1
|
Yan X, Zhou H, Wang R, Chen H, Wen B, Dong M, Xue Q, Jia L, Yan H. Biochemical characterization and molecular docking of a novel alkaline-stable keratinase from Amycolatopsis sp. BJA-103. Int J Biol Macromol 2025; 295:139669. [PMID: 39793787 DOI: 10.1016/j.ijbiomac.2025.139669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Amycolatopsis sp. BJA-103 was isolated for its exceptional feather-degradation capability, leading to the purification, cloning, and heterologous expression of the keratinase enzyme, KER0199. Sequence analysis places KER0199 within the S8 protease family, revealing <60 % sequence similarity to known proteases. The recombinant KER0199-His6 demonstrates a broad substrate range, along with remarkable thermostability and alkaline stability, exhibiting optimal activity at pH 11.0 and 60 °C, despite the absence of cysteine residues essential for disulfide bonding. Structural modeling reveals a predominantly negatively charged surface and a flat, low-electrostatic-potential substrate-binding pocket. Substrate-binding models, predicted using AlphaFold3 and molecular dynamics simulations, indicate that substrates such as casein, chicken feather β-keratin P2450, and hemoglobin bind to this pocket, forming anti-parallel β-sheets with residues G97 to G99 and establishing extensive hydrogen bonds with key residues near the enzyme's active site. These findings suggest that AlphaFold-based substrate binding predictions, combined with an analysis of intermolecular forces, provide a valuable tool for assisting in the elucidation of enzyme specificity and substrate recognition. KER0199, the first characterized S8 family keratinase from the Amycolatopsis genus, shows great potential for industrial applications.
Collapse
Affiliation(s)
- Xia Yan
- College of Life Science, Northwest A&F University, Yangling 712100, China.
| | - Hanqi Zhou
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Ruolin Wang
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Huan Chen
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Bingjie Wen
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Mengmeng Dong
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Quanhong Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Lianghui Jia
- College of Life Science, Northwest A&F University, Yangling 712100, China.
| | - Hua Yan
- College of Life Science, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Denesyuk AI, Denessiouk K, Johnson MS, Uversky VN. Structural Catalytic Core in Subtilisin-like Proteins and Its Comparison to Trypsin-like Serine Proteases and Alpha/Beta-Hydrolases. Int J Mol Sci 2024; 25:11858. [PMID: 39595929 PMCID: PMC11593635 DOI: 10.3390/ijms252211858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Subtilisin-like proteins are serine proteases that use two types of catalytic triads: Ser-His-Asp and Ser-Glu-Asp. Here, we investigate the two known families of subtilisin-like proteins, the subtilases (Ser-His-Asp triad) and the serine-carboxyl proteinases (Ser-Glu-Asp triad), and describe the local structural arrangements (cores) that govern the catalytic residues in these proteins. We show the separation of the cores into conserved structural zones, which can be repeatedly found in different structures, and compare the structural cores in subtilisin-like proteins with those in trypsin-like serine proteases and alpha/beta-hydrolases.
Collapse
Affiliation(s)
- Alexander I. Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (K.D.); (M.S.J.)
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (K.D.); (M.S.J.)
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (K.D.); (M.S.J.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Huang A, Lu F, Liu F. Exploring the molecular mechanism of cold-adaption of an alkaline protease mutant by molecular dynamics simulations and residue interaction network. Protein Sci 2023; 32:e4837. [PMID: 37984374 PMCID: PMC10682693 DOI: 10.1002/pro.4837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Psychrophilic proteases have attracted enormous attention in past decades, due to their high catalytic activity at low temperatures in a wide range of industrial processes, especially in the detergent and leather industries. Among them, H5 is an alkaline protease mutant, which featuring psychrophilic-like behavior, but the reasons that H5 with higher activity at low temperatures are still poorly understood. Herein, the molecular dynamics (MD) simulations combined with residue interaction network (RIN) were utilized to investigate the mechanisms of the cold-adaption of mutant H5. The results demonstrated that two loops involved in the substrate binding G100-S104 and S125-S129 in H5 had higher mobility, and the distance enlargement between the two loops modulated the substrate's accessibility compared with wild type counterpart. Besides, H5 enhanced conformational flexibility by weakening salt bridges and increasing interaction with the solvent. In particular, the absence of Lys251-Asp197-Arg247 salt bridge network may contribute to the structural mobility. Based on the free energy landscape and molecular mechanics Poisson-Boltzmann surface area of the wild type and H5, it was elucidated that H5 possessed a large population of interconvertible conformations, resulting in the weaker substrate binding free energy. The calculated RIN topology parameters such as the average degree, average cluster coefficient, and average path length further verified that the mutant H5 attenuated residue-to-residue interactions. The investigation of the mechanisms by which how the residue mutation affects the stability and activity of enzymes provides a theoretical basis for the development of cold-adapted protease.
Collapse
Affiliation(s)
- Ailan Huang
- College of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Fuping Lu
- College of BiotechnologyTianjin University of Science & TechnologyTianjinChina
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyTianjinChina
| | - Fufeng Liu
- College of BiotechnologyTianjin University of Science & TechnologyTianjinChina
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyTianjinChina
| |
Collapse
|
4
|
Yang Z, Huang Z, Wu Q, Tang X, Huang Z. Cold-Adapted Proteases: An Efficient and Energy-Saving Biocatalyst. Int J Mol Sci 2023; 24:ijms24108532. [PMID: 37239878 DOI: 10.3390/ijms24108532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The modern biotechnology industry has a demand for macromolecules that can function in extreme environments. One example is cold-adapted proteases, possessing advantages such as maintaining high catalytic efficiency at low temperature and low energy input during production and inactivation. Meanwhile, cold-adapted proteases are characterised by sustainability, environmental protection, and energy conservation; therefore, they hold significant economic and ecological value regarding resource utilisation and the global biogeochemical cycle. Recently, the development and application of cold-adapted proteases have gained gaining increasing attention; however, their applications potential has not yet been fully developed, which has seriously restricted the promotion and application of cold-adapted proteases in the industry. This article introduces the source, related enzymology characteristics, cold resistance mechanism, and the structure-function relationship of cold-adapted proteases in detail. This is in addition to discussing related biotechnologies to improve stability, emphasise application potential in clinical medical research, and the constraints of the further developing of cold-adapted proteases. This article provides a reference for future research and the development of cold-adapted proteases.
