyte antigen-A2 (HLA-A2). Phylogenetic tree analysis revealed that the sequences belonged to the U lineage. Mapping the conserved binding residue positions on human HLA-A2 and grass carp crystal structure showed a high degree of similarity. In conclusion, the availability of MHC-I α1 and α2 sequences enhances the quality of MHC class I genetic information in Asian seabass, providing new tools to analyze fish immune responses to pathogen infections, and will be applicable in the study of the phylogeny and the evolution of antigen-specific receptors.
Collapse
Affiliation(s)
- Zhixuan Loh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Xuelu Huan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | | | | | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
2
|
Sexual selection for genetic compatibility: the role of the major histocompatibility complex on cryptic female choice in Chinook salmon (Oncorhynchus tshawytscha). Heredity (Edinb) 2017; 118:442-452. [PMID: 28051059 DOI: 10.1038/hdy.2016.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 12/17/2022] Open
Abstract
Cryptic female choice (CFC), a form of sexual selection during or post mating, describes processes of differential sperm utilization by females to bias fertilization outcomes towards certain males. In Chinook salmon (Oncorhynchus tshawytscha) the ovarian fluid surrounding the ova of a given female differently enhances the sperm velocity of males. Sperm velocity is a key ejaculate trait that determines fertilization success in externally fertilizing fishes, thus the differential effect on sperm velocity might bias male fertilization outcomes and represent a mechanism of CFC. Once sperm reach the oocyte, CFC could potentially be further facilitated by sperm-egg interactions, which are well understood in externally fertilizing marine invertebrates. Here, we explored the potential genetic basis of both possible mechanisms of CFC by examining whether the genotypic combinations of mates (amino-acid divergence, number of shared alleles) at the major histocompatibility complex (MHC) class I and II explain the variation in sperm velocity and/or male fertilization success that is not explained by sperm velocity, which might indicate MHC-based sperm-egg interactions. We recorded sperm velocity in ovarian fluid, employed paired-male fertilization trials and evaluated the fertilization success of each male using microsatellite-based paternity assignment. We showed that relative sperm velocity was positively correlated with fertilization success, confirming that the differential effect on sperm velocity may be a mechanism of CFC in Chinook salmon. The variation in sperm velocity was independent of MHC class I and II. However, the MHC class II divergence of mates explained fertilization success, indicating that this locus might influence sperm-egg interactions.
Collapse
|
3
|
Bichet C, Moodley Y, Penn DJ, Sorci G, Garnier S. Genetic structure in insular and mainland populations of house sparrows (Passer domesticus) and their hemosporidian parasites. Ecol Evol 2015; 5:1639-52. [PMID: 25937907 PMCID: PMC4409412 DOI: 10.1002/ece3.1452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/08/2015] [Indexed: 11/07/2022] Open
Abstract
Small and isolated populations usually exhibit low levels of genetic variability, and thus, they are expected to have a lower capacity to adapt to changes in environmental conditions, such as exposure to pathogens and parasites. Comparing the genetic variability of selectively neutral versus functional loci allows one to assess the evolutionary history of populations and their future evolutionary potential. The genes of the major histocompatibility complex (MHC) control immune recognition of parasites, and their unusually high diversity is genes which is likely driven by parasite-mediated balancing selection. Here, we examined diversity and differentiation of neutral microsatellite loci and functional MHC class I genes in house sparrows (Passer domesticus), living in six insular and six mainland populations, and we aimed to determine whether their diversity or differentiation correlates with the diversity and the prevalence of infection of hemosporidian parasites. We found that island bird populations tended to have lower neutral genetic variability, whereas MHC variability gene was similar between island and mainland populations. Similarly, island populations tended to show greater genetic differentiation than mainland populations, especially at microsatellite markers. The maintenance of MHC genetic diversity and its less marked structure in the island populations could be attributed to balancing-selection. The greater MHC differentiation among populations was negatively correlated with similarity in blood parasites (prevalence and diversity of parasite strains) between populations. Even at low prevalence and small geographical scale, haemosporidian parasites might contribute to structure the variability of immune genes among populations of hosts.
