1
|
Bosveld CJ, Guth C, Limjunyawong N, Pundir P. Emerging Role of the Mast Cell-Microbiota Crosstalk in Cutaneous Homeostasis and Immunity. Cells 2023; 12:2624. [PMID: 37998359 PMCID: PMC10670560 DOI: 10.3390/cells12222624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The skin presents a multifaceted microbiome, a balanced coexistence of bacteria, fungi, and viruses. These resident microorganisms are fundamental in upholding skin health by both countering detrimental pathogens and working in tandem with the skin's immunity. Disruptions in this balance, known as dysbiosis, can lead to disorders like psoriasis and atopic dermatitis. Central to the skin's defense system are mast cells. These are strategically positioned within the skin layers, primed for rapid response to any potential foreign threats. Recent investigations have started to unravel the complex interplay between these mast cells and the diverse entities within the skin's microbiome. This relationship, especially during times of both balance and imbalance, is proving to be more integral to skin health than previously recognized. In this review, we illuminate the latest findings on the ties between mast cells and commensal skin microorganisms, shedding light on their combined effects on skin health and maladies.
Collapse
Affiliation(s)
- Cameron Jackson Bosveld
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| | - Colin Guth
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| | - Nathachit Limjunyawong
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Priyanka Pundir
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| |
Collapse
|
2
|
Magnan A, Nicolas JF, Caimmi D, Vocanson M, Haddad T, Colas L, Scurati S, Mascarell L, Shamji MH. Deciphering Differential Behavior of Immune Responses as the Foundation for Precision Dosing in Allergen Immunotherapy. J Pers Med 2023; 13:jpm13020324. [PMID: 36836557 PMCID: PMC9964800 DOI: 10.3390/jpm13020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Like in many fields of medicine, the concept of precision dosing has re-emerged in routine practice in allergology. Only one retrospective study on French physicians' practice has addressed this topic so far and generated preliminary data supporting dose adaptation, mainly based on experience, patient profile understanding and response to treatment. Both intrinsic and extrinsic factors shape the individual immune system response to allergen immunotherapy (AIT). Herein, we focus on key immune cells (i.e., dendritic cells, innate lymphoid cells, B and T cells, basophils and mast cells) involved in allergic disease and its resolution to further understand the effect of AIT on the phenotype, frequency or polarization of these cells. We strive to discriminate differences in immune responses between responders and non-responders to AIT, and discuss the eligibility of a non/low-responder subset for dose adaptation. A differential behavior in immune cells is clearly observed in responders, highlighting the importance of conducting clinical trials with large cohorts of well-characterized subjects to decipher the immune mechanism of AIT. We conclude that there is a need for designing new clinical and mechanistic studies to support the scientific rationale of dose adaptation in the interest of patients who do not properly respond to AIT.
Collapse
Affiliation(s)
- Antoine Magnan
- INRAe UMR 0892, Hôpital Foch, Université de Versailles Saint Quentin, Paris-Saclay, 92150 Suresnes, France
| | - Jean-François Nicolas
- CIRI-International Center for Infectiology Research, INSERM U1111, Lyon1 University, Ecole Normale Supérieure de Lyon, CNRS, UMR 5308, 69007 Lyon, France
| | - Davide Caimmi
- Allergy Unit, Department Respiratory Medicine and Allergy, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, 34090 Montpellier, France
| | - Marc Vocanson
- CIRI-International Center for Infectiology Research, INSERM U1111, Lyon1 University, Ecole Normale Supérieure de Lyon, CNRS, UMR 5308, 69007 Lyon, France
| | - Thierry Haddad
- Dermatology, Allergology and Vascular Medicine, Tenon Hospital, 75020 Paris, France
| | - Luc Colas
- Plateforme Transversale d’Allergologie, Clinique Dermatologique, CHU de Nantes, 44093 Nantes, France
- UMR 1064, Center for Research in Transplantation and Translational Immunology, INSERM, Nantes Université, 44093 Nantes, France
| | - Silvia Scurati
- Stallergenes Greer, 92160 Antony, France
- Correspondence: ; Tel.: +33-(0)-6-12-88-40-93
| | | | - Mohamed H. Shamji
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, UK
- NIHR Imperial Biomedical Research Centre, London W2 1NY, UK
| |
Collapse
|
3
|