Collapse
Affiliation(s)
- Zhengfeng Yang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650000, China
| | - Zhendi Huang
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
| | - Qian Wu
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650000, China
| | - Xianghua Tang
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650000, China
| | - Zunxi Huang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650000, China
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650000, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650000, China
| |
Collapse
|
5
|
Huang A, Lu F, Liu F. Discrimination of psychrophilic enzymes using machine learning algorithms with amino acid composition descriptor. Front Microbiol 2023; 14:1130594. [PMID: 36860491 PMCID: PMC9968940 DOI: 10.3389/fmicb.2023.1130594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Psychrophilic enzymes are a class of macromolecules with high catalytic activity at low temperatures. Cold-active enzymes possessing eco-friendly and cost-effective properties, are of huge potential application in detergent, textiles, environmental remediation, pharmaceutical as well as food industry. Compared with the time-consuming and labor-intensive experiments, computational modeling especially the machine learning (ML) algorithm is a high-throughput screening tool to identify psychrophilic enzymes efficiently. Methods In this study, the influence of 4 ML methods (support vector machines, K-nearest neighbor, random forest, and naïve Bayes), and three descriptors, i.e., amino acid composition (AAC), dipeptide combinations (DPC), and AAC + DPC on the model performance were systematically analyzed. Results and discussion Among the 4 ML methods, the support vector machine model based on the AAC descriptor using 5-fold cross-validation achieved the best prediction accuracy with 80.6%. The AAC outperformed than the DPC and AAC + DPC descriptors regardless of the ML methods used. In addition, amino acid frequencies between psychrophilic and non-psychrophilic proteins revealed that higher frequencies of Ala, Gly, Ser, and Thr, and lower frequencies of Glu, Lys, Arg, Ile,Val, and Leu could be related to the protein psychrophilicity. Further, ternary models were also developed that could classify psychrophilic, mesophilic, and thermophilic proteins effectively. The predictive accuracy of the ternary classification model using AAC descriptor via the support vector machine algorithm was 75.8%. These findings would enhance our insight into the cold-adaption mechanisms of psychrophilic proteins and aid in the design of engineered cold-active enzymes. Moreover, the proposed model could be used as a screening tool to identify novel cold-adapted proteins.
Collapse
Affiliation(s)
- Ailan Huang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China,*Correspondence: Fufeng Liu, ✉ ;
| |
Collapse
|
6
|
Identification of Exoenzymes Secreted by Entomopathogenic Fungus Beauveria pseudobassiana RGM 2184 and Their Effect on the Degradation of Cocoons and Pupae of Quarantine Pest Lobesia botrana. J Fungi (Basel) 2022; 8:jof8101083. [PMID: 36294649 PMCID: PMC9605004 DOI: 10.3390/jof8101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Beauveria pseudobassiana RGM 2184 has shown 80% maximum efficacy against the pest Lobesia botrana in the autumn and winter seasons. This suggests that the strain possesses an interesting battery of enzymes that are cold-adapted to penetrate the thick and hydrophobic cocoon of L. botrana. In this study, screening of the proteolytic, lipolytic, and chitinolytic activity of enzyme extracts secreted by the RGM 2184 strain was carried out in various culture media. The enzyme extracts with the highest activity were subjected to zymography and mass spectrometry. These analyses allowed the identification of two proteases, two lipases, and three chitinases. Comparative analysis indicated that the degree of similarity between these enzymes was substantially reduced when the highest degree of taxonomic relatedness between RGM 2184 and the entomopathogenic fungus strain was at the family level. These results suggest that there is a wide variety of exoenzymes in entomopathogenic fungi species belonging to the order Hypocreales. On the other hand, exoenzyme extract exposure of cocoons and pupae of L. botrana provoked damage at 10 °C. Additionally, an analysis of the amino acid composition of the RGM 2184 exoenzyme grouped them close to the cold-adapted protein cluster. These results support the use of this strain to control pests in autumn and winter. Additionally, these antecedents can form a scaffold for the future characterization of these exoenzymes along with the optimization of the strain’s biocontrol ability by overexpressing them.
Collapse
|
7
|
Cold-active enzymes in the dairy industry: Insight into cold adaption mechanisms and their applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Thermostabilization of VPR, a kinetically stable cold adapted subtilase, via multiple proline substitutions into surface loops. Sci Rep 2020; 10:1045. [PMID: 31974391 PMCID: PMC6978356 DOI: 10.1038/s41598-020-57873-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/27/2019] [Indexed: 11/24/2022] Open
Abstract
Protein stability is a widely studied topic, there are still aspects however that need addressing. In this paper we examined the effects of multiple proline substitutions into loop regions of the kinetically stable proteinase K-like serine protease VPR, using the thermostable structural homologue AQUI as a template. Four locations for proline substitutions were chosen to imitate the structure of AQUI. Variants were produced and characterized using differential scanning calorimetry (DSC), circular dichroism (CD), steady state fluorescence, acrylamide fluorescence quenching and thermal inactivation experiments. The final product VPRΔC_N3P/I5P/N238P/T265P was greatly stabilized which was achieved without any noticeable detrimental effects to the catalytic efficiency of the enzyme. This stabilization seems to be derived from the conformation restrictive properties of the proline residue in its ability to act as an anchor point and strengthen pre-existing interactions within the protein and allowing for these interactions to prevail when thermal energy is applied to the system. In addition, the results underline the importance of the synergy between distant local protein motions needed to result in stabilizing effects and thus giving an insight into the nature of the stability of VPR, its unfolding landscape and how proline residues can infer kinetic stability onto protein structures.