Collapse
Affiliation(s)
- Coraline Bichet
- Biogéosciences, UMR CNRS 6282, Université de Bourgogne 6 Boulevard Gabriel, 21000, Dijon, France ; Laboratoire LBBE, UMR CNRS 5558, Université Claude Bernard Lyon 1 bâtiment Mendel, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne Cedex, France
| | - Yoshan Moodley
- Department of Zoology, University of Venda Private Bag X5050, Thohoyandou, 0950, South Africa ; Department of Integrative Biology and Evolution, Konrad-Lorenz-Institute of Ethology, University of Veterinarian Medicine Vienna Savoyenstr. 1a, A-1160, Vienna, Austria
| | - Dustin J Penn
- Department of Integrative Biology and Evolution, Konrad-Lorenz-Institute of Ethology, University of Veterinarian Medicine Vienna Savoyenstr. 1a, A-1160, Vienna, Austria
| | - Gabriele Sorci
- Biogéosciences, UMR CNRS 6282, Université de Bourgogne 6 Boulevard Gabriel, 21000, Dijon, France
| | - Stéphane Garnier
- Biogéosciences, UMR CNRS 6282, Université de Bourgogne 6 Boulevard Gabriel, 21000, Dijon, France
| |
Collapse
|
4
|
Miller KM, Teffer A, Tucker S, Li S, Schulze AD, Trudel M, Juanes F, Tabata A, Kaukinen KH, Ginther NG, Ming TJ, Cooke SJ, Hipfner JM, Patterson DA, Hinch SG. Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines. Evol Appl 2014; 7:812-55. [PMID: 25469162 PMCID: PMC4227861 DOI: 10.1111/eva.12164] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/06/2014] [Indexed: 12/23/2022] Open
Abstract
Emerging diseases are impacting animals under high-density culture, yet few studies assess their importance to wild populations. Microparasites selected for enhanced virulence in culture settings should be less successful maintaining infectivity in wild populations, as once the host dies, there are limited opportunities to infect new individuals. Instead, moderately virulent microparasites persisting for long periods across multiple environments are of greatest concern. Evolved resistance to endemic microparasites may reduce susceptibilities, but as barriers to microparasite distributions are weakened, and environments become more stressful, unexposed populations may be impacted and pathogenicity enhanced. We provide an overview of the evolutionary and ecological impacts of infectious diseases in wild salmon and suggest ways in which modern technologies can elucidate the microparasites of greatest potential import. We present four case studies that resolve microparasite impacts on adult salmon migration success, impact of river warming on microparasite replication, and infection status on susceptibility to predation. Future health of wild salmon must be considered in a holistic context that includes the cumulative or synergistic impacts of multiple stressors. These approaches will identify populations at greatest risk, critically needed to manage and potentially ameliorate the shifts in current or future trajectories of wild populations.
Collapse
Affiliation(s)
- Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
- Forest and Conservation Sciences, University of British ColumbiaVancouver, BC, Canada
| | - Amy Teffer
- Biology Department, University of VictoriaVictoria, BC, Canada
| | - Strahan Tucker
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Marc Trudel
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
- Biology Department, University of VictoriaVictoria, BC, Canada
| | - Francis Juanes
- Biology Department, University of VictoriaVictoria, BC, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Norma G Ginther
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton UniverisyOttawa, ON, Canada
| | - J Mark Hipfner
- Environment Canada, Wildlife Research DivisionDelta, BC, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, School of Resource and Environmental Management, Simon Fraser University, Science BranchBurnaby, BC, Canada
| | - Scott G Hinch
- Forest and Conservation Sciences, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
5
|
Lenz TL, Eizaguirre C, Kalbe M, Milinski M. EVALUATING PATTERNS OF CONVERGENT EVOLUTION AND TRANS-SPECIES POLYMORPHISM AT MHC IMMUNOGENES IN TWO SYMPATRIC STICKLEBACK SPECIES. Evolution 2013; 67:2400-12. [DOI: 10.1111/evo.12124] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/26/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Tobias L. Lenz
