1
|
Muri L, Schubart A, Thorburn C, Zamurovic N, Holbro T, Kammüller M, Pluschke G, Ispasanie E. Inhibition of the different complement pathways has varying impacts on the serum bactericidal activity and opsonophagocytosis against Haemophilus influenzae type b. Front Immunol 2022; 13:1020580. [PMID: 36578495 PMCID: PMC9791579 DOI: 10.3389/fimmu.2022.1020580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Defense against Haemophilus influenzae type b (Hib) is dependent on antibodies and complement, which mediate both serum bactericidal activity (SBA) and opsonophagocytosis. Here we evaluated the influence of capsule-specific antibodies and complement inhibitors targeting the central component C3, the alternative pathway (AP; fB, fD), the lectin pathway (LP; MASP-2) and the terminal pathway (C5) on both effector functions. Findings may be relevant for the treatment of certain diseases caused by dysregulation of the complement system, where inhibitors of complement factors C3 or C5 are used. Inhibitors against other complement components are being evaluated as potential alternative treatment options that may carry a reduced risk of infection by encapsulated bacteria. Serum and reconstituted blood of healthy adults were tested for bactericidal activity before and after vaccination with the Hib capsule-conjugate vaccine ActHIB. Most sera had bactericidal activity prior to vaccination, but vaccination significantly enhanced SBA titers. Independently of the vaccination status, both C3 and C5 inhibition abrogated SBA, whereas inhibition of the LP had no effect. AP inhibition had a major inhibitory effect on SBA of pre- vaccination serum, but vaccination mitigated this inhibition for all disease isolates tested. Despite this, SBA-mediated killing of some Hib isolates remained retarded. Even for the most serum-resistant isolate, SBA was the dominating defense mechanism in reconstituted whole blood, as addition of blood cells to the serum did not enhance bacterial killing. Limited Fc receptor-mediated opsonophagocytosis was unmasked when bacterial killing by the membrane attack complex was blocked. In the presence of C3 or C5 inhibitors, addition of post-vaccination, but not of pre-vaccination serum to the blood cells triggered opsonophagocytosis, leading to suppression of bacterial multiplication. Taken together, our data indicate that for host defense against Hib, killing by SBA is more efficient than by blood cell opsonophagocytosis. However, additional defense mechanisms, such as bacterial clearance by spleen and liver, may play an important role in preventing Hib-mediated sepsis, in particular for Hib isolates with increased serum-resistance. Results indicate potentially improved safety profile of AP inhibitors over C3 and C5 inhibitors as alternative therapeutic agents in patients with increased susceptibility to Hib infection.
Collapse
Affiliation(s)
- Lukas Muri
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Anna Schubart
- Department Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Natasa Zamurovic
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas Holbro
- Global Drug Development, Novartis Pharma AG, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gerd Pluschke
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland,*Correspondence: Gerd Pluschke,
| | - Emma Ispasanie
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Circulating C1q levels in health and disease, more than just a biomarker. Mol Immunol 2021; 140:206-216. [PMID: 34735869 DOI: 10.1016/j.molimm.2021.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
C1q is the recognition molecule of the classical pathway of the complement system. By binding to its targets, such as antigen-bound immunoglobulins or C-reactive protein, C1q contributes to the innate defense against infections. However, C1q also plays several other roles beyond its traditional role in complement activation. Circulating levels of C1q are determined in routine diagnostics as biomarker in several diseases. Decreased C1q levels are present in several autoimmune conditions. The decreased levels reflect the consumption of C1q by complement activation and serves as a biomarker for disease activity. In contrast, increased C1q levels are present in infectious and inflammatory diseases and may serve as a diagnostic biomarker. The increased levels of C1q are still incompletely understood but are suggested to modulate the adaptive immune response as C1q is known to impact on the maturation status of antigen-presenting cells and C1q impacts directly on T cells leading to decreased T-cell activity in high C1q conditions. In this review, we provide a comprehensive overview of the current literature on circulating levels of C1q in health and disease, and discuss how C1q can both protect against infections as well as maintain tolerance by regulating adaptive immunity.