Collapse
|
9
|
Cho SJ. Primary structure and characterization of a protease from Bacillus amyloliquefaciens isolated from meju, a traditional Korean soybean fermentation starter. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Óskarsson KR, Kristjánsson MM. Improved expression, purification and characterization of VPR, a cold active subtilisin-like serine proteinase and the effects of calcium on expression and stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:152-162. [PMID: 30502512 DOI: 10.1016/j.bbapap.2018.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 01/21/2023]
Abstract
Cloning into a pET 11a vector, followed by high-level expression of the cold adapted subtilase, VPR, utilizing the rhamnose titratable T7 system of Lemo21, resulted in a dramatic increase of soluble protein compared to the older system used. Expression optimization clearly shows the importance of calcium in the medium after induction, both for stability of the proteinase and cell health. Characterization of the purified enzyme obtained in a redesigned purification protocol which removed apparent RNA contaminants, resulted in a significantly higher value for kcat than previously reported. The new recombinant protein exhibited slightly lower stability against thermal denaturation and thermal inactivation. Our results also indicate that two of the calcium binding sites have apparent binding constants in the mM range. Binding of calcium to the weaker of those two sites only affects resistance of the enzyme against irreversible thermal inactivation. Differential scanning calorimetry revealed a non-two-state denaturation process, with indication of presence of intermediates caused by unfolding of calcium binding motifs.
Collapse
Affiliation(s)
- Kristinn R Óskarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Magnús M Kristjánsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
11
|
Iqbal M, Dubey M, Gudmundsson M, Viketoft M, Jensen DF, Karlsson M. Comparative evolutionary histories of fungal proteases reveal gene gains in the mycoparasitic and nematode-parasitic fungus Clonostachys rosea. BMC Evol Biol 2018; 18:171. [PMID: 30445903 PMCID: PMC6240243 DOI: 10.1186/s12862-018-1291-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/06/2018] [Indexed: 11/18/2022] Open
Abstract
Background The ascomycete fungus Clonostachys rosea (order Hypocreales) can control several important plant diseases caused by plant pathogenic fungi and nematodes. Subtilisin-like serine proteases are considered to play an important role in pathogenesis in entomopathogenic, mycoparasitic, and nematophagous fungi used for biological control. In this study, we analysed the evolutionary histories of protease gene families, and investigated sequence divergence and regulation of serine protease genes in C. rosea. Results Proteases of selected hypocrealean fungal species were classified into families based on the MEROPS peptidase database. The highest number of protease genes (590) was found in Fusarium solani, followed by C. rosea with 576 genes. Analysis of gene family evolution identified non-random changes in gene copy numbers in the five serine protease gene families S1A, S8A, S9X, S12 and S33. Four families, S1A, S8A, S9X, and S33, displayed gene gains in C. rosea. A gene-tree / species-tree reconciliation analysis of the S8A family revealed that the gene copy number increase in C. rosea was primarily associated with the S08.054 (proteinase K) subgroup. In addition, regulatory and predicted structural differences, including twelve sites evolving under positive selection, among eighteen C. rosea S8A serine protease paralog genes were also observed. The C. rosea S8A serine protease gene prs6 was induced during interaction with the plant pathogenic species F. graminearum. Conclusions Non-random increases in S8A, S9X and S33 serine protease gene numbers in the mycoparasitic species C. rosea, Trichoderma atroviride and T. virens suggests an involvement in fungal-fungal interactions. Regulatory and predicted structural differences between C. rosea S8A paralogs indicate that functional diversification is driving the observed increase in gene copy numbers. The induction of prs6 expression in C. rosea during confrontation with F. graminearum suggests an involvement of the corresponding protease in fungal-fungal interactions. The results pinpoint the importance of serine proteases for ecological niche adaptation in C. rosea, including a potential role in the mycoparasitic attack on fungal prey. Electronic supplementary material The online version of this article (10.1186/s12862-018-1291-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mudassir Iqbal
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden
| | - Mikael Gudmundsson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-75007, Uppsala, Sweden
| | - Maria Viketoft
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, SE-75007, Uppsala, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden
| |
Collapse
|
12
|
Balasco N, Smaldone G, Ruggiero A, De Simone A, Vitagliano L. Local structural motifs in proteins: Detection and characterization of fragments inserted in helices. Int J Biol Macromol 2018; 118:1924-1930. [PMID: 30017977 DOI: 10.1016/j.ijbiomac.2018.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 11/26/2022]
Abstract
The global/local fold of protein structures is stabilized by a variety of specific interactions. A primary role in this context is played by hydrogen bonds. In order to identify novel motifs in proteins, we searched Protein Data Bank structures looking for backbone H-bonds formed by NH groups of two (or more) consecutive residues with consecutive CO groups of distant residues in the sequence. The present analysis unravels the occurrence of recurrent structural motifs that, to the best of our knowledge, had not been characterized in literature. Indeed, these H-bonding patterns are found (i) in a specific parallel β-sheet capping, (ii) in linking of β-hairpins to α-helices, and (iii) in α-helix insertions. Interestingly, structural analyses of these motifs indicate that Gly residues frequently occupy prominent positions. The formation of these motifs is likely favored by the limited propensity of Gly to be embodied in helices/sheets. Of particular interest is the motif corresponding to insertions in helices that was detected in 1% of analyzed structures. Inserted fragments may assume different structures and aminoacid compositions and usually display diversified evolutionary conservation. Since inserted regions are physically separated from the rest of the protein structure, they represent hot spots for ad-hoc protein functionalization.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy.
| | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College South Kensington Campus, London SW7 2AZ, UK
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy.
| |
Collapse
|
13
|
Yap HYY, Tan NH, Ng ST, Tan CS, Fung SY. Molecular attributes and apoptosis-inducing activities of a putative serine protease isolated from Tiger Milk mushroom ( Lignosus rhinocerus) sclerotium against breast cancer cells in vitro. PeerJ 2018; 6:e4940. [PMID: 29888137 PMCID: PMC5993024 DOI: 10.7717/peerj.4940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Background The highly valued medicinal tiger milk mushroom (also known as Lignosus rhinocerus) has the ability to cure numerous ailments. Its anticancer activities are well explored, and recently a partially purified cytotoxic protein fraction termed F5 from the mushroom’s sclerotial cold water extract consisting mainly of fungal serine proteases was found to exhibit potent selective cytotoxicity against a human breast adenocarcinoma cell line (MCF7) with IC50 value of 3.00 μg/ml. However, characterization of its cell death-inducing activity has yet to be established. Methods The mechanism involved in the cytotoxic activities of F5 against MCF7 cells was elucidated by flow cytometry-based apoptosis detection, caspases activity measurement, and expression profiling of apoptosis markers by western blotting. Molecular attributes of F5 were further mined from L. rhinocerus’s published genome and transcriptome for future exploration. Results and Discussion Apoptosis induction in MCF7 cells by F5 may involve a cross-talk between the extrinsic and intrinsic apoptotic pathways with upregulation of caspase-8 and -9 activities and a marked decrease of Bcl-2. On the other hand, the levels of pro-apoptotic Bax, BID, and cleaved BID were increased accompanied by observable actin cleavage. At gene level, F5 composed of three predicted non-synonymous single nucleotide polymorphisms (T > C) and an alternative 5′ splice site. Conclusions Findings from this study provide an advanced framework for further investigations on cancer therapeutics development from L. rhinocerus.
Collapse
Affiliation(s)
- Hui Yeng Y Yap
- Department of Oral Biology, Faculty of Dentistry, MAHSA University, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Medicinal Mushroom Research Group, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Szu Ting Ng
- Ligno Biotech Sdn Bhd, Balakong Jaya, Selangor, Malaysia
| | - Chon Seng Tan
- Ligno Biotech Sdn Bhd, Balakong Jaya, Selangor, Malaysia
| | - Shin Yee Fung
- Medicinal Mushroom Research Group, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia.,Center for Natural Products Research and Drug Discovery, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Xia YL, Sun JH, Ai SM, Li Y, Du X, Sang P, Yang LQ, Fu YX, Liu SQ. Insights into the role of electrostatics in temperature adaptation: a comparative study of psychrophilic, mesophilic, and thermophilic subtilisin-like serine proteases. RSC Adv 2018; 8:29698-29713. [PMID: 35547280 PMCID: PMC9085296 DOI: 10.1039/c8ra05845h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/15/2018] [Indexed: 11/21/2022] Open
Abstract
To investigate the role of electrostatics in different temperature adaptations, we performed a comparative study on subtilisin-like serine proteases from psychrophilic Vibrio sp. PA-44 (VPR), mesophilic Engyodontium album (Tritirachium album) (PRK), and thermophilic Thermus aquaticus (AQN) using multiple-replica molecular dynamics (MD) simulations combined with continuum electrostatics calculations. The results reveal that although salt bridges are not a crucial factor in determining the overall thermostability of these three proteases, they on average provide the greatest, moderate, and least electrostatic stabilization to AQN, PRK, and VPR, respectively, at the respective organism growth temperatures. Most salt bridges in AQN are effectively stabilizing and thus contribute to maintaining the overall structural stability at 343 K, while nearly half of the salt bridges in VPR interconvert between being stabilizing and being destabilizing, likely aiding in enhancing the local conformational flexibility at 283 K. The individual salt bridges, salt-bridge networks, and calcium ions contribute differentially to local stability and flexibility of these three enzyme structures, depending on their spatial distributions and electrostatic strengths. The shared negatively charged surface potential at the active center of the three enzymes may provide the active-center flexibility necessary for nucleophilic attack and proton transfer. The differences in distributions of the electro-negative, electro-positive, and electro-neutral potentials, particularly over the back surfaces of the three proteases, may modulate/affect not only protein solubility and thermostability but also structural stability and flexibility/rigidity. These results demonstrate that electrostatics contributes to both heat and cold adaptation of subtilisin-like serine proteases through fine-tuning, either globally or locally, the structural stability and conformational flexibility/rigidity, thus providing a foundation for further engineering and mutagenesis studies. Differently charged surface patches contribute to temperature adaptation of subtilisin-like serine proteases through affecting/modulating the protein solubility and thermostability and the structural flexibility/rigidity/stability.![]()
Collapse
Affiliation(s)
- Yuan-Ling Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| | - Jian-Hong Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| | - Shi-Meng Ai
- Department of Applied Mathematics
- Yunnan Agricultural University
- Kunming
- P. R. China
| | - Yi Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| | - Xing Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| | - Peng Sang
- College of Agriculture and Biological Science
- Dali University
- Dali
- P. R. China
| | - Li-Quan Yang
- College of Agriculture and Biological Science
- Dali University
- Dali
- P. R. China
| | - Yun-Xin Fu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
- Human Genetics Center and Division of Biostatistics
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
- Key Laboratory for Tumor Molecular Biology of High Education in Yunnan Province
| |
Collapse
|
15
|
The discovery of novel heat-stable keratinases from Meiothermus taiwanensis WR-220 and other extremophiles. Sci Rep 2017; 7:4658. [PMID: 28680127 PMCID: PMC5498600 DOI: 10.1038/s41598-017-04723-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022] Open
Abstract
Billions of tons of keratin bio-wastes are generated by poultry industry annually but discarded that result in serious environmental pollution. Keratinase is a broad spectrum protease with the unique ability to degrade keratin, providing an eco-friendly way to convert keratin wastes to valuable amino acids. In this report, a feather-degrading thermophilic bacterium, Meiothermus taiwanensis WR-220, was investigated due to its ability to apparently complete feather decay at 65 °C in two days. By genomics, proteomics, and biochemical approaches, the extracellular heat-stable keratinase (MtaKer) from M. taiwanensis WR-220 was identified. The recombinant MtaKer (rMtaKer) possesses keratinolytic activities at temperatures ranging from 25 to 75 °C and pH from 4 to 11, with a maximum keratinolytic activity at 65 °C and pH 10. The phylogenetic and structural analysis revealed that MtaKer shares low sequence identity but high structural similarity with known keratinases. Accordingly, our findings have enabled the discovery of more keratinases from other extremophiles, Thermus and Deinococcus. Proteins encoded in the extremophiles shall be evolved to be functional in the extreme conditions. Hence, our study expands the current boundary of hunting keratinases that can tolerate extreme conditions for keratin wastes biorecycle and other industrial applications.
