1
|
Sun J, Chong J, Zhang J, Ge L. Preterm pigs for preterm birth research: reasonably feasible. Front Physiol 2023; 14:1189422. [PMID: 37520824 PMCID: PMC10374951 DOI: 10.3389/fphys.2023.1189422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Preterm birth will disrupt the pattern and course of organ development, which may result in morbidity and mortality of newborn infants. Large animal models are crucial resources for developing novel, credible, and effective treatments for preterm infants. This review summarizes the classification, definition, and prevalence of preterm birth, and analyzes the relationship between the predicted animal days and one human year in the most widely used animal models (mice, rats, rabbits, sheep, and pigs) for preterm birth studies. After that, the physiological characteristics of preterm pig models at different gestational ages are described in more detail, including birth weight, body temperature, brain development, cardiovascular system development, respiratory, digestive, and immune system development, kidney development, and blood constituents. Studies on postnatal development and adaptation of preterm pig models of different gestational ages will help to determine the physiological basis for survival and development of very preterm, middle preterm, and late preterm newborns, and will also aid in the study and accurate optimization of feeding conditions, diet- or drug-related interventions for preterm neonates. Finally, this review summarizes several accepted pediatric applications of preterm pig models in nutritional fortification, necrotizing enterocolitis, neonatal encephalopathy and hypothermia intervention, mechanical ventilation, and oxygen therapy for preterm infants.
Collapse
Affiliation(s)
- Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Jie Chong
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| |
Collapse
|
2
|
Adjerid K, Mayerl CJ, Gould FDH, Edmonds CE, Stricklen BM, Bond LE, German RZ. Does birth weight affect neonatal body weight, growth, and physiology in an animal model? PLoS One 2021; 16:e0246954. [PMID: 33592070 PMCID: PMC7886147 DOI: 10.1371/journal.pone.0246954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/28/2021] [Indexed: 02/03/2023] Open
Abstract
Infant birth weight affects neuromotor and biomechanical swallowing performance in infant pig models. Preterm infants are generally born low birth weight and suffer from delayed development and neuromotor deficits. These deficits include critical life skills such as swallowing and breathing. It is unclear whether these neuromotor and biomechanical deficits are a result of low birth weight or preterm birth. In this study we ask: are preterm infants simply low birth weight infants or do preterm infants differ from term infants in weight gain and swallowing behaviors independent of birth weight? We use a validated infant pig model to show that preterm and term infants gain weight differently and that birth weight is not a strong predictor of functional deficits in preterm infant swallowing. We found that preterm infants gained weight at a faster rate than term infants and with nearly three times the variation. Additionally, we found that the number of sucks per swallow, swallow duration, and the delay of the swallows relative to the suck cycles were not impacted by birth weight. These results suggest that any correlation of developmental or swallowing deficits with reduced birth weight are likely linked to underlying physiological immaturity of the preterm infant.
Collapse
Affiliation(s)
- Khaled Adjerid
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- * E-mail:
| | - Christopher J. Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Francois D. H. Gould
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey, United States of America
| | - Chloe E. Edmonds
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Bethany M. Stricklen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Laura E. Bond
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Rebecca Z. German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| |
Collapse
|
3
|
Lau C. To Individualize the Management Care of High-Risk Infants With Oral Feeding Challenges: What Do We Know? What Can We Do? Front Pediatr 2020; 8:296. [PMID: 32582596 PMCID: PMC7297031 DOI: 10.3389/fped.2020.00296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
The increase in preterm infants' survival over the last 30 years has shed light over their inability to feed by mouth safely and efficiently. With adverse events such as increased risks for oxygen desaturation, bradycardia, penetration/aspiration, infants' hospitalization in neonatal intensive care units (NICUs) are understandably prolonged. Unfortunately, this leads to delayed mother-infant reunion, maternal stress, breastfeeding obstacles, and increased medical costs. Such impediments have stimulated clinicians and researchers to better understand the underlying causes and develop evidence-based solutions to assist these infants. However, it is notable that the research-to-practice translation of this knowledge has been limited as there are still no validated guidelines or protocols as how to best diagnose and care for these infants. This report revisits the immature physiologic functions at the root of these infants' oral feeding difficulties, the current practices, and the recent availability of evidence-based efficacious tools and interventions. Taking advantage of the latter, it presents a renewed perspective of how management strategies can be tailored to the specific needs of individual patients.