Collapse
|
3
|
Snauwaert E, Van Biesen W, Raes A, Glorieux G, Van Bogaert V, Van Hoeck K, Coppens M, Roels S, Vande Walle J, Eloot S. Concentrations of representative uraemic toxins in a healthy versus non-dialysis chronic kidney disease paediatric population. Nephrol Dial Transplant 2019; 33:978-986. [PMID: 28992139 DOI: 10.1093/ndt/gfx224] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/24/2017] [Indexed: 12/18/2022] Open
Abstract
Background Chronic kidney disease (CKD) in childhood is poorly explained by routine markers (e.g. urea and creatinine) and is better depicted in adults by other uraemic toxins. This study describes concentrations of representative uraemic toxins in non-dialysis CKD versus healthy children. Methods In 50 healthy children and 57 children with CKD Stages 1-5 [median estimated glomerular filtration rate 48 (25th-75th percentile 24-71) mL/min/1.73 m2; none on dialysis], serum concentrations of small solutes [symmetric and asymmetric dimethyl-arginine (SDMA and ADMA, respectively)], middle molecules [β2-microglobuline (β2M), complement factor D (CfD)] and protein-bound solutes [p-cresylglucuronide (pCG), hippuric acid (HA), indole-acetic acid (IAA), indoxyl sulphate (IxS), p-cresyl sulphate (pCS) and 3-carboxy-4-methyl-5-propyl-furanpropionic acid (CMPF)] were measured. Concentrations in the CKD group were expressed as z-score relative to controls and matched for age and gender. Results SDMA, CfD, β2M, IxS, pCS, IAA, CMPF and HA concentrations were higher in the overall CKD group compared with controls, ranging from 1.7 standard deviations (SD) for IAA and HA to 11.1 SD for SDMA. SDMA, CfD, β2M, IxS and CMPF in CKD Stages 1-2 with concentrations 4.8, 2.8, 4.5, 1.9 and 1.6 SD higher, respectively. In contrast, pCS, pCG and IAA concentrations were only higher than controls from CKD Stages 3-4 onwards, but only in CKD Stage 5 for ADMA and HA (z-score 2.6 and 20.2, respectively). Conclusions This is the first study to establish reference values for a wide range of uraemic toxins in non-dialysis CKD and healthy children. We observed an accumulation of multiple uraemic toxins, each with a particular retention profile according to the different CKD stages.
Collapse
Affiliation(s)
- Evelien Snauwaert
- Department of Paediatrics and Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wim Van Biesen
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Ann Raes
- Department of Paediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Griet Glorieux
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Valerie Van Bogaert
- Department of Paediatrics and Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Koen Van Hoeck
- Department of Paediatric Nephrology, Antwerp University Hospital, Antwerp, Belgium
| | - Marc Coppens
- Department of Anaesthesiology, Ghent University Hospital, Ghent, Belgium
| | - Sanne Roels
- Department of Data Analysis, Faculty of Psychology and Pedagogy, Ghent University, Ghent, Belgium
| | - Johan Vande Walle
- Department of Paediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Sunny Eloot
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
4
|
Michels MAHM, Volokhina EB, van de Kar NCAJ, van den Heuvel LPWJ. The role of properdin in complement-mediated renal diseases: a new player in complement-inhibiting therapy? Pediatr Nephrol 2019; 34:1349-1367. [PMID: 30141176 PMCID: PMC6579773 DOI: 10.1007/s00467-018-4042-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022]
Abstract
Properdin is known as the only positive regulator of the complement system. Properdin promotes the activity of this defense system by stabilizing its key enzymatic complexes: the complement alternative pathway (AP) convertases. Besides, some studies have indicated a role for properdin as an initiator of complement activity. Though the AP is a powerful activation route of the complement system, it is also involved in a wide variety of autoimmune and inflammatory diseases, many of which affect the kidneys. The role of properdin in regulating complement in health and disease has not received as much appraisal as the many negative AP regulators, such as factor H. Historically, properdin deficiency has been strongly associated with an increased risk for meningococcal disease. Yet only recently had studies begun to link properdin to other complement-related diseases, including renal diseases. In the light of the upcoming complement-inhibiting therapies, it is interesting whether properdin can be a therapeutic target to attenuate AP-mediated injury. A full understanding of the basic concepts of properdin biology is therefore needed. Here, we first provide an overview of the function of properdin in health and disease. Then, we explore its potential as a therapeutic target for the AP-associated renal diseases C3 glomerulopathy, atypical hemolytic uremic syndrome, and proteinuria-induced tubulointerstitial injury. Considering current knowledge, properdin-inhibiting therapy seems promising in certain cases. However, knowing the complexity of properdin's role in renal pathologies in vivo, further research is required to clarify the exact potential of properdin-targeted therapy in complement-mediated renal diseases.