Collapse
|
16
|
Sang P, Du X, Yang LQ, Meng ZH, Liu SQ. Molecular motions and free-energy landscape of serine proteinase K in relation to its cold-adaptation: a comparative molecular dynamics simulation study and the underlying mechanisms. RSC Adv 2017. [DOI: 10.1039/c6ra23230b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The physicochemical bases for enzyme cold-adaptation remain elusive.
Collapse
Affiliation(s)
- Peng Sang
- Laboratory of Molecular Cardiology
- Department of Cardiology
- The First Affiliated Hospital of Kunming Medical University
- Kunming
- P. R. China
| | - Xing Du
- Laboratory for Conservation and Utilization of Bio-Resources
- Yunnan University
- Kunming
- P. R. China
- Department of Biochemistry and Molecular Biology
| | - Li-Quan Yang
- College of Agriculture and Biological Science
- Dali University
- Dali
- P. R. China
| | - Zhao-Hui Meng
- Laboratory of Molecular Cardiology
- Department of Cardiology
- The First Affiliated Hospital of Kunming Medical University
- Kunming
- P. R. China
| | - Shu-Qun Liu
- Laboratory of Molecular Cardiology
- Department of Cardiology
- The First Affiliated Hospital of Kunming Medical University
- Kunming
- P. R. China
| |
Collapse
|
17
|
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front Microbiol 2016; 7:1408. [PMID: 27667987 PMCID: PMC5016527 DOI: 10.3389/fmicb.2016.01408] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Collapse
Affiliation(s)
- Margarita Santiago
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Universidad de ChileSantiago, Chile
| | - César A. Ramírez-Sarmiento
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
18
|
A single mutation Gln142Lys doubles the catalytic activity of VPR, a cold adapted subtilisin-like serine proteinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1436-43. [PMID: 27456266 DOI: 10.1016/j.bbapap.2016.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/11/2016] [Accepted: 07/15/2016] [Indexed: 11/20/2022]
Abstract
Structural comparisons of the cold adapted subtilase VPR and its thermophilic homologue, aqualysin I (AQUI) indicated the presence of additional salt bridges in the latter. Few of those appear to contribute significantly to thermal stability of AQUI. This includes a putative salt bridge between residues Lys142 and Glu172 as its deletion did not have any significant effect on its stability or activity (Jónsdóttir et al. (2014)). Insertion of this putative salt bridge into the structure of VPR, in a double mutant (VPRΔC_Q142K/S172E), however was detrimental to the stability of the enzyme. Incorporation of either the Q142K or S172E mutations into VPR, were found to significantly affect the catalytic properties of the enzyme. The single mutation Q142K was highly effective, as it increased the kcat and kcat/Km more than twofold. When the Q142K mutation was inserted into a thermostabilized, but a low activity mutant of VPR (VPRΔC_N3P/I5P), the activity increased about tenfold in terms of kcat and kcat/Km, while retaining the stability of the mutant. Molecular dynamics simulations of the single mutants were carried out to provide structural rationale for these experimental observations. Based on root mean square fluctuation (RMSF) profiles, the two mutants were more flexible in certain regions of the structure and the Q142K mutant had the highest overall flexibility of the three enzymes. The results suggest that weakening of specific H-bonds resulting from the mutations may be propagated over some distance giving rise to higher flexibility in the active site regions of the enzyme, causing higher catalytic activity in the mutants.