Collapse
Affiliation(s)
- Chantal Lau
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
4
|
Mayerl CJ, Myrla AM, Gould FDH, Bond LE, Stricklen BM, German RZ. Swallow Safety is Determined by Bolus Volume During Infant Feeding in an Animal Model. Dysphagia 2020; 36:120-129. [PMID: 32328794 DOI: 10.1007/s00455-020-10118-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
Feeding difficulties are especially prevalent in preterm infants, although the mechanisms driving these difficulties are poorly understood due to a lack of data on healthy infants. One potential mechanism of dysphagia in adults is correlated with bolus volume. Yet, whether and how bolus volume impacts swallow safety in infant feeding is unknown. A further complication for safe infant swallowing is recurrent laryngeal nerve (RLN) injury due to patent ductus arteriosus surgery, which exacerbates the issues that preterm infants face and can increase the risk of dysphagia. Here, we used a validated animal model feeding freely to test the effect of preterm birth, postnatal maturation and RLN lesion and their interactions on swallow safety. We also tested whether bolus size differed with lesion or birth status, and the relationship between bolus size and swallow safety. We found very little effect of lesion on swallow safety, and preterm infants did not experience more penetration or aspiration than term infants. However, term infants swallowed larger boluses than preterm infants, even after correcting for body size. Bolus size was the primary predictor of penetration or aspiration, with larger boluses being more likely to result in greater degrees of dysphagia irrespective of age or lesion status. These results highlight that penetration and aspiration are likely normal occurrences in infant feeding. Further, when comorbidities, such as RLN lesion or preterm birth are present, limiting bolus size may be an effective means to reduce incidences of penetration and aspiration.
Collapse
Affiliation(s)
- Christopher J Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, 44272, USA.
| | - Alexis M Myrla
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, 44272, USA
| | - Francois D H Gould
- Department of Cell Biology and Neuroscience, Rowan School of Osteopathic Medicine, Stratford, NJ, USA
| | - Laura E Bond
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, 44272, USA
| | - Bethany M Stricklen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, 44272, USA
| | - Rebecca Z German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, 44272, USA
| |
Collapse
|
5
|
Mayerl CJ, Myrla AM, Bond LE, Stricklen BM, German RZ, Gould FDH. Premature birth impacts bolus size and shape through nursing in infant pigs. Pediatr Res 2020; 87:656-661. [PMID: 31645052 PMCID: PMC7082200 DOI: 10.1038/s41390-019-0624-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 09/29/2019] [Indexed: 11/13/2022]
Abstract
BACKGROUND The formation of a bolus of food is critical for proper feeding function, and there is substantial variation in the size and shape of a bolus prior to a swallow. Preterm infants exhibit decreased abilities to acquire and process food, but how that relates to their bolus size and shape is unknown. Here, we test two hypotheses: (1) that bolus size and shape will differ between term and preterm infants, and (2) bolus size and shape will change longitudinally through development in both term and preterm infants. METHODS To test these hypotheses, we measured bolus size and shape in preterm and term infant pigs longitudinally through nursing using high-speed videofluoroscopy. RESULTS Preterm infant pigs swallowed smaller volumes of milk. Although term infants increased the amount of milk per swallow as they aged, preterm infants did not. These changes in bolus volume were also correlated with changes in bolus shape; larger boluses became more elongate as they better filled the available anatomical space of the valleculae. CONCLUSIONS These results suggest that preterm birth reduces the ability of preterm pigs to increase bolus size as they grow, affecting development in this fragile population. These results highlight that studies on term infant feeding may not translate to preterm infants.