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
| | - Christophe Eizaguirre
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
- Department of Evolutionary Ecology of Marine Fishes; GEOMAR
- Helmholtz Center for Ocean Research; Düsternbrooker Weg 20 24105 Kiel Germany
| | - Martin Kalbe
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
| | - Manfred Milinski
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
| |
Collapse
|
6
|
Nydam ML, Taylor AA, De Tomaso AW. Evidence for selection on a chordate histocompatibility locus. Evolution 2012; 67:487-500. [PMID: 23356620 DOI: 10.1111/j.1558-5646.2012.01787.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Allorecognition is the ability of an organism to differentiate self or close relatives from unrelated individuals. The best known applications of allorecognition are the prevention of inbreeding in hermaphroditic species (e.g., the self-incompatibility [SI] systems in plants), the vertebrate immune response to foreign antigens mediated by MHC loci, and somatic fusion, where two genetically independent individuals physically join to become a chimera. In the few model systems where the loci governing allorecognition outcomes have been identified, the corresponding proteins have exhibited exceptional polymorphism. But information about the evolution of this polymorphism outside MHC is limited. We address this subject in the ascidian Botryllus schlosseri, where allorecognition outcomes are determined by a single locus, called FuHC (Fusion/HistoCompatibility). Molecular variation in FuHC is distributed almost entirely within populations, with very little evidence for differentiation among different populations. Mutation plays a larger role than recombination in the creation of FuHC polymorphism. A selection statistic, neutrality tests, and distribution of variation within and among different populations all provide evidence for selection acting on FuHC, but are not in agreement as to whether the selection is balancing or directional.
Collapse
Affiliation(s)
- Marie L Nydam
- Division of Science and Mathematics, Centre College, Danville, Kentucky 40422, USA.
| | | | | |
Collapse
|
7
|
|
8
|
Evans ML, Neff BD. Major histocompatibility complex heterozygote advantage and widespread bacterial infections in populations of Chinook salmon (Oncorhynchus tshawytscha). Mol Ecol 2009; 18:4716-29. [PMID: 19821902 DOI: 10.1111/j.1365-294x.2009.04374.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite growing evidence for parasite-mediated selection on the vertebrate major histocompatibility complex (MHC), little is known about variation in the bacterial parasite community within and among host populations or its influence on MHC evolution. In this study, we characterize variation in the parasitic bacterial community associated with Chinook salmon (Oncorhynchus tshawytscha) fry in five populations in British Columbia (BC), Canada across 2 years, and examine whether bacterial infections are a potential source of selection on the MHC. We found an unprecedented diversity of bacteria infecting fry with a total of 55 unique bacteria identified. Bacterial infection rates varied from 9% to 29% among populations and there was a significant isolation by distance relationship in bacterial community phylogenetic similarity across the populations. Spatial variation in the frequency of infections and in the phylogenetic similarity of bacterial communities may result in differential parasite-mediated selection at the MHC across populations. Across all populations, we found evidence of a heterozygote advantage at the MHC class II, which may be a source of balancing selection on this locus. Interestingly, a co-inertia analysis indicated only susceptibility associations between a few of the MHC class I and II alleles and specific bacterial parasites; there was no evidence that any of the alleles provided resistance to the bacteria. Our results reveal a complex bacterial community infecting populations of a fish and underscore the importance of considering the role of multiple pathogens in the evolution of host adaptations.