Beneficial Effects of Limosilactobacillus fermentum in the DCA Experimental Model of Irritable Bowel Syndrome in Rats. Nutrients 2022; 15:nu15010024. [PMID: 36615683 PMCID: PMC9824399 DOI: 10.3390/nu15010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Limosilactobacillus fermentum CECT5716, a probiotic strain isolated from human milk, has reported beneficial effects on different gastrointestinal disorders. Moreover, it has shown its ability to restore altered immune responses, in association with microbiome modulation in different pathological conditions. Therefore, our aim was to assess the effects of a Limosilacbacillus fermentum CECT5716 in a rat experimental model of irritable bowel syndrome (IBS) that resembles human IBS. The experimental IBS was induced by deoxycholic acid (DCA) in rats and then, Limosilactobacillus fermentum CECT5716 (109 CFU/day/rat) was administered. Behavioral studies, hyperalgesia and intestinal hypersensitivity determinations were performed and the impact of the probiotic on the inflammatory and intestinal barrier integrity was evaluated. Additionally, the gut microbiota composition was analyzed. Limosilactobacillus fermentum CECT5716 attenuated the anxiety-like behavior as well as the visceral hypersensitivity and referred pain. Moreover, this probiotic ameliorated the gut inflammatory status, re-establishing the altered intestinal permeability, reducing the mast cell degranulation and re-establishing the gut dysbiosis in experimental IBS. Therefore, our results suggest a potential use of Limosilactobacillus fermentum CECT5716 in clinical practice for the management of IBS patients.
Collapse
|
4
|
Bhuiyan P, Chen Y, Karim M, Dong H, Qian Y. Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Res Bull 2021; 172:61-78. [PMID: 33892083 DOI: 10.1016/j.brainresbull.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/02/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Although the global incidence of neurodegenerative diseases has been steadily increasing, especially in adults, there are no effective therapeutic interventions. Neurodegeneration is a heterogeneous group of disorders that is characterized by the activation of immune cells in the central nervous system (CNS) (e.g., mast cells and microglia) and subsequent neuroinflammation. Mast cells are found in the brain and the gastrointestinal tract and play a role in "tuning" neuroimmune responses. The complex bidirectional communication between mast cells and gut microbiota coordinates various dynamic neuro-cellular responses, which propagates neuronal impulses from the gastrointestinal tract into the CNS. Numerous inflammatory mediators from degranulated mast cells alter intestinal gut permeability and disrupt blood-brain barrier, which results in the promotion of neuroinflammatory processes leading to neurological disorders, thereby offsetting the balance in immune-surveillance. Emerging evidence supports the hypothesis that gut-microbiota exert a pivotal role in inflammatory signaling through the activation of immune and inflammatory cells. Communication between inflammatory cytokines and neurocircuits via the gut-brain axis (GBA) affects behavioral responses, activates mast cells and microglia that causes neuroinflammation, which is associated with neurological diseases. In this comprehensive review, we focus on what is currently known about mast cells and the gut-brain axis relationship, and how this relationship is connected to neurodegenerative diseases. We hope that further elucidating the bidirectional communication between mast cells and the GBA will not only stimulate future research on neurodegenerative diseases but will also identify new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Mazharul Karim
- College of Pharmacy, Western University of Health Science, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
5
|
Li YJ, Li J, Dai C. The Role of Intestinal Microbiota and Mast Cell in a Rat Model of Visceral Hypersensitivity. J Neurogastroenterol Motil 2020; 26:529-538. [PMID: 32989188 PMCID: PMC7547191 DOI: 10.5056/jnm20004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/04/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background/Aims To explore the role of intestinal flora and mast cells in visceral hypersensitivity (VH). Methods The experimental animals were divided into 4 groups: control group, VH group, VH + VSL#3 group, and VH + ketotifen group. Stool samples were collected from each group (n = 3) for a further analysis using 16S ribosomal DNA gene sequence. Visceral sensitivity was evaluated by abdominal withdrawal reflex (AWR) score. Colon tissues of rats were obtained from each group. Mast cells were detected by toluidine blue staining. The degranulation of mast cells was assessed by transmission electron microscopy. Results VH rat model could successfully be induced by acetic acid enema combined with partial limb restraint method. Compared with rats in the control group, AWR score, number of mast cells, and degranulation of mast cells were increased in the VH rats, which could be reduced by administration of ketotifen or probiotic VSL#3. Clostridium sensu stricto 1 abundance was higher in the VH group compared to the control group, which could be restored by application of probiotic VSL#3. Conclusions Probiotic VSL#3 decreases visceral sensitivity in VH rats. The mechanism may be related to mast cell and intestinal flora. Change of Clostridium sensu stricto 1 abundance may be a basis for VH observed in irritable bowel syndrome and may be prevented by specific probiotic administration.