Collapse
Affiliation(s)
- Christopher J Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, 44272, USA.
| | - Alexis M Myrla
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, 44272, USA
| | - Laura E Bond
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, 44272, USA
| | - Bethany M Stricklen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, 44272, USA
| | - Rebecca Z German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, 44272, USA
| | - Francois D H Gould
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, 44272, USA
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 East Laurel Road, Stratford, NJ, 08084, USA
| |
Collapse
|
6
|
Ballester A, Gould F, Bond L, Stricklen B, Ohlemacher J, Gross A, DeLozier K, Buddington R, Buddington K, Danos N, German R. Maturation of the Coordination Between Respiration and Deglutition with and Without Recurrent Laryngeal Nerve Lesion in an Animal Model. Dysphagia 2018; 33:627-635. [PMID: 29476275 DOI: 10.1007/s00455-018-9881-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/15/2018] [Indexed: 01/02/2023]
Abstract
The timing of the occurrence of a swallow in a respiratory cycle is critical for safe swallowing, and changes with infant development. Infants with damage to the recurrent laryngeal nerve, which receives sensory information from the larynx and supplies the intrinsic muscles of the larynx, experience a significant incidence of dysphagia. Using our validated infant pig model, we determined the interaction between this nerve damage and the coordination between respiration and swallowing during postnatal development. We recorded 23 infant pigs at two ages (neonatal and older, pre-weaning) feeding on milk with barium using simultaneous high-speed videofluoroscopy and measurements of thoracic movement. With a complete linear model, we tested for changes with maturation, and whether these changes are the same in control and lesioned individuals. We found (1) the timing of swallowing and respiration coordination changes with maturation; (2) no overall effect of RLN lesion on the timing of coordination, but (3) a greater magnitude of maturational change occurs with RLN injury. We also determined that animals with no surgical intervention did not differ from animals that had surgery for marker placement and a sham procedure for nerve lesion. The coordination between respiration and swallowing changes in normal, intact individuals to provide increased airway protection prior to weaning. Further, in animals with an RLN lesion, the maturation process has a larger effect. Finally, these results suggest a high level of brainstem sensorimotor interactions with respect to these two functions.
Collapse
Affiliation(s)
- Ashley Ballester
- Department of Anatomy and Neurobiology, NEOMED, Rootstown, OH, 44272, USA.,Division of Obstetrics and Gynecology, Akron General Hospital, Akron, OH, USA
| | - François Gould
- Department of Anatomy and Neurobiology, NEOMED, Rootstown, OH, 44272, USA
| | - Laura Bond
- Department of Anatomy and Neurobiology, NEOMED, Rootstown, OH, 44272, USA
| | - Bethany Stricklen
- Department of Anatomy and Neurobiology, NEOMED, Rootstown, OH, 44272, USA
| | - Jocelyn Ohlemacher
- Department of Anatomy and Neurobiology, NEOMED, Rootstown, OH, 44272, USA
| | - Andrew Gross
- Department of Anatomy and Neurobiology, NEOMED, Rootstown, OH, 44272, USA
| | - Katherine DeLozier
- Department of Anatomy and Neurobiology, NEOMED, Rootstown, OH, 44272, USA
| | - Randall Buddington
- School of Health Studies, University of Memphis, Memphis, TN, 38152, USA
| | - Karyl Buddington
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA
| | | | - Rebecca German
- Department of Anatomy and Neurobiology, NEOMED, Rootstown, OH, 44272, USA.