Collapse
Affiliation(s)
- Melissa L Evans
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | | |
Collapse
|
9
|
Evans ML, Neff BD, Heath DD. MHC genetic structure and divergence across populations of Chinook salmon (Oncorhynchus tshawytscha). Heredity (Edinb) 2009; 104:449-59. [PMID: 19773808 DOI: 10.1038/hdy.2009.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The major histocompatibility complex (MHC) is thought to be under strong selection pressure because of its integral role in pathogen recognition. Consequently, patterns of MHC genetic variation should reflect selection pressures across the landscape. We examined genetic variation and population genetic structure at the MHC class I-A1 and class II-B1 exons in five Chinook salmon (Oncorhynchus tshawytscha) populations from two geographic regions in British Columbia, Canada. We then compared estimates of population structure at the MHC genes with neutral estimates based on microsatellites to examine the potential for local adaptation at the MHC. Chinook salmon are in decline throughout much of their native range and understanding the degree of local adaptation exhibited by the MHC may be important in conservation planning. Comparisons among populations yielded higher G'(ST) estimates for the MHC class I than expected under neutrality based on the microsatellites. In contrast, the MHC class II tended to exhibit lower G'(ST) values than did the microsatellites. These results suggest that across populations unique selection pressures are driving allele frequency differences at the MHC class I but that the MHC class II may be the subject of homogenizing selection. Rates of nonsynonymous versus synonymous substitutions found in codons associated within the MHC class I and II peptide-binding regions provided strong evidence of positive selection. Together, these results support the hypothesis that selection is influencing genetic variation at the MHC, but suggest that selection pressures may vary at the two classes of loci both at the sequence and population levels.
Collapse
Affiliation(s)
- M L Evans
- Department of Biology, University of Western Ontario, Ontario, Canada
| | | | | |
Collapse
|
10
|
Loiseau C, Richard M, Garnier S, Chastel O, Julliard R, Zoorob R, Sorci G. Diversifying selection on MHC class I in the house sparrow (Passer domesticus). Mol Ecol 2009; 18:1331-40. [PMID: 19368641 DOI: 10.1111/j.1365-294x.2009.04105.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genes of the major histocompatibility complex (MHC) are the most polymorphic loci known in vertebrates. Two main hypotheses have been put forward to explain the maintenance of MHC diversity: pathogen-mediated selection and MHC-based mate choice. Host-parasite interactions can maintain MHC diversity via frequency-dependent selection, heterozygote advantage, and diversifying selection (spatially and/or temporally heterogeneous selection). In this study, we wished to investigate the nature of selection acting on the MHC class I across spatially structured populations of house sparrows (Passer domesticus) in France. To infer the nature of the selection, we compared patterns of population differentiation based on two types of molecular markers: MHC class I and microsatellites. This allowed us to test whether the observed differentiation at MHC genes merely reflects demographic and/or stochastic processes. At the global scale, diversifying selection seems to be the main factor maintaining MHC diversity in the house sparrow. We found that (i) overall population differentiation at MHC was stronger than for microsatellites, (ii) MHC marker showed significant isolation by distance. In addition, the slope of the regression of F(ST) on geographical distance was significantly steeper for MHC than for microsatellites due to a stronger pairwise differentiation between populations located at large geographical distances. These results are in agreement with the hypothesis that spatially heterogeneous selective pressures maintain different MHC alleles at local scales, possibly resulting in local adaptation.
Collapse
Affiliation(s)
- Claire Loiseau
- Laboratoire Parasitologie Evolutive, CNRS UMR 7103, Université Pierre et Marie Curie, Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Alcaide M, Edwards SV, Negro JJ, Serrano D, Tella JL. Extensive polymorphism and geographical variation at a positively selected MHC class II B gene of the lesser kestrel (Falco naumanni). Mol Ecol 2008; 17:2652-65. [PMID: 18489548 DOI: 10.1111/j.1365-294x.2008.03791.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miguel Alcaide
- Estación Biológica de Doñana (CSIC) Pabellón de Perú, Avenida Maria Luisa s/n 41013, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
12
|
Conejeros P, Phan A, Power M, Alekseyev S, O'Connell M, Dempson B, Dixon B. MH class IIalpha polymorphism in local and global adaptation of Arctic charr (Salvelinus alpinus L.). Immunogenetics 2008; 60:325-37. [PMID: 18488215 DOI: 10.1007/s00251-008-0290-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 03/03/2008] [Indexed: 11/29/2022]
Abstract
Arctic charr, a highly plastic salmonid that inhabits the circumpolar region, colonized its current environment after the last glaciation. Recent colonization limits the capacity of many techniques to define and characterize constituent populations. As a novel approach, we used the major histocompatibility (MH) class IIalpha gene polymorphism as a marker that would characterize the genetic divergence of global Arctic charr populations caused by drift and by local adaptation to pathogens. We were able to detect significant isolation of all the lineages previously defined by mitochondrial DNA sequencing and also isolation of some populations within those groups. We found that most of the polymorphism of the class IIalpha gene was distributed globally, which indicates ancestral selection; however, in most cases, distinctive allele frequencies and specific haplotypes distinguished each population suggesting that recent selection has also occurred. Although all studied populations showed similar MH class IIalpha polymorphisms, we also found variation in which particular amino acid positions were polymorphic and which were constant in the different populations studied. This variation provides a greater adaptive capacity for the MH class IIalpha receptors in Arctic charr and is yet another illustration of the extraordinary plasticity of the species.