Collapse
|
19
|
Yap HYY, Fung SY, Ng ST, Tan CS, Tan NH. Shotgun proteomic analysis of tiger milk mushroom (Lignosus rhinocerotis) and the isolation of a cytotoxic fungal serine protease from its sclerotium. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:437-451. [PMID: 26320692 DOI: 10.1016/j.jep.2015.08.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has been traditionally used as a complementary and alternative medicine for cancer treatment by the local communities of Southeast Asia. Despite the continuous research interest in its antiproliferative activity, the identity of the bioactive compound(s) responsible has yet to be determined. This study aims to bridge the gap in existing research literature by using proteomics approach for investigation of the nature of the anticancer substance of L. rhinocerotis. AIM OF THE STUDY To elucidate the proteome of L. rhinocerotis TM02 sclerotium by protein mass spectrometry and to further isolate and identify the cytotoxic component(s) bearing anticancer potential. MATERIALS AND METHODS The proteome of L. rhinocerotis sclerotium was analyzed by label-free quantitative shotgun proteomics, using 1D-SDS-PAGE coupled with nano-ESI-LC-MS/MS based on the availability of its genome-sequence database. The cytotoxicity of L. rhinocerotis sclerotial extracts against human breast adenocarcinoma cells (MCF7) were assessed by MTT cytotoxicity assay prior to successive purification steps by a combination of gel filtration chromatography, ammonium sulfate precipitation, and anion exchange chromatography. Bioactive compound(s) in the extracts was identified by shotgun proteomics and N-terminal protein sequencing. RESULTS Several proteins with interesting biological activities including lectins, fungal immunomodulatory proteins, and several antioxidant proteins were identified from the proteome of L. rhinocerotis. A cytotoxic protein fraction (termed F5) which was partially purified from its sclerotial cold water extract F5 shows two distinct bands of 31 and 36 kDa in reducing SDS-PAGE and exhibited potent selective cytotoxicity against MCF7 cells with IC50 value of 3.00 ± 1.01 μg/ml. Both bands were identified to be serine protease by LC-MS/MS analysis. Phenylmethylsulfonyl fluoride, a specific serine protease inhibitor, inhibited both the proteolytic activity and cytotoxicity of F5, suggesting that the cytotoxicity of F5 is related to its protease activity. CONCLUSIONS This study provides the first comprehensive and semi-quantitative profiling of the proteome of L. rhinocerotis sclerotium. Further investigation into its selective cytotoxicity shows that a serine protease-like protein, termed F5, may be targeted for new anticancer agent development.
Collapse
Affiliation(s)
- Hui-Yeng Y Yap
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Shin-Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Szu-Ting Ng
- Ligno Biotech Sdn Bhd, 43300 Balakong Jaya, Selangor, Malaysia
| | - Chon-Seng Tan
- Ligno Biotech Sdn Bhd, 43300 Balakong Jaya, Selangor, Malaysia
| | - Nget-Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Nanotechnology based activation-immobilization of psychrophilic pectate lyase: A novel approach towards enzyme stabilization and enhanced activity. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Vojcic L, Pitzler C, Körfer G, Jakob F, Ronny Martinez, Maurer KH, Schwaneberg U. Advances in protease engineering for laundry detergents. N Biotechnol 2015; 32:629-34. [PMID: 25579194 DOI: 10.1016/j.nbt.2014.12.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/02/2014] [Accepted: 12/31/2014] [Indexed: 02/03/2023]
Abstract
Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents.
Collapse
Affiliation(s)
- Ljubica Vojcic
- RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany
| | | | | | - Felix Jakob
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Ronny Martinez
- RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany; EW-Nutrition GmbH, Enzyme Technology, Nattermannallee 1, D-50829 Köln, Germany
| | | | - Ulrich Schwaneberg
- RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany; DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| |
Collapse
|
22
|
Jónsdóttir LB, Ellertsson BÖ, Invernizzi G, Magnúsdóttir M, Thorbjarnardóttir SH, Papaleo E, Kristjánsson MM. The role of salt bridges on the temperature adaptation of aqualysin I, a thermostable subtilisin-like proteinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2174-81. [DOI: 10.1016/j.bbapap.2014.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Accepted: 08/20/2014] [Indexed: 11/30/2022]
|
23
|
Sakaguchi M, Osaku K, Maejima S, Ohno N, Sugahara Y, Oyama F, Kawakita M. Highly conserved salt bridge stabilizes a proteinase K subfamily enzyme, Aqualysin I, from Thermus aquaticus YT-1. AMB Express 2014; 4:59. [PMID: 25136511 PMCID: PMC4131155 DOI: 10.1186/s13568-014-0059-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/02/2014] [Indexed: 11/10/2022] Open
Abstract
The proteinase K subfamily enzymes, thermophilic Aqualysin I (AQN) from Thermus aquaticus YT-1 and psychrophilic serine protease (VPR) from Vibrio sp. PA-44, have six and seven salt bridges, respectively. To understand the possible significance of salt bridges in the thermal stability of AQN, we prepared mutant proteins in which amino acid residues participating in salt bridges common to proteinase K subfamily members and intrinsic to AQN were replaced to disrupt the bridges one at a time. Disruption of a salt bridge common to proteinase K subfamily enzymes in the D183N mutant resulted in a significant reduction in thermal stability, and a massive change in the content of the secondary structure was observed, even at 70°C, in the circular dichroism (CD) analysis. These results indicate that the common salt bridge Asp183-Arg12 is important in maintaining the conformation of proteinase K subfamily enzymes and suggest the importance of proximity between the regions around Asp183 and the N-terminal region around Arg12. Of the three mutants that lack an AQN intrinsic salt bridge, D212N was more prone to unfolding at 80°C than the wild-type enzyme. Similarly, D17N and E237Q were less thermostable than the wild-type enzyme, although this may be partially due to increased autolysis. The AQN intrinsic salt bridges appear to confer additional thermal stability to this enzyme. These findings will further our understanding of the factors involved in stabilizing protein structure.