| |
Collapse
|
7
|
Maturation Modulates Pharyngeal-Stimulus Provoked Pharyngeal and Respiratory Rhythms in Human Infants. Dysphagia 2017; 33:63-75. [PMID: 28828751 DOI: 10.1007/s00455-017-9833-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/04/2017] [Indexed: 10/19/2022]
Abstract
Pharyngeal-provocation induced aerodigestive symptoms in infants remain an enigma. Sources of pharyngeal provocation can be anterograde as with feeding, and retrograde as in gastroesophageal reflux. We determined maturational and dose-response effects of targeted pharyngeal-stimulus on frequency, stability, and magnitude of pharyngeal and respiratory waveforms during multiple pharyngeal swallowing responses in preterm-born infants when they were of full-term postmenstrual age (PMA). Eighteen infants (11 male) were studied longitudinally at 39.8 ± 4.8 weeks PMA (time-1) and 44.1 ± 5.8 weeks PMA (time-2). Infants underwent concurrent pharyngo-esophageal manometry, respiratory inductance plethysmography, and nasal airflow thermistor methods to test sensory-motor interactions between the pharynx, esophagus, and airway. Linear mixed models were used and data presented as mean ± SEM or %. Overall, responses to 250 stimuli were analyzed. Of the multiple pharyngeal swallowing responses (n = 160), with maturation (a) deglutition apnea duration decreases (p < 0.01), (b) number of pharyngeal waveform peaks and duration decreases for initial responses (p < 0.01), and subsequent responses have lesser variation and greater stability (p < 0.01). With increment in stimulus volumes we noted (a) increased prevalence (%) of pharyngeal responses (p < 0.05), (b) increased number of pharyngeal peaks (p < 0.05), yet pharyngeal frequency (Hz), variability, and stability remain unaffected (p > 0.05), and (c) respiratory changes were unaffected (p > 0.05). Initial and subsequent pharyngeal responses and respiratory rhythm interactions become more distinct with maturation. Interval oromotor experiences and volume-dependent increase in adaptive responses may be contributory. These mechanisms may be important in modulating and restoring respiratory rhythm normalcy.
Collapse
|
8
|
Abstract
The hospital discharge of premature infants in neonatal intensive care units is often delayed due to their inability to feed by mouth safely and competently. With immature physiologic functions, infants born prematurely cannot be expected to readily feed by mouth at the equivalent age of a third trimester of gestation as the majority of their term counterparts do. Consequently, it is crucial that health care professionals gain an adequate knowledge of the development of preterm infants' oral feeding skills so as to optimize their safety and competency as they transition to oral feeding. With a greater sensitivity toward their immature skills, we can offer these infants a safer and smoother transition to independent oral feeding than is currently observed. This review article is an overview of the evidence-based research undertaken over the past 2 decades on the development of very-low-birth-weight infants' oral feeding skills. The description of the different functional levels where these infants can encounter hurdles may assist caregivers in identifying a potential cause or causes for their individual patients' oral feeding difficulties.
Collapse
Affiliation(s)
- Chantal Lau
- Department of Pediatrics/Neonatology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
9
|
Gould FDH, Lammers AR, Ohlemacher J, Ballester A, Fraley L, Gross A, German RZ. The Physiologic Impact of Unilateral Recurrent Laryngeal Nerve (RLN) Lesion on Infant Oropharyngeal and Esophageal Performance. Dysphagia 2015; 30:714-22. [PMID: 26285799 PMCID: PMC4639401 DOI: 10.1007/s00455-015-9648-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/10/2015] [Indexed: 12/27/2022]
Abstract
Recurrent laryngeal nerve (RLN) injury in neonates, a complication of patent ductus arteriosus corrective surgery, leads to aspiration and swallowing complications. Severity of symptoms and prognosis for recovery are variable. We transected the RLN unilaterally in an infant mammalian animal model to characterize the degree and variability of dysphagia in a controlled experimental setting. We tested the hypotheses that (1) both airway protection and esophageal function would be compromised by lesion, (2) given our design, variability between multiple post-lesion trials would be minimal, and (3) variability among individuals would be minimal. Individuals' swallowing performance was assessed pre- and post-lesion using high speed VFSS. Aspiration was assessed using the Infant Mammalian Penetration-Aspiration Scale (IMPAS). Esophageal function was assessed using two measures devised for this study. Our results indicate that RLN lesion leads to increased frequency of aspiration, and increased esophageal dysfunction, with significant variation in these basic patterns at all levels. On average, aspiration worsened with time post-lesion. Within a single feeding sequence, the distribution of unsafe swallows varied. Individuals changed post-lesion either by increasing average IMPAS score, or by increasing variation in IMPAS score. Unilateral RLN transection resulted in dysphagia with both compromised airway protection and esophageal function. Despite consistent, experimentally controlled injury, significant variation in response to lesion remained. Aspiration following RLN lesion was due to more than unilateral vocal fold paralysis. We suggest that neurological variation underlies this pattern.