Collapse
Affiliation(s)
- Ying-Jie Li
- Department of Gastroenterology, First Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jing Li
- Department of Gastroenterology, First Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Cong Dai
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Traina G. Mast Cells in Gut and Brain and Their Potential Role as an Emerging Therapeutic Target for Neural Diseases. Front Cell Neurosci 2019; 13:345. [PMID: 31417365 PMCID: PMC6682652 DOI: 10.3389/fncel.2019.00345] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The mast cells (MCs) are the leader cells of inflammation. They are well known for their involvement on allergic reactions through degranulation and release of vasoactive, inflammatory, and nociceptive mediators. Upon encountering potential danger signal, MCs are true sensors of the environment, the first to respond in rapid and selective manner. The MC activates the algic response and modulates the evolution of nociceptive pain, typical of acute inflammation, to neuropathic pain, typical not only of chronic inflammation but also of the dysregulation of the pain system. Yet, MC may contribute to modulate intensity of the associated depressive and anxiogenic component on the neuronal and microglial biological front. Chronic inflammation is a common mediator of these co-morbidities. In parallel to the removal of the etiological factors of tissue damage, the modulation of MC hyperactivity and the reduction of the release of inflammatory factors may constitute a new frontier of pharmacological intervention aimed at preventing the chronicity of inflammation, the evolution of pain, and also the worsening of the depression and anxiogenic state associated with it. So, identifying specific molecules able to modify MC activity may be an important therapeutic tool. Various preclinical evidences suggest that the intestinal microbiota contributes substantially to mood and behavioral disorders. In humans, conditions of the microbiota have been linked to stress, anxiety, depression, and pain. MC is likely the crucial neuroimmune connecting between these components. In this review, the involvement of MCs in pain, stress, and depression is reviewed. We focus on the MC as target that may be mediating stress and mood disorders via microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Yamashita S, Yokoyama Y, Hashimoto T, Mizuno M. A novel in vitro co-culture model comprised of Caco-2/RBL-2H3 cells to evaluate anti-allergic effects of food factors through the intestine. J Immunol Methods 2016; 435:1-6. [DOI: 10.1016/j.jim.2016.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
8
|
Castillo-Courtade L, Han S, Lee S, Mian FM, Buck R, Forsythe P. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy 2015; 70:1091-102. [PMID: 25966668 DOI: 10.1111/all.12650] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND The prebiotic nature of human milk oligosaccharides (HMOs) and increasing evidence of direct immunomodulatory effects of these sugars suggest that they may have some therapeutic potential in allergy. Here, we assess the effect of two HMOs, 2'-fucosyllactose and 6'-sialyllactose, on symptomatology and immune responses in an ovalbumin-sensitized mouse model of food allergy. METHODS The effects of oral treatment with 2'-fucosyllactose and 6'-sialyllactose on anaphylactic symptoms induced by oral ovalbumin (OVA) challenge in sensitized mice were investigated. Mast cell functions in response to oral HMO treatment were also measured in the passive cutaneous anaphylaxis model, and direct effects on IgE-mediated degranulation of mast cells were assessed. RESULTS Daily oral treatment with 2'-fucosyllactose or 6'-sialyllactose attenuated food allergy symptoms including diarrhea and hypothermia. Treatment with HMOs also suppressed antigen-induced increases in mouse mast cell protease-1 in serum and mast cell numbers in the intestine. These effects were associated with increases in the CD4(+) CD25(+) IL-10(+) cell populations in the Peyer's patches and mesenteric lymph nodes, while 6'-sialyllactose also induced increased IL-10 and decreased TNF production in antigen-stimulated splenocytes. Both 2'-fucosyllactose and 6'-sialyllactose reduced the passive cutaneous anaphylaxis response, but only 6'-sialyllactose directly inhibited mast cell degranulation in vitro, at high concentrations. CONCLUSIONS Our results suggest that 2'-fucosyllactose and 6'-sialyllactose reduce the symptoms of food allergy through induction of IL-10(+) T regulatory cells and indirect stabilization of mast cells. Thus, human milk oligosaccharides may have therapeutic potential in allergic disease.