Collapse
Affiliation(s)
- Marloes A. H. M. Michels
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands
| | - Elena B. Volokhina
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands ,Department of Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands
| | - Nicole C. A. J. van de Kar
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands
| | - Lambertus P. W. J. van den Heuvel
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands ,Department of Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands ,Department of Pediatrics/Pediatric Nephrology and Department of Development & Regeneration, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Gaya da Costa M, Poppelaars F, van Kooten C, Mollnes TE, Tedesco F, Würzner R, Trouw LA, Truedsson L, Daha MR, Roos A, Seelen MA. Age and Sex-Associated Changes of Complement Activity and Complement Levels in a Healthy Caucasian Population. Front Immunol 2018; 9:2664. [PMID: 30515158 PMCID: PMC6255829 DOI: 10.3389/fimmu.2018.02664] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/29/2018] [Indexed: 01/03/2023] Open
Abstract
Introduction: The complement system is essential for an adequate immune response. Much attention has been given to the role of complement in disease. However, to better understand complement in pathology, it is crucial to first analyze this system under different physiological conditions. The aim of the present study was therefore to investigate the inter-individual variation in complement activity and the influences of age and sex. Methods: Complement levels and functional activity were determined in 120 healthy volunteers, 60 women, 60 men, age range 20–69 year. Serum functional activity of the classical pathway (CP), lectin pathway activated by mannan (MBL-LP) and alternative pathway (AP) was measured in sera, using deposition of C5b-9 as readout. In addition, levels of C1q, MBL, MASP-1, MASP-2, ficolin-2, ficolin-3, C2, C4, C3, C5, C6, C7, C8, C9, factor B, factor D, properdin, C1-inhibitor and C4b-binding protein, were determined. Age- and sex-related differences were evaluated. Results: Significantly lower AP activity was found in females compared to males. Further analysis of the AP revealed lower C3 and properdin levels in females, while factor D concentrations were higher. MBL-LP activity was not influenced by sex, but MBL and ficolin-3 levels were significantly lower in females compared to males. There were no significant differences in CP activity or CP components between females and males, nevertheless females had significantly lower levels of the terminal components. The CP and AP activity was significantly higher in the elderly, in contrast to MBL-LP activity. Moreover, C1-inhibitor, C5, C8, and C9 increased with age in contrast to a decrease of factor D and C3 levels. In-depth analysis of the functional activity assays revealed that MBL-LP activity was predominantly dependent on MBL and MASP-2 concentration, whereas CP activity relied on C2, C1-inhibitor and C5 levels. AP activity was strongly and directly associated with levels of C3, factor B and C5. Conclusion: This study demonstrated significant sex and age-related differences in complement levels and functionality in the healthy population. Therefore, age and sex analysis should be taken into consideration when discussing complement-related pathologies and subsequent complement-targeted therapies.
Collapse
Affiliation(s)
- Mariana Gaya da Costa
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Felix Poppelaars
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Obstetrics and Gynecology, Martini Hospital, Groningen, Netherlands
| | - Cees van Kooten
- Department of Nephrology, University of Leiden, Leiden University Medical Center, Leiden, Netherlands
| | - Tom E Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Research Laboratory, Bodø Hospital, and K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Francesco Tedesco
- Immunorheumatology Research Laboratory, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Reinhard Würzner
- Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Leendert A Trouw
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Lennart Truedsson
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Mohamed R Daha
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Nephrology, University of Leiden, Leiden University Medical Center, Leiden, Netherlands
| | - Anja Roos
- Department of Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Marc A Seelen
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Brodszki N, Jönsson G, Skattum L, Truedsson L. Primary immunodeficiency in infection-prone children in southern Sweden: occurrence, clinical characteristics and immunological findings. BMC Immunol 2014; 15:31. [PMID: 25318568 PMCID: PMC4159572 DOI: 10.1186/s12865-014-0031-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/04/2014] [Indexed: 11/26/2022] Open
Abstract
Background Primary immunodeficiency diseases (PIDs) comprise a heterogeneous group of disorders mainly characterized by increased susceptibility to infections. The aims of this study were to estimate the occurrence rate of PID in the paediatric (age ≤ 18 years) population of southern Sweden (approx. 265,000 children) and to describe their demographic, clinical and immunological characteristics. During a period of 4 years, in four paediatric speciality clinics in Skåne County in southern Sweden, children being seen for infections and fulfilling specific criteria were evaluated according to a predefined examination schedule. The initial analysis consisted of complete blood counts with analysis of lymphocyte subpopulations (T, B, NK cells), measurement of immunoglobulins (IgG, IgA, IgM, IgE and IgG subclasses), and assessment of the complement system (classical, alternative and lectin pathways). In addition, results of these immunological analyses in other children from the same area and time period were evaluated. Results In total, 259 children (53.6% males) met the criteria and were included. The most common infection was recurrent otitis media. Immunological analyses results for about two thirds of the patients were outside age-related reference intervals. Further examination in this latter group identified 15 children with PID (9 males); 7 (2.7%) had genetically defined PID, representing 4 different diagnoses, and another 8 (3.1%) had a clinically defined PID - common variable immunodeficiency. No additional PID patient was identified from the evaluation of laboratory results in children not included in the study. The median age at diagnosis was 3.5 years (range 1–12 years). Conclusions The occurrence rate of PID was about 4 new cases per year in this population. Several different PID diagnoses were found, and the application of specified criteria to identify PID patients was useful. In children who are prone to infection, the use of a predefined set of immunological laboratory analyses at their first examination was beneficial for early identification of patients with PID.