Collapse
Affiliation(s)
- Francois D H Gould
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, 44272, USA.
| | - Andrew R Lammers
- School of Health Sciences, Cleveland State University, Cleveland, OH, USA
| | - Jocelyn Ohlemacher
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, 44272, USA
| | - Ashley Ballester
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, 44272, USA
| | - Luke Fraley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, 44272, USA
| | - Andrew Gross
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, 44272, USA
| | - Rebecca Z German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, 44272, USA
| |
Collapse
|
10
|
Lau C. Development of Suck and Swallow Mechanisms in Infants. ANNALS OF NUTRITION & METABOLISM 2015; 66 Suppl 5:7-14. [PMID: 26226992 PMCID: PMC4530609 DOI: 10.1159/000381361] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Preterm infants' hospital discharge is often delayed due to their inability to feed by mouth safely and competently. No evidence-based supported guidelines are currently available for health-care professionals caring for these infants. Available interventions advocating benefits are not readily acknowledged for lack of rigorous documentation inasmuch as any improvements may ensue from infants' normal maturation. Through research, a growing understanding of the development of nutritive sucking skills has emerged, shedding light on how and why infants may encounter oral feeding difficulties due to the immaturity of specific physiologic functions. Unfortunately, this knowledge has yet to be translated to the clinical practice to improve the diagnoses of oral feeding problems through the development of relevant assessment tools and to enhance infants' oral feeding skills through the development of efficacious preventive and therapeutic interventions. This review focuses on the maturation of the various physiologic functions implicated in the transport of a bolus from the oral cavity to the stomach. Although infants' readiness for oral feeding is deemed attained when suck, swallow, and respiration are coordinated, we do not have a clear definition of what coordination implies. We have learned that each of these functions encompasses a number of elements that mature at different times and rates. Consequently, it would appear that the proper functioning of sucking, the swallow processing, and respiration need to occur at two levels: first, the elements within each function must reach an appropriate functional maturation that can work in synchrony with each other to generate an appropriate suck, swallow process, and respiration; and second, the elements of all these distinct functions, in turn, must be able to do the same at an integrative level to ensure the safe and efficient transport of a bolus from the mouth to the stomach.
Collapse
Affiliation(s)
- Chantal Lau
- Department of Pediatrics/Neonatology, Baylor College of Medicine, Houston, Tex., USA
| |
Collapse
|
11
|
Lin X, Jacobi S, Odle J. Transplacental induction of fatty acid oxidation in term fetal pigs by the peroxisome proliferator-activated receptor alpha agonist clofibrate. J Anim Sci Biotechnol 2015; 6:11. [PMID: 25883783 PMCID: PMC4399351 DOI: 10.1186/s40104-015-0010-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/10/2015] [Indexed: 12/23/2022] Open
Abstract
Background To induce peroxisomal proliferator-activated receptor α (PPARα) expression and increase milk fat utilization in pigs at birth, the effect of maternal feeding of the PPARα agonist, clofibrate (2-(4-chlorophenoxy)-2-methyl-propanoic acid, ethyl ester), on fatty acid oxidation was examined at full-term delivery (0 h) and 24 h after delivery in this study. Each group of pigs (n = 10) was delivered from pregnant sows fed a commercial diet with or without 0.8% clofibrate for the last 7 d of gestation. Blood samples were collected from the utero-ovarian artery of the sows and the umbilical cords of the pigs as they were removed from the sows by C-section on day 113 of gestation. Results HPLC analysis identified that clofibric acid was present in the plasma of the clofibrate-fed sow (~4.2 μg/mL) and its offspring (~1.5 μg/mL). Furthermore, the maternal-fed clofibrate had no impact on the liver weight of the pigs at 0 h and 24 h, but hepatic fatty acid oxidation examined in fresh homogenates showed that clofibrate increased (P < 0.01) 14C-accumulation in CO2 and acid soluble products 2.9-fold from [1-14C]-oleic acid and 1.6-fold from [1-14C]-lignoceric acid respectively. Correspondingly, clofibrate increased fetal hepatic carnitine palmitoyltransferase (CPT) and acyl-CoA oxidase (ACO) activities by 36% and 42% over controls (P < 0.036). The mRNA abundance of CPT I was 20-fold higher in pigs exposed to clofibrate (P < 0.0001) but no differences were detected for ACO and PPARα mRNA between the two groups. Conclusion These data demonstrate that dietary clofibrate is absorbed by the sow, crosses the placental membrane, and enters fetal circulation to induce hepatic fatty acid oxidation by increasing the CPT and ACO activities of the newborn.
