1
|
Frazier DM, Allgeier C, Homer C, Marriage BJ, Ogata B, Rohr F, Splett PL, Stembridge A, Singh RH. Nutrition management guideline for maple syrup urine disease: an evidence- and consensus-based approach. Mol Genet Metab 2014; 112:210-7. [PMID: 24881969 DOI: 10.1016/j.ymgme.2014.05.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 12/26/2022]
Abstract
In an effort to increase harmonization of care and enable outcome studies, the Genetic Metabolic Dietitians International (GMDI) and the Southeast Regional Newborn Screening and Genetics Collaborative (SERC) are partnering to develop nutrition management guidelines for inherited metabolic disorders (IMD) using a model combining both evidence- and consensus-based methodology. The first guideline to be completed is for maple syrup urine disease (MSUD). This report describes the methodology used in its development: formulation of five research questions; review, critical appraisal and abstraction of peer-reviewed studies and unpublished practice literature; and expert input through Delphi surveys and a nominal group process. This report includes the summary statements for each research question and the nutrition management recommendations they generated. Each recommendation is followed by a standardized rating based on the strength of the evidence and consensus used. The application of technology to build the infrastructure for this project allowed transparency during development of this guideline and will be a foundation for future guidelines. Online open access of the full, published guideline allows utilization by health care providers, researchers, and collaborators who advise, advocate and care for individuals with MSUD and their families. There will be future updates as warranted by developments in research and clinical practice.
Collapse
Affiliation(s)
- Dianne M Frazier
- Campus Box 7487, Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | - Caroline Homer
- Specially for Children Subspecialists, Seton Healthcare Family, Austin, TX, USA
| | | | - Beth Ogata
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Frances Rohr
- Department of Genetics and Metabolism, Boston Children's Hospital, Boston, MA, USA
| | - Patricia L Splett
- Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA; Splett & Associates, Stanchfield, MN, USA
| | - Adrya Stembridge
- Division of Medical Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Rani H Singh
- Division of Medical Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Oyarzabal A, Martínez-Pardo M, Merinero B, Navarrete R, Desviat LR, Ugarte M, Rodríguez-Pombo P. A novel regulatory defect in the branched-chain α-keto acid dehydrogenase complex due to a mutation in the PPM1K gene causes a mild variant phenotype of maple syrup urine disease. Hum Mutat 2012; 34:355-62. [PMID: 23086801 DOI: 10.1002/humu.22242] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/04/2012] [Indexed: 11/11/2022]
Abstract
This article describes a hitherto unreported involvement of the phosphatase PP2Cm, a recently described member of the branched-chain α-keto acid dehydrogenase (BCKDH) complex, in maple syrup urine disease (MSUD). The disease-causing mutation was identified in a patient with a mild variant phenotype, involving a gene not previously associated with MSUD. SNP array-based genotyping showed a copy-neutral homozygous pattern for chromosome 4 compatible with uniparental isodisomy. Mutation analysis of the candidate gene, PPM1K, revealed a homozygous c.417_418delTA change predicted to result in a truncated, unstable protein. No PP2Cm mutant protein was detected in immunocytochemical or Western blot expression analyses. The transient expression of wild-type PPM1K in PP2Cm-deficient fibroblasts recovered 35% of normal BCKDH activity. As PP2Cm has been described essential for cell survival, apoptosis and metabolism, the impact of its deficiency on specific metabolic stress variables was evaluated in PP2Cm-deficient fibroblasts. Increases were seen in ROS levels along with the activation of specific stress-signaling MAP kinases. Similar to that described for the pyruvate dehydrogenase complex, a defect in the regulation of BCKDH caused the aberrant metabolism of its substrate, contributing to the patient's MSUD phenotype--and perhaps others.