Collapse
Affiliation(s)
- Pablo Conejeros
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Miller KM, Li S, Ming TJ, Kaukinen KH, Schulze AD. The salmonid MHC class I: more ancient loci uncovered. Immunogenetics 2006; 58:571-89. [PMID: 16794819 DOI: 10.1007/s00251-006-0125-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 12/14/2005] [Indexed: 10/24/2022]
Abstract
An unprecedented level of sequence diversity has been maintained in the salmonid major histocompatibility complex (MHC) class I UBA gene, with between lineage AA sequence identities as low as 34%. The derivation of deep allelic lineages may have occurred through interlocus exon shuffling or convergence of ancient loci with the UBA locus, but until recently, no such ancient loci were uncovered. Herein, we document the existence of eight additional MHC class I loci in salmon (UCA, UDA, UEA, UFA, UGA, UHA, ULA, and ZE), six of which share exon 2 and 3 lineages with UBA, and three of which have not been described elsewhere. Half of the UBA exon 2 lineages and all UBA exon 3 lineages are shared with other loci. Two loci, UGA and UEA, share only a single exon lineage with UBA, likely generated through exon shuffling. Based on sequence homologies, we hypothesize that most exchanges and duplications occurred before or during tetraploidization (50 to 100 Ma). Novel loci that share no relationship with other salmonid loci are also identified (UHA and ZE). Each locus is evaluated for its potential to function as a class Ia gene based on gene expression, conserved residues and polymorphism. UBA is the only locus that can indisputably be classified as a class Ia gene, although three of the eight loci (ZE, UCA, and ULA) conform in three out of four measures. We hypothesize that these additional loci are in varying states of degradation to class Ib genes.
Collapse
Affiliation(s)
- Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans, Canada, 3190 Hammond Bay Rd., Nanaimo, B.C. V9T 6N7, Canada.
| | | | | | | | | |
Collapse
|
14
|
Brennan AC, Harris SA, Hiscock SJ. THE POPULATION GENETICS OF SPOROPHYTIC SELF-INCOMPABILITY IN SENECIO SQUALIDUS L. (ASTERACEAE): THE NUMBER, FREQUENCY, AND DOMINANCE INTERACTIONS OF S ALLELES ACROSS ITS BRITISH RANGE. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01100.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Brennan AC, Harris SA, Hiscock SJ. THE POPULATION GENETICS OF SPOROPHYTIC SELF-INCOMPATIBILITY IN SENECIO SQUALIDUS L. (ASTERACEAE): THE NUMBER, FREQUENCY, AND DOMINANCE INTERACTIONS OF S ALLELES ACROSS ITS BRITISH RANGE. Evolution 2006. [DOI: 10.1554/05-231.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Abstract
The major histocompatibility complex (MHC) has become a paradigm for how selection can act to maintain adaptively important genetic diversity in natural populations. Here, we review the contribution of studies on the MHC in non-model species to our understanding of how selection affects MHC diversity, emphasising how ecological and ethological processes influence the tempo and mode of evolution at the MHC, and conversely, how variability at the MHC affects individual fitness, population dynamics and viability. We focus on three main areas: the types of information that have been used to detect the action of selection on MHC genes; the relative contributions of parasite-mediated and sexual selection on the maintenance of MHC diversity; and possible future lines of research that may help resolve some of the unanswered issues associated with MHC evolution.