Collapse
Affiliation(s)
- Xi Lin
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Box 7621, Raleigh, NC 27695 USA
| | - Sheila Jacobi
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Box 7621, Raleigh, NC 27695 USA
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Box 7621, Raleigh, NC 27695 USA
| |
Collapse
|
12
|
Jantzie LL, Robinson S. Preclinical Models of Encephalopathy of Prematurity. Dev Neurosci 2015; 37:277-88. [PMID: 25722056 DOI: 10.1159/000371721] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
Encephalopathy of prematurity (EoP) encompasses the central nervous system (CNS) abnormalities associated with injury from preterm birth. Although rapid progress is being made, limited understanding exists of how cellular and molecular CNS injury from early birth manifests as the myriad of neurological deficits in children who are born preterm. More importantly, this lack of direct insight into the pathogenesis of these deficits hinders both our ability to diagnose those infants who are at risk in real time and could potentially benefit from treatment and our ability to develop more effective interventions. Current barriers to clarifying the pathophysiology, developmental trajectory, injury timing, and evolution include preclinical animal models that only partially recapitulate the molecular, cellular, histological, and functional abnormalities observed in the mature CNS following EoP. Inflammation from hypoxic-ischemic and/or infectious injury induced in utero in lower mammals, or actual prenatal delivery of more phylogenetically advanced mammals, are likely to be the most clinically relevant EOP models, facilitating translation to benefit infants. Injury timing, type, severity, and pathophysiology need to be optimized to address the specific hypothesis being tested. Functional assays of the mature animal following perinatal injury to mimic EoP should ideally test for the array of neurological deficits commonly observed in preterm infants, including gait, seizure threshold and cognitive and behavioral abnormalities. Here, we review the merits of various preclinical models, identify gaps in knowledge that warrant further study and consider challenges that animal researchers may face in embarking on these studies. While no one model system is perfect, insights relevant to the clinical problem can be gained with interpretation of experimental results within the context of inherent limitations of the chosen model system. Collectively, optimal use of multiple models will address a major challenge facing the field today - to identify the type and severity of CNS injury these vulnerable infants suffer in a safe and timely manner, such that emerging neurointerventions can be tailored to specifically address individual reparative needs.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Pediatrics, University of New Mexico, Albuquerque, N. Mex., USA
| | | |
Collapse
|
13
|
Sangild PT, Ney DM, Sigalet DL, Vegge A, Burrin D. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: translational relevance and challenges. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1147-68. [PMID: 25342047 PMCID: PMC4269678 DOI: 10.1152/ajpgi.00088.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal failure (IF), due to short bowel syndrome (SBS), results from surgical resection of a major portion of the intestine, leading to reduced nutrient absorption and need for parenteral nutrition (PN). The incidence is highest in infants and relates to preterm birth, necrotizing enterocolitis, atresia, gastroschisis, volvulus, and aganglionosis. Patient outcomes have improved, but there is a need to develop new therapies for SBS and to understand intestinal adaptation after different diseases, resection types, and nutritional and pharmacological interventions. Animal studies are needed to carefully evaluate the cellular mechanisms, safety, and translational relevance of new procedures. Distal intestinal resection, without a functioning colon, results in the most severe complications and adaptation may depend on the age at resection (preterm, term, young, adult). Clinically relevant therapies have recently been suggested from studies in preterm and term PN-dependent SBS piglets, with or without a functional colon. Studies in rats and mice have specifically addressed the fundamental physiological processes underlying adaptation at the cellular level, such as regulation of mucosal proliferation, apoptosis, transport, and digestive enzyme expression, and easily allow exogenous or genetic manipulation of growth factors and their receptors (e.g., glucagon-like peptide 2, growth hormone, insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor). The greater size of rats, and especially young pigs, is an advantage for testing surgical procedures and nutritional interventions (e.g., PN, milk diets, long-/short-chain lipids, pre- and probiotics). Conversely, newborn pigs (preterm or term) and weanling rats provide better insights into the developmental aspects of treatment for SBS in infants owing to their immature intestines. The review shows that a balance among practical, economical, experimental, and ethical constraints will determine the choice of SBS model for each clinical or basic research question.