Collapse
Affiliation(s)
- Alfonso Oyarzabal
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, CIBERER U746, IDIPAZ, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
One of the earliest vitamins to be discovered and synthesized, thiamin was originally spelled with an "e". The terminal "e" was dropped when it was found that it was not an amine. It is still spelled with and without the "e" depending on the text. This chapter provides a brief historical review of the association of thiamin with the ancient scourge of beriberi. It emphasizes that beriberi is the model for high calorie malnutrition because of its occurrence in predominantly white rice consuming cultures. Some of the symptomatology of this ancient scourge is described, emphasizing the difference from that seen in starvation. High calorie malnutrition, due to excessive ingestion of simple carbohydrates, is widely encountered in the U.S.A. today. Thiamin deficiency is commonly associated with this, largely because of its cofactor status in the metabolism of glucose. The biochemistry of the three phosphorylated esters of thiamin and the transporters are discussed and the pathophysiology of thiamin deficiency reviewed. The role of thiamin, and particularly its synthetic derivatives as therapeutic agents, is not fully appreciated in Western civilization and a clinical section describes some of the unusual cases described in the scientific literature and some experienced by the author. The possible role of high calorie malnutrition and related thiamin deficiency in juvenile crime is hypothesized.
Collapse
|
4
|
Skvorak KJ. Animal models of maple syrup urine disease. J Inherit Metab Dis 2009; 32:229-46. [PMID: 19263237 DOI: 10.1007/s10545-009-1086-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/15/2008] [Accepted: 12/18/2008] [Indexed: 01/03/2023]
Abstract
Maple syrup urine disease (MSUD) is an inherited aminoacidopathy resulting from dysfunction of the branched-chain keto acid dehydrogenase (BCKDH) complex. This disease is currently treated primarily by dietary restriction of branched-chain amino acids (BCAAs). However, dietary compliance is often challenging. Conversely, liver transplantation significantly improves outcomes, but donor organs are scarce and there are high costs and potential risks associated with this invasive procedure. Therefore, improved treatment options for MSUD are needed. Development of novel treatments could be facilitated by animal models that accurately mimic the human disease. Animal models provide a useful system in which to explore disease mechanisms and new preclinical therapies. Here we review MSUD and currently available animal models and their corresponding relevance to the human disorder. Using animal models to gain a more complete understanding of the pathophysiology behind the human disease may lead to new or improved therapies to treat or potentially cure the disorder.
Collapse
Affiliation(s)
- K J Skvorak
- Graduate Program in the Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Wadman SK, Duran M, Kamerling JP. Organic acidurias: approach, results and clinical relevance. CIBA FOUNDATION SYMPOSIUM 2008; 87:324-39. [PMID: 6918293 DOI: 10.1002/9780470720691.ch18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
More than twenty-five inherited organic acidurias have been identified during the last fifteen years. This remarkable development is due mainly to the introduction of gas chromatography, and gas chromatography combined with mass spectrometry, in paediatric laboratories for metabolic disease. The chemical approach is determined mainly by physical properties of the acid, such as their extractability and volatility. Most progress has been made with extractable acids. The techniques used for derivatization are mentioned, such as trimethylsilylation, methylation and the preparation of asymmetric derivatives for the separation of optical enantiomers. Metabolite patterns may be so characteristic that the underlying enzyme defect can be deduced. Examples are the leucine degradation defects, all encountered in the authors' laboratory: branched-chain ketoaciduria; isovaleric acidaemia; 3-methylcrotonylglycinuria; 3-methylglutaconic aciduria; and 3-hydroxy-3-methylglutaric aciduria. These abnormalities are discussed. D-glyceric aciduria is shown as an example of a not yet fully understood organic aciduria. The clinical approach varies. Metabolic acidosis is an indication for organic acid analysis in urine and plasma, but in many defects there is no acidosis, or only a transient one caused by secondary metabolites, such as lactic and 3-hydroxybutyric acids. Gas chromatography is an obligatory routine investigation in screening programmes for inborn errors of metabolism, especially for the examination of acutely ill neonates and premature babies.