Collapse
Affiliation(s)
- S B Piertney
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
17
|
Knapp LA. Denaturing gradient gel electrophoresis and its use in the detection of major histocompatibility complex polymorphism. ACTA ACUST UNITED AC 2005; 65:211-9. [PMID: 15730514 DOI: 10.1111/j.1399-0039.2005.00368.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) has been studied extensively in humans and in mice and many methods are available for MHC typing of these well-characterized species. Studies of MHC variation in other species are ever increasing and researchers can choose one of a number of approaches for MHC typing of their species of interest. DNA sequencing is regarded as the 'gold standard' and it is frequently used for MHC typing. However, DNA sequencing is impractical when many individuals must be typed. Denaturing gradient gel electrophoresis (DGGE) offers a flexible and sensitive method for identifying and characterizing MHC alleles in any vertebrate species. This article reviews the theory and the practice of DGGE and examines the use of DGGE for MHC identification in various species. DGGE is compared to other similar techniques for MHC typing, such as single-stranded conformational polymorphism and reference strand-mediated conformational analysis. The advantages, problems, pitfalls and limitations of DGGE are considered and future perspectives on the use of DGGE for MHC typing are discussed.
Collapse
Affiliation(s)
- L A Knapp
- Primate Immunogenetics and Molecular Ecology Research Group, Department of Biological Anthropology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Skarstein F, Folstad I, Liljedal S, Grahn M. MHC and fertilization success in the Arctic charr (Salvelinus alpinus). Behav Ecol Sociobiol 2004. [DOI: 10.1007/s00265-004-0860-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Bernatchez L, Landry C. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 2003; 16:363-77. [PMID: 14635837 DOI: 10.1046/j.1420-9101.2003.00531.x] [Citation(s) in RCA: 644] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Elucidating how natural selection promotes local adaptation in interaction with migration, genetic drift and mutation is a central aim of evolutionary biology. While several conceptual and practical limitations are still restraining our ability to study these processes at the DNA level, genes of the major histocompatibility complex (MHC) offer several assets that make them unique candidates for this purpose. Yet, it is unclear what general conclusions can be drawn after 15 years of empirical research that documented MHC diversity in the wild. The general objective of this review is to complement earlier literature syntheses on this topic by focusing on MHC studies other than humans and mice. This review first revealed a strong taxonomic bias, whereby many more studies of MHC diversity in natural populations have dealt with mammals than all other vertebrate classes combined. Secondly, it confirmed that positive selection has a determinant role in shaping patterns of nucleotide diversity in MHC genes in all vertebrates studied. Yet, future tests of positive selection would greatly benefit from making better use of the increasing number of models potentially offering more statistical rigour and higher resolution in detecting the effect and form of selection. Thirdly, studies that compared patterns of MHC diversity within and among natural populations with neutral expectations have reported higher population differentiation at MHC than expected either under neutrality or simple models of balancing selection. Fourthly, several studies showed that MHC-dependent mate preference and kin recognition may provide selective factors maintaining polymorphism in wild outbred populations. However, they also showed that such reproductive mechanisms are complex and context-based. Fifthly, several studies provided evidence that MHC may significantly influence fitness, either by affecting reproductive success or progeny survival to pathogens infections. Overall, the evidence is compelling that the MHC currently represents the best system available in vertebrates to investigate how natural selection can promote local adaptation at the gene level despite the counteracting actions of migration and genetic drift. We conclude this review by proposing several directions where future research is needed.
Collapse
Affiliation(s)
- L Bernatchez
- Department de biologie, Université Laval, Ste Foy, Québec, Canada.