Collapse
|
7
|
Staley KG, Kuehni CE, Strippoli MPF, McNally T, Silverman M, Stover C. Properdin in childhood and its association with wheezing and atopy. Pediatr Allergy Immunol 2010; 21:e787-91. [PMID: 20337960 DOI: 10.1111/j.1399-3038.2009.00979.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Properdin, a serum glycoprotein, is an important component of innate immunity, the only known positive regulator of complement, acting as an initiation point for alternative pathway activation. As an X-linked protein, we hypothesized that properdin may play a modulatory role in the pathogenesis of viral wheeze in children, which tends to be more common and more severe in boys. We aimed to determine properdin levels in a community-based paediatric sample, and to assess whether levels of properdin were associated with childhood wheeze phenotypes and atopy. We studied 137 school-children aged 8-12 yrs, a nested sample from a cohort study. Properdin was measured by a commercial enzyme-linked immunoabsorbant assay. We assessed wheeze by questionnaire, validated it by a nurse-led interview and performed skin prick tests and a methacholine challenge in all children. Forty children (29%) reported current wheeze. Serum properdin levels ranged between 18 and 40 microg/ml. Properdin was not associated with age, gender, atopy, bronchial responsiveness, current wheeze (neither the viral wheeze nor multiple-trigger wheeze phenotype) or severity of wheeze, but was slightly lower in south Asian (median 21.8 microg/ml) compared with white children (23.3 microg/ml; p = 0.006). Our data make it unlikely that properdin deficiency is common in healthy children or that levels of properdin are a major risk factor for wheeze or atopy.
Collapse
Affiliation(s)
- Kathryn Grace Staley
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | | | | | | | | |
Collapse
|
8
|
Skattum L, Gullstrand B, Holmström E, Oxelius VA, Truedsson L. Serum bactericidal activity against Neisseria meningitidis in patients with C3 nephritic factors is dependent on IgG allotypes. Clin Immunol 2008; 129:123-31. [DOI: 10.1016/j.clim.2008.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 05/26/2008] [Accepted: 06/13/2008] [Indexed: 11/29/2022]
|
9
|
de Paula PF, Barbosa JE, Junior PR, Ferriani VPL, Latorre MRDO, Nudelman V, Isaac L. Ontogeny of complement regulatory proteins - concentrations of factor h, factor I, c4b-binding protein, properdin and vitronectin in healthy children of different ages and in adults. Scand J Immunol 2003; 58:572-7. [PMID: 14629629 DOI: 10.1046/j.1365-3083.2003.01326.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies of human in vivo complement protein levels have only compared data for neonates with that from adult sera. Here, we establish the normal concentration ranges of the following complement regulatory proteins in healthy Brazilian children of different age groups (neonates: 1 month-1 year, 1-6 years and 6-13 years) and in adults: factor H (fH), factor I (fI), C4b-binding protein (C4 BP), properdin and vitronectin. We found that the concentrations of fH, fI, properdin and vitronectin in neonates are significantly lower than in adults. Remarkably, the concentration of C4 BP is below the method resolution (<50 micro g/ml) in 76% of the sera from neonates, while adults presented 199-532 microg/ml of C4 BP in their sera. The concentration of properdin in the sera from neonates and up to 1-year-old children was less than that observed in older children. Adults presented vitronectin levels significantly higher than all the other age groups in the study. No significant sex differences in the concentrations of all the studied regulatory proteins were detected. This study reveals the ontogeny of complement system in greater detail than previously available and may point to the reasons why neonates have higher susceptibility to develop life-threatening pyogenic infections. These reference values will be of use in clinical and laboratory investigations of disorders associated with low levels of these regulatory proteins.