Collapse
|
24
|
Improvement of cold adaptation of Bacillus alcalophilus alkaline protease by directed evolution. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Sigtryggsdóttir ÁR, Papaleo E, Thorbjarnardóttir SH, Kristjánsson MM. Flexibility of cold- and heat-adapted subtilisin-like serine proteinases evaluated with fluorescence quenching and molecular dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:705-12. [DOI: 10.1016/j.bbapap.2014.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/04/2014] [Accepted: 02/12/2014] [Indexed: 11/24/2022]
|
26
|
Mirsky HP, Cressman RF, Ladics GS. Comparative assessment of multiple criteria for the in silico prediction of cross-reactivity of proteins to known allergens. Regul Toxicol Pharmacol 2013; 67:232-9. [PMID: 23933007 DOI: 10.1016/j.yrtph.2013.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
Abstract
Genetically modified crops are becoming important components of a sustainable food supply and must be brought to market efficiently while also safeguarding the public from cross-reactivity of novel proteins to known allergens. Bioinformatic assessments can help to identify proteins warranting further experimental checks for cross-reactivity. This study is a large-scale in silico evaluation of assessment criteria, including searches for: alignments between a query and an allergen having ≥ 35% identity over a length ≥ 80; any sequence (of some minimum length) found in both a query and an allergen; any alignment between a query and an allergen with an E-value below some threshold. The criteria and an allergen database (AllergenOnline) are used to assess 27,243 Viridiplantae proteins for potential allergenicity. (A protein is classed as a "real allergen" if it exceeds a test-specific level of identity to an AllergenOnline entry; assessment of real allergens in the query set is against a reduced database from which the identifying allergen has been removed.) Each criterion's ability to minimize false positives without increasing false negative levels of current methods is determined. At best, the data show a reduction in false positives to ∼6% (from ∼10% under current methods) without any increase in false negatives.
Collapse
Affiliation(s)
- Henry P Mirsky
- DuPont Pioneer, Route 141, Henry Clay Bldg, #400, Wilmington, DE 19880-0400, USA.
| | | | | |
Collapse
|
27
|
Psychrophily and catalysis. BIOLOGY 2013; 2:719-41. [PMID: 24832805 PMCID: PMC3960892 DOI: 10.3390/biology2020719] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 11/24/2022]
Abstract
Polar and other low temperature environments are characterized by a low content in energy and this factor has a strong incidence on living organisms which populate these rather common habitats. Indeed, low temperatures have a negative effect on ectothermic populations since they can affect their growth, reaction rates of biochemical reactions, membrane permeability, diffusion rates, action potentials, protein folding, nucleic acids dynamics and other temperature-dependent biochemical processes. Since the discovery that these ecosystems, contrary to what was initially expected, sustain a rather high density and broad diversity of living organisms, increasing efforts have been dedicated to the understanding of the molecular mechanisms involved in their successful adaptation to apparently unfavorable physical conditions. The first question that comes to mind is: How do these organisms compensate for the exponential decrease of reaction rate when temperature is lowered? As most of the chemical reactions that occur in living organisms are catalyzed by enzymes, the kinetic and thermodynamic properties of cold-adapted enzymes have been investigated. Presently, many crystallographic structures of these enzymes have been elucidated and allowed for a rather clear view of their adaptation to cold. They are characterized by a high specific activity at low and moderate temperatures and a rather low thermal stability, which induces a high flexibility that prevents the freezing effect of low temperatures on structure dynamics. These enzymes also display a low activation enthalpy that renders them less dependent on temperature fluctuations. This is accompanied by a larger negative value of the activation entropy, thus giving evidence of a more disordered ground state. Appropriate folding kinetics is apparently secured through a large expression of trigger factors and peptidyl–prolyl cis/trans-isomerases.
Collapse
|
28
|
Feller G. Psychrophilic enzymes: from folding to function and biotechnology. SCIENTIFICA 2013; 2013:512840. [PMID: 24278781 PMCID: PMC3820357 DOI: 10.1155/2013/512840] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/06/2012] [Indexed: 05/10/2023]
Abstract
Psychrophiles thriving permanently at near-zero temperatures synthesize cold-active enzymes to sustain their cell cycle. Genome sequences, proteomic, and transcriptomic studies suggest various adaptive features to maintain adequate translation and proper protein folding under cold conditions. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Several open questions in the field are also highlighted.
Collapse
Affiliation(s)
- Georges Feller
- Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry, University of Liège, B6a, 4000 Liège, Belgium
- *Georges Feller:
| |
Collapse
|
29
|
Martinez R, Jakob F, Tu R, Siegert P, Maurer KH, Schwaneberg U. Increasing activity and thermal resistance ofBacillus gibsoniialkaline protease (BgAP) by directed evolution. Biotechnol Bioeng 2012; 110:711-20. [DOI: 10.1002/bit.24766] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 11/06/2022]
|
30
|
Kuddus M, Ramteke PW. Recent developments in production and biotechnological applications of cold-active microbial proteases. Crit Rev Microbiol 2012; 38:330-8. [DOI: 10.3109/1040841x.2012.678477] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Liszka MJ, Clark ME, Schneider E, Clark DS. Nature Versus Nurture: Developing Enzymes That Function Under Extreme Conditions. Annu Rev Chem Biomol Eng 2012; 3:77-102. [DOI: 10.1146/annurev-chembioeng-061010-114239] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Elizabeth Schneider
- Department of Chemical and Biomolecular Engineering,
- UC Berkeley and UCSF Graduate Program in Bioengineering, University of California, Berkeley, California 94720; , , ,
| | | |
Collapse
|
32
|
Uehara R, Takeuchi Y, Tanaka SI, Takano K, Koga Y, Kanaya S. Requirement of Ca2+ Ions for the Hyperthermostability of Tk-Subtilisin from Thermococcus kodakarensis. Biochemistry 2012; 51:5369-78. [DOI: 10.1021/bi300427u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ryo Uehara
- Department of Material and Life Science, Graduate School
of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Yuki Takeuchi
- Department of Material and Life Science, Graduate School