Collapse
Affiliation(s)
| | - S. Han
- Department of Medicine; McMaster University; Hamilton ON Canada
| | - S. Lee
- Department of Medicine; McMaster University; Hamilton ON Canada
| | - F. M. Mian
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - R. Buck
- Division of Abbott Laboratories; Abbott Nutrition; Columbus OH USA
| | - P. Forsythe
- Department of Medicine; McMaster University; Hamilton ON Canada
- Firestone Institute for Respiratory Research; McMaster University; Hamilton ON Canada
| |
Collapse
|
9
|
Forsythe P. Microbes taming mast cells: Implications for allergic inflammation and beyond. Eur J Pharmacol 2015; 778:169-75. [PMID: 26130124 DOI: 10.1016/j.ejphar.2015.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/21/2015] [Accepted: 06/17/2015] [Indexed: 12/30/2022]
Abstract
There is increasing awareness of a relationship between our microbiota and the pathogenesis of allergy and other inflammatory diseases. In investigating the mechanisms underlying microbiota modulation of allergy the focus has been on the induction phase; alterations in the phenotype and function of antigen presenting cells, induction of regulatory T cells and shifts in Th1/Th2 balance. However there is evidence that microbes can influence the effector phase of disease, specifically that certain potentially beneficial bacteria can attenuate mast cell activation and degranulation. Furthermore, it appears that different non-pathogenic bacteria can utilize distinct mechanisms to stabilize mast cells, acting locally though direct interaction with the mast cell at mucosal sites or attenuating systemic mast cell dependent responses, likely through indirect signaling mechanisms. The position of mast cells on the frontline of defense against pathogens also suggests they may play an important role in fostering the host-microbiota relationship. Mast cells are also conduits of neuro-immuo-endocrine communication, suggesting the ability of microbes to modulate cell responses may have implications for host physiology beyond immunology. Further investigation of mast cell regulation by non-pathogenic or symbiotic bacteria will likely lead to a greater understanding of host microbiota interaction and the role of the microbiome in health and disease.
Collapse
Affiliation(s)
- Paul Forsythe
- McMaster Brain-Body Institute at St. Joseph's Healthcare, Hamilton, The Firestone Institute for Respiratory Health and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
10
|
Yu Y, Yip KH, Tam IYS, Sam SW, Ng CW, Zhang W, Lau HYA. Differential effects of the Toll-like receptor 2 agonists, PGN and Pam3CSK4 on anti-IgE induced human mast cell activation. PLoS One 2014; 9:e112989. [PMID: 25398056 PMCID: PMC4232580 DOI: 10.1371/journal.pone.0112989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 10/17/2014] [Indexed: 01/13/2023] Open
Abstract
Mast cells are pivotal in the pathogenesis of allergy and inflammation. In addition to the classical IgE-dependent mechanism involving crosslinking of the high-affinity receptor for IgE (FcεRI), mast cells are also activated by Toll-like receptors (TLRs) which are at the center of innate immunity. In this study, we demonstrated that the response of LAD2 cells (a human mast cell line) to anti-IgE was altered in the presence of the TLR2 agonists peptidoglycan (PGN) and tripalmitoyl-S-glycero-Cys-(Lys)4 (Pam3CSK4). Pretreatment of PGN and Pam3CSK4 inhibited anti-IgE induced calcium mobilization and degranulation without down-regulation of FcεRI expression. Pam3CSK4 but not PGN acted in synergy with anti-IgE for IL-8 release when the TLR2 agonist was added simultaneously with anti-IgE. Studies with inhibitors of key enzymes implicated in mast cell signaling revealed that the synergistic release of IL-8 induced by Pam3CSK4 and anti-IgE involved ERK and calcineurin signaling cascades. The differential modulations of anti-IgE induced mast cell activation by PGN and Pam3CSK4 suggest that dimerization of TLR2 with TLR1 or TLR6 produced different modulating actions on FcεRI mediated human mast cell activation.