Collapse
|
6
|
Verdu A, Lopez-Herce J, Pascual-Castroviejo I, Martinez-Bermejo A, Ugarte M, Garcia MJ. Maple syrup urine disease variant form: presentation with psychomotor retardation and CT scan abnormalities. ACTA PAEDIATRICA SCANDINAVICA 1985; 74:815-8. [PMID: 4050430 DOI: 10.1111/j.1651-2227.1985.tb10041.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A female infant with an intermediate variant of maple syrup urine disease is described. The patient had psychomotor retardation and high plasma levels of branched chain aminoacids. Leucine decarboxylation rate in leukocytes was diminished. Cranial computed tomography showed decreased density in the cerebral white matter. After starting dietary treatment the infant resumed her psychomotor development and the abnormal images previously seen on computed tomography disappeared.
Collapse
|
7
|
Abstract
Three different inherited disorders are known in which thiamine may exert a beneficial effect: maple syrup urine disease (MSUD), lactic acidaemia and the syndrome of megaloblastic anaemia with sensorineural deafness and diabetes mellitus. The amounts of thiamine which were used for long-term treatment varied from 20 to 2400 mg day-1. Additional treatment, such as the reduction of dietary branched chain amino acids in MSUD, could not be omitted in some cases. It has been shown that the vitamin improves the stability of the branched chain ketoacid decarboxylase, although some weeks may be needed to observe the in vivo effect of treatment. A prolonged trial with high doses of thiamine should always be given.
Collapse
|
8
|
|
9
|
Chuang DT, Ku LS, Cox RP. Thiamin-responsive maple-syrup-urine disease: decreased affinity of the mutant branched-chain alpha-keto acid dehydrogenase for alpha-ketoisovalerate and thiamin pyrophosphate. Proc Natl Acad Sci U S A 1982; 79:3300-4. [PMID: 6954481 PMCID: PMC346403 DOI: 10.1073/pnas.79.10.3300] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The biochemical basis for the therapeutic effects of thiamin in thiamin-responsive maple-syrup-urine disease (MSUD) was investigated in intact and disrupted fibroblast cultures from normals and patients with various forms of MSUD. Decarboxylation of alpha-keto[1-14C]isovalerate (KIV) by intact cells from a thiamin-responsive MSUD patient was at 30-40% of the normal rate with or without thiamin in the incubation medium. Under similar conditions, intact classical MSUD fibroblasts failed to decarboxylate KIV. Branched-chain alpha-keto acid (BCKA) dehydrogenase activity measured in disrupted cells from the thiamin-responsive subject showed sigmoidal kinetics in the absence of thiamin pyrophosphate (TPP), with an increased concentration of substrate needed for half-maximal velocity (K0.5 for KIV = 7 mM vs. 0.05 mM in normal cells). When assayed with 0.2 mM TPP present, the mutant enzyme showed (i) a shift in kinetics to near Michaelis-Menten type as observed with the normal BCKA dehydrogenase and (ii) a lower K0.5 value of 4 mM for KIV, suggesting a TPP-mediated increase in the mutant enzyme's affinity for substrate. By contrast, TPP increased only the Vmax and was without effect on the apparent Km for KIV of the BCKA dehydrogenase from cells of normals and patients with classical MSUD and variant thiamin-responsive MSUD (grade 3). Measurement of the apparent Km for TPP of the BCKA dehydrogenase from thiamin-responsive mutant MSUd cells showed a 16-fold increase in the constant to 25 microM compared to enzymes from normal or classical MSUD cells. These findings demonstrate that the primary defect in the thiamin-responsive MSUD patient is a reduced affinity of the mutant BCKA dehydrogenase for TPP that results in impaired oxidative decarboxylation of BCKA.
Collapse
|
10
|
|
11
|
Danner DJ, Lemmon SK, Elsas LJ. Stabilization of mammalian liver branched-chain alpha-ketoacid dehydrogenase by thiamin pyrophosphate. Arch Biochem Biophys 1980; 202:23-8. [PMID: 7396533 DOI: 10.1016/0003-9861(80)90401-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|