| | | |
Collapse
|
20
|
Miller KM, Kaukinen KH, Beacham TD, Withler RE. Geographic heterogeneity in natural selection on an MHC locus in sockeye salmon. Genetica 2002; 111:237-57. [PMID: 11841169 DOI: 10.1023/a:1013716020351] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Balancing selection maintains high levels of polymorphism and heterozygosity in genes of the MHC (major histocompatibility complex) of vertebrate organisms, and promotes long evolutionary persistence of individual alleles and strongly differentiated allelic lineages. In this study, genetic variation at the MHC class II DAB-beta1 locus was examined in 31 populations of sockeye salmon (Oncorhynchus nerka) inhabiting the Fraser River drainage of British Columbia, Canada. Twenty-five percent of variation at the locus was partitioned among sockeye populations, as compared with 5% at neutral genetic markers. Geographic heterogeneity of balancing selection was detected among four regions in the Fraser River drainage and among lake systems within regions. High levels of beta1 allelic diversity and heterozygosity, as well as distributions of alleles and allelic lineages that were more even than expected for a neutral locus, indicated the presence of balancing selection in populations throughout much of the interior Fraser drainage. However, proximate populations in the upper Fraser region, and four of six populations from the lower Fraser drainage, exhibited much lower levels of genetic diversity and had beta1 allele frequency distributions in conformance with those expected for a neutral locus, or a locus under directional selection. Pair-wise FST values for beta1 averaged 0.19 and tended to exceed the corresponding values estimated for neutral loci at all levels of population structure, although they were lower among populations experiencing balancing selection than among other populations. The apparent heterogeneity in selection resulted in strong genetic differentiation between geographically proximate populations with and without detectable levels of balancing selection, in stark contrast to observations at neutral loci. The strong partitioning and complex structure of beta1 diversity within and among sockeye populations on a small geographic scale illustrates the value of incorporating adaptive variation into conservation planning for the species.
Collapse
Affiliation(s)
- K M Miller
- Fisheries and Oceans, Pacific Biological Station, Nanaimo, BC, Canada.
| | | | | | | |
Collapse
|
21
|
Xia C, Kiryu I, Dijkstra JM, Azuma T, Nakanishi T, Ototake M. Differences in MHC class I genes between strains of rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2002; 12:287-301. [PMID: 12049167 DOI: 10.1006/fsim.2001.0371] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In rainbow trout there is only one dominant classical MHC class I locus, Onmy-UBA, for which four very different allelic lineages have been described. The purpose of the present study was to determine if Onmy-UBA polymorphism could be used for strain characterisation. This was performed by lineage-specific PCR investigation of 30 fish, each of the Nikko and Donaldson strains, and by sequence analysis of 25 of the amplified DNA fragments. Two new MHC class I lineages were detected in addition to the four previously described lineages, thus six distinct lineages were observed within the fish examined (Sal-MHCIa*A-F). The distribution of lineages appeared to be strain-specific. For example, the lineage Sal-MHCIa*A was very common in the Nikko strain but could not be detected in the Donaldson strain. Analysis of MHC class I variation may help to elucidate relationships between strains and the roles of MHC alleles in disease resistance.
Collapse
Affiliation(s)
- Chun Xia
- Inland Station/National Research Institute of Aquaculture, Tamaki, Mie, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
This paper describes a new approach to modeling population structure for genes under strong balancing selection of the type seen in plant self-incompatibility systems and the major histocompatibility complex (MHC) system of vertebrates. Simple analytic solutions for the number of alleles maintained at equilibrium and the expected proportion of alleles shared between demes at various levels are derived and checked against simulation results. The theory accurately captures the dynamics of allele number in a subdivided population and identifies important values of m (migration rate) at which allele number and distribution change qualitatively. Starting from a panmictic population, as migration among demes decreases a qualitative change in dynamics is seen at approximately m(crit) approximately equal to the square root of(s/4piNT) where NT is the total population size and s is a measure of the strength of selection. At this point, demes can no longer maintain their panmictic allele number, due to increasing isolation from the total population. Another qualitative change occurs at a migration rate on the same order of magnitude as the mutation rate, mu. At this point, the demes are highly differentiated for allele complement, and the total number of alleles in the population is increased. Because in general u << m<(crit) at intermediate migration rates slightly fewer alleles may be maintained in the total population than are maintained at panmixia. Within this range, total allele number may not be the best indicator of whether a population is effectively panmictic, and some caution should be used when interpreting samples from such populations. The theory presented here can help to analyze data from genes under balancing selection in subdivided populations.