Collapse
Affiliation(s)
- P F de Paula
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Ferriani VP, Barbosa JE, de Carvalho IF. Serum haemolytic classical and alternative pathways of complement in infancy: age-related changes. ACTA PAEDIATRICA SCANDINAVICA 1990; 79:322-7. [PMID: 2333747 DOI: 10.1111/j.1651-2227.1990.tb11464.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The haemolytic activity of complement was evaluated in the serum of healthy children from birth to 2 years of age using the kinetic method for the determination of the time needed to lyse 50% of target red cells (t 1/2). No sex-linked differences were observed in any of the age groups studied and the lowest lytic activity levels for both complement pathways were detected in neonates. The two pathways, however, showed different maturation patterns, i.e., lytic activity levels similar to those of adults were reached between the 1st and 3rd month of life (classical pathway) and around the 13th month (alternative pathway). In the age group of 7 to 24 months, the lytic activity of the classical pathway was higher than in adults. The present data permitted us to establish normal ranges of t 1/2 values for the classical and alternative pathways in serum of healthy neonates and children aged 1 to 24 months.
Collapse
Affiliation(s)
- V P Ferriani
- Department of Paediatrics, Faculty of Medicine of Riberão Preto, University of São Paulo, Brazil
| | | | | |
Collapse
|
11
|
Prellner K, Sjöholm AG, Harsten G, Heldrup J, Kalm O, Kornfält R. C1q and C1 subcomponent complexes in otitis-prone and non-otitis-prone children. A prospective study of children during their first years of life. ACTA PAEDIATRICA SCANDINAVICA 1989; 78:911-7. [PMID: 2603719 DOI: 10.1111/j.1651-2227.1989.tb11174.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Children with recurrent acute otitis media (rAOM) often show reduced C1q concentrations and an excess of (C1r-C1s)2 complexes. It is not known if such C1 aberrations precede development of rAOM or are a consequence of the infections. For this reason, serial investigation of C1q and C1 subcomponent complexes from birth until the age of three was performed in 113 children, 13 of whom developed rAOM. C1q concentrations at birth were found to be lower in the rAOM group than in children who did not experience acute otitis media, and were also correlated with age at the time of the first AOM episode. However, the wide variation of C1q within the groups precluded the use of C1q as a predictive marker. Excess (C1r-C1s)2 complexes were consistently absent at birth. High concentrations were found in children with established otitis media and the complexes persisted in association with recurrent disease. In conclusion, the C1 aberrations characteristic of rAOM were mainly acquired as a result of infection.
Collapse
Affiliation(s)
- K Prellner
- Department of Oto-Rhino-Laryngology, University Hospital, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Sturfelt G, Sjöholm AG, Truedsson L. Influence of factor D concentrations on fluid phase C3 activation, lysis of rabbit erythrocytes and solubilization of immune complexes. Immunol Lett 1989; 20:231-6. [PMID: 2714846 DOI: 10.1016/0165-2478(89)90085-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Factor D depleted serum did not support hemolysis of rabbit erythrocytes and solubilization of performed immune complexes. Fluid phase C3 cleavage increased in a dose dependent manner when D protein was added to normal or to factor D depleted serum. During short incubation factor D concentrations were correlated with the capacity of serum to solubilize immune complexes and to lyse rabbit erythrocytes. With prolonged incubation, the hemolytic activity decreased in a factor D dose dependent manner. This was probably due to fluid phase breakdown of C3 and factor B in the presence of high factor D concentrations. Hypocomplementemic sera from patients with active systemic lupus erythematosus (SLE) did not support solubilization of bovine serum albumin (BSA) anti-BSA complexes when factor D was added in excess. Patients with polycystic kidney disease with reduced renal function and high factor D concentrations showed increased concentrations of circulating C3d/dg fragments. The possibility was considered that high factor D concentrations in uremia might promote fluid phase C3 degradation and thereby limit the in vivo efficiency of alternative pathway activation on target surfaces.
Collapse
Affiliation(s)
- G Sturfelt
- Department of Rheumatology, University Hospital of Lund, Sweden
| | | | | |
Collapse
|