Collapse
Affiliation(s)
- Yangyang Yu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Kwok Ho Yip
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Issan Yee San Tam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Sze Wing Sam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Chun Wai Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Wei Zhang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Hang Yung Alaster Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
11
|
Takeda S, Hidaka M, Yoshida H, Takeshita M, Kikuchi Y, Tsend-Ayush C, Dashnyam B, Kawahara S, Muguruma M, Watanabe W, Kurokawa M. Antiallergic activity of probiotics from Mongolian dairy products on type I allergy in mice and mode of antiallergic action. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
12
|
Choi HW, Abraham SN. Mast cell mediator responses and their suppression by pathogenic and commensal microorganisms. Mol Immunol 2014; 63:74-9. [PMID: 24636146 DOI: 10.1016/j.molimm.2014.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Mast cells (MCs) are selectively found at the host environment interface and are capable of secreting a wide array of pharmacologically active mediators, many of which are prepackaged in granules. Over the past two decades, it has become clear that these cells have the capacity to recognize a range of infectious agents allowing them to play a key role in initiating and modulating early immune responses to infectious agents. However, a number of pathogenic and commensal microbes appear to have evolved distinct mechanisms to suppress MC mediator release to avoid elimination in the host. Understanding how these microbes suppress MC functions may have significant therapeutic value to relieve inflammatory disorders mediated by MCs.
Collapse
Affiliation(s)
- Hae Woong Choi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore.
| |
Collapse
|
13
|
Wesolowski J, Paumet F. Escherichia coli exposure inhibits exocytic SNARE-mediated membrane fusion in mast cells. Traffic 2014; 15:516-30. [PMID: 24494924 DOI: 10.1111/tra.12159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/24/2014] [Accepted: 02/04/2014] [Indexed: 12/11/2022]
Abstract
Mast cells orchestrate the allergic response through the release of proinflammatory mediators, which is driven by the fusion of cytoplasmic secretory granules with the plasma membrane. During this process, SNARE proteins including Syntaxin4, SNAP23 and VAMP8 play a key role. Following stimulation, the kinase IKKβ interacts with and phosphorylates the t-SNARE SNAP23. Phosphorylated SNAP23 then associates with Syntaxin4 and the v-SNARE VAMP8 to form a ternary SNARE complex, which drives membrane fusion and mediator release. Interestingly, mast cell degranulation is impaired following exposure to bacteria such as Escherichia coli. However, the molecular mechanism(s) by which this occurs is unknown. Here, we show that E. coli exposure rapidly and additively inhibits degranulation in the RBL-2H3 rat mast cell line. Following co-culture with E. coli, the interaction between IKKβ and SNAP23 is disrupted, resulting in the hypophosphorylation of SNAP23. Subsequent formation of the ternary SNARE complex between SNAP23, Syntaxin4 and VAMP8 is strongly reduced. Collectively, these results demonstrate that E. coli exposure inhibits the formation of VAMP8-containing exocytic SNARE complexes and thus the release of VAMP8-dependent granules by interfering with SNAP23 phosphorylation.
Collapse
Affiliation(s)
- Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
14
|
Kawahara T. Establishment and characterization of mouse bone marrow-derived mast cell hybridomas. Exp Cell Res 2012; 318:2385-96. [DOI: 10.1016/j.yexcr.2012.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/09/2012] [Accepted: 07/12/2012] [Indexed: 12/20/2022]
|
15
|
Abstract
In developed countries, the prevalence of allergy is on the rise. Although the causes are unknown, it seems that (1) the disappearance of microbiota may play a role in the increase of allergies and (2) exposure to bacterial infections during childhood decreases the incidence of allergies. Although several cell types are involved in the development of allergy, mast cells play a major role in orchestrating inflammation. Upon activation, mast cell secretory granules fuse with the plasma membrane, resulting in the release of a number of inflammatory mediators. In addition to allergy, mast cells contribute to the innate immune response against a variety of bacteria. This is accomplished through the secretion of cytokines and other soluble mediators. Interestingly, there is growing evidence that mast cells exposed to bacteria down-regulate degranulation in response to IgE/Allergen stimulation. This inhibitory effect seems to require direct contact between bacteria and mast cells, but the intracellular mechanism by which bacterial contact suppresses allergic responses is unknown. Here, we review different aspects of mast cell physiology and discuss hypotheses as to how bacteria may influence mast cell degranulation.
Collapse
Affiliation(s)
- Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, 223 South 10th Street, Bluemle Life Science Building Room 750, Philadelphia, PA 19107, USA.
| | | |
Collapse
|