Collapse
Affiliation(s)
- C A Muirhead
- Department of Integrative Biology, University of California, Berkeley 94720-3140, USA.
| |
Collapse
|
23
|
|
24
|
Langefors A, Lohm J, Von Schantz T, Grahn M. Screening of Mhc variation in Atlantic salmon (Salmo salar): a comparison of restriction fragment length polymorphism (RFLP), denaturing gradient gel electrophoresis (DGGE) and sequencing. Mol Ecol 2000; 9:215-9. [PMID: 10672165 DOI: 10.1046/j.1365-294x.2000.00838.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We compared three different molecular methods currently used for screening of Mhc variation in population studies of Atlantic salmon. Restriction fragment length polymorphism (RFLP) of the entire class II gene detected 22 haplotypes. Seventeen exon 2 sequences were obtained from individuals carrying the 22 haplotypes, two of which had not been detected by RFLP. The six alleles (27%) detected by RFLP and not by exon 2 sequencing probably resulted from sequence variation outside exon 2. Within exon 2, RFLP differentiated 88% of the sequences. Alternatively, denaturing gradient gel electrophoresis (DGGE) performed under two run conditions detected 94% of the sequence variation. Both RFLP using different probes, and the two PCR-based methods using three different primer pairs, suggest that there is only a single Mhc class II B gene in the Baltic populations of Atlantic salmon.
Collapse
Affiliation(s)
- A Langefors
- Department of Animal Ecology, Ecology Building, Lund University, 223 62 Lund, Sweden.
| | | | | | | |
Collapse
|
25
|
Seddon JM, Baverstock PR. Variation on islands: major histocompatibility complex (Mhc) polymorphism in populations of the Australian bush rat. Mol Ecol 1999; 8:2071-9. [PMID: 10632858 DOI: 10.1046/j.1365-294x.1999.00822.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Loss of genetic variation in small, isolated populations is commonly observed at neutral or nearly neutral loci. In this study, the loss of genetic variation was assessed in island populations for a locus of major histocompatibility complex (Mhc), a locus shown to be under the influence of balancing selection. A total of 36 alleles was found at the second exon of RT1.Ba in 14 island and two mainland populations of Rattus fuscipes greyii. Despite this high overall diversity, a substantial lack of variation was observed in the small island populations, with 13 islands supporting only one to two alleles. Two populations, Waldegrave and Williams Islands, showed moderately high levels of heterozygosity (52-56%) which were greater than expected under neutrality, suggesting the action of balancing selection. However, congruence between the level of variation at this Mhc locus and in previous allozyme electrophoresis and mitochondrial DNA studies highlights the dominant influence of genetic drift and population factors, such as bottlenecks and structuring in the founding population, in the loss of genetic variation in these small, isolated populations.
Collapse
Affiliation(s)
- J M Seddon
- School of Resource Science, Southern Cross University, Lismore NSW 2480, Australia.
| | | |
Collapse
|
26
|
Abstract
Three MHC class I genes have been characterized in salmonids: A, B, and UA. Levels of polymorphism vary among the genes, but they all share one common feature: a lack of sequence diversity. Although individual species can carry over 30 alleles at a given locus (A), intraspecific diversity is generally less than 5% in Pacific salmon (genus Oncorhynchus), and less than 10% in Atlantic salmon (genus Salmo). These levels of diversity suggest that few ancient allelic lineages have persisted within species, and that most of the allelic radiation has occurred during or since speciation. Also apparent is the greater retention of allelic lineages in Atlantic salmon than Pacific salmon, which reflects historic differences of the two genera. Comparison of the salmonid class I sequences with those of other teleosts reveals two well supported groups: one containing the Cypriniformes and the salmonid UA, and the other containing the neoteleosts and the salmonid A and B. There is no homology between known Cypriniformes and neoteleostean sequences. If this relationship is borne out, it offers strong support for the hypothesis that the higher teleosts diverged more recently from the Salmoniformes than the Cypriniformes. The salmonid MHC may provide a snapshot of the neoteleostean MHC prior to the extensive class I duplication that has taken place in at least some of the more advanced species.
Collapse
Affiliation(s)
- K M Miller
- Department of Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada.
| | | |
Collapse
|