Collapse
Affiliation(s)
- Per T. Sangild
- 1Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; ,2Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark;
| | - Denise M. Ney
- 3Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin;
| | | | - Andreas Vegge
- 1Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; ,5Diabetes Pharmacology, Novo Nordisk, Måløv, Denmark; and
| | - Douglas Burrin
- 6USDA-ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
14
|
Elitt CM, Rosenberg PA. The challenge of understanding cerebral white matter injury in the premature infant. Neuroscience 2014; 276:216-38. [PMID: 24838063 DOI: 10.1016/j.neuroscience.2014.04.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 12/18/2022]
Abstract
White matter injury in the premature infant leads to motor and more commonly behavioral and cognitive problems that are a tremendous burden to society. While there has been much progress in understanding unique vulnerabilities of developing oligodendrocytes over the past 30years, there remain no proven therapies for the premature infant beyond supportive care. The lack of translational progress may be partially explained by the challenge of developing relevant animal models when the etiology remains unclear, as is the case in this disorder. There has been an emphasis on hypoxia-ischemia and infection/inflammation as upstream etiologies, but less consideration of other contributory factors. This review highlights the evolution of white matter pathology in the premature infant, discusses the prevailing proposed etiologies, critically analyzes a sampling of common animal models and provides detailed support for our hypothesis that nutritional and hormonal deprivation may be additional factors playing critical and overlooked roles in white matter pathology in the premature infant.
Collapse
Affiliation(s)
- C M Elitt
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - P A Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Sangild PT, Thymann T, Schmidt M, Stoll B, Burrin DG, Buddington RK. Invited review: the preterm pig as a model in pediatric gastroenterology. J Anim Sci 2013; 91:4713-29. [PMID: 23942716 DOI: 10.2527/jas.2013-6359] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At birth, the newborn mammal undergoes a transition from a sterile uterine environment with a constant nutrient supply, to a microbe-rich environment with intermittent oral intake of complex milk nutrients via the gastrointestinal tract (GIT). These functional challenges partly explain the relatively high morbidity and mortality of neonates. Preterm birth interrupts prenatal organ maturation, including that of the GIT, and increases disease risk. Exemplary is necrotizing enterocolitis (NEC), which is associated closely with GIT immaturity, enteral feeding, and bacterial colonization. Infants with NEC may require resection of the necrotic parts of the intestine, leading to short bowel syndrome (SBS), characterized by reduced digestive capacity, fluid loss, and dependency on parenteral nutrition. This review presents the preterm pig as a translational model in pediatric gastroenterology that has provided new insights into important pediatric diseases such as NEC and SBS. We describe protocols for delivery, care, and handling of preterm pigs, and show how the immature GIT responds to delivery method and different nutritional and therapeutic interventions. The preterm pig may also provide a sensitive model for postnatal adaptation of weak term piglets showing high mortality. Attributes of the preterm pig model include close similarities with preterm infants in body size, organ development, and many clinical features, thereby providing a translational advantage relative to rodent models of GIT immaturity. On the other hand, the need for a sow surgical facility, a piglet intensive care unit, and clinically trained personnel may limit widespread use of preterm pigs. Studies on organ adaptation in preterm pigs help to identify the physiological basis of neonatal survival for hypersensitive newborns and aid in defining the optimal diet and rearing conditions during the critical neonatal period.
Collapse
Affiliation(s)
- P T Sangild
- Department of Nutrition, Exercise, and Sports
| | | | | | | | | | | |
Collapse
|