Antón LC, Alcolea JM, Sánchez-Corral P, Marqués G, Sánchez A, Vivanco F. C3 binds covalently to the C gamma 3 domain of IgG immune aggregates during complement activation by the alternative pathway.
Biochem J 1989;
257:831-8. [PMID:
2784671 PMCID:
PMC1135663 DOI:
10.1042/bj2570831]
[Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ovalbumin-antiovalbumin IgG immune aggregates were incubated with normal human serum in the presence of iodo[1-14C]acetamide, in conditions in which only the alternative pathway of complement was activated. The [14C]C3b-IgG covalent complexes formed were digested with pepsin, and analysed by SDS/polyacrylamide-gel electrophoresis and fluorography. Covalent complexes of [14C]C3-Fd and [14C]C3-pFc' were visualized, demonstrating that, during complement activation by the alternative pathway, C3 is covalently incorporated into the C gamma 3 domain of IgG, as well as into the Fd region. The C gamma 2 domain becomes protected from pepsin action by the bound C3b. All the covalent linkages between C3 and the IgG were sensitive to hydroxylamine. When [14C]C3-pFc' covalent complexes were treated with 1 M-NH2OH and loaded onto a Bio-Gel P-4 column, a radioactive peak of 3 kDa was obtained. The material released from [14C]C3-pFc' and [14C]C3-F(ab')2 complexes after treatment with 1 M-NH2OH was mixed and analysed in the Bio-Gel P-4 column. A similar radioactive peak of 3 kDa was obtained. When this peak, either from [14C]C3-pFc' alone or from the mixture of [14C]C3-F(ab')2 and [14C]C3-pFc', was fractionated by h.p.l.c., virtually the same radioactive peptide profile was obtained, indicating that very similar C3 peptides remained covalently bound to both regions (Fab and C gamma 3) of the antibody molecule. It is suggested that C3 bound to the C gamma 3 domain of IgG may interfere with the Fc-Fc interactions of immune aggregates and thus may be involved in several biological properties displayed by these complement-activating aggregates.
Collapse