of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Shun-ichi Tanaka
- Department of Material and Life Science, Graduate School
of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Kazufumi Takano
- Department of Material and Life Science, Graduate School
of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Material and Life Science, Graduate School
of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School
of Engineering, Osaka University, 2-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Fuchita N, Arita S, Ikuta J, Miura M, Shimomura K, Motoshima H, Watanabe K. Gly or Ala substitutions for Pro(210)Thr(211)Asn(212) at the β8-β9 turn of subtilisin Carlsberg increase the catalytic rate and decrease thermostability. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:620-6. [PMID: 22326746 DOI: 10.1016/j.bbapap.2012.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 11/28/2022]
Abstract
A comparison of the primary structures among psychrophilic, mesophilic, and thermophilic subtilases revealed that the turn between the β8 and β9 strands (β8-β9 turn, BPN' numbering) of psychrophilic subtilases are more flexible than those of their mesophilic and thermophilic counterparts. To investigate the relationship between structure of this turn and enzyme activity as well as thermostability of mesophilic subtilisin Carlsberg (sC), we analyzed 6 mutants of sC with a single, double, or triple Gly or Ala substitutions for Pro(210)Thr(211)Asn(212) at the β8-β9 turn. Among the single Gly substitutions, the P210G substitution most significantly (1.5-fold) increased the specific activity on N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (AAPF) substrate and 12-fold decreased the thermostability. All mutants tested showed the increased k(cat) for the AAPF substrate and reduced thermostability compared with the wild-type sC. The k(cat) values of the P210G, P210G/T211G, and P210G/T211G/N212G mutants were 1.5-, 1.7-, and 1.8-fold higher than that of the wild-type sC. There were significant positive correlations between k(cat) and thermal inactivation rates as well as k(cat) and K(m) of the wild-type and mutants. These results demonstrate that the structure of β8-β9 turn, despite its distance from the active site, has significant effects on the catalytic rate and thermostability of sC through a global network of intramolecular interactions and suggest that the lack of flexibility of this turn stabilizes the wild-type sC against thermal inactivation in compensation for some loss of catalytic activity.
Collapse
Affiliation(s)
- Naoki Fuchita
- Department of Applied Biochemistry and Food Science, Saga University, Saga, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Tiberti M, Papaleo E. Dynamic properties of extremophilic subtilisin-like serine-proteases. J Struct Biol 2011; 174:69-83. [DOI: 10.1016/j.jsb.2011.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/19/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
35
|
Deng A, Wu J, Zhang G, Wen T. Molecular and structural characterization of a surfactant-stable high-alkaline protease AprB with a novel structural feature unique to subtilisin family. Biochimie 2011; 93:783-91. [DOI: 10.1016/j.biochi.2011.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
36
|
Abstract
Proteases are hydrolytic enzymes which catalyze the total hydrolysis of proteins in to amino acids. Although proteolytic enzymes can be obtained from animals and plants but microorganisms are the preferred source for industrial applications in view of scientific and economical advantage. Among various groups of microbes, psychrotrophs are ideal candidates for enzymes production keeping in mind that enzymes active at low temperature and stable under alkaline condition, in presence of oxidants and detergents are in large demand as laundry additive. The proteases from psychrotrophs also find application in environmental bioremediation, food and molecular biology. During the previous two decades, proteases from psychrotrophs have received increased attention because of their wide range of applications, but the full potential of psychrotrophic proteases has not been exploited. This review focuses attention on the present status of knowledge on the production, optimization, molecular characteristics, applications, substrate specificity, and crystal structure of psychrotrophic proteases. The review will help in making strategies for exploitation of psychrotrophic protease resources and improvement of enzymes to obtain more robust proteases of industrial and biotechnological significance.
Collapse
Affiliation(s)
- Ramesh Chand Kasana
- Institute of Himalayan Bioresource Technology (CSIR), Palampur (HP)-176061, India.
| |
Collapse
|
37
|
Molecular adaptations to psychrophily: the impact of 'omic' technologies. Trends Microbiol 2010; 18:374-81. [PMID: 20646925 DOI: 10.1016/j.tim.2010.05.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/12/2010] [Accepted: 05/18/2010] [Indexed: 11/20/2022]
Abstract
The ability of cold-adapted microorganisms (generally referred to as psychrophiles) to survive is the result of molecular evolution and adaptations which, together, counteract the potentially deleterious effects of low kinetic energy environments and the freezing of water. These physiological adaptations are seen at many levels. Against a background of detailed comparative protein structural analyses, the recent surge of psychrophile proteome, genome, metagenome and transcriptome sequence data has triggered a series of sophisticated analyses of changes in global protein composition. These studies have revealed consistent and statistically robust changes in amino acid composition, interpreted as evolutionary mechanisms designed to destabilise protein structures, as well as identifying the presence of novel genes involved in cold adaptation.
Collapse
|
38
|
Liu SQ, Tao Y, Meng ZH, Fu YX, Zhang KQ. The effect of calciums on molecular motions of proteinase K. J Mol Model 2010; 17:289-300. [DOI: 10.1007/s00894-010-0724-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
|
39
|
Zhu S, Elcock AH. A Complete Thermodynamic Characterization of Electrostatic and Hydrophobic Associations in the Temperature Range 0 to 100 °C from Explicit-Solvent Molecular Dynamics Simulations. J Chem Theory Comput 2010. [DOI: 10.1021/ct1000704] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shun Zhu
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242
| | - Adrian H. Elcock
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
40
|
Molecular cloning and homology modelling of a subtilisin-like serine protease from the marine fungus, Engyodontium album BTMFS10. World J Microbiol Biotechnol 2010; 26:1269-79. [DOI: 10.1007/s11274-009-0298-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 12/22/2009] [Indexed: 10/20/2022]
|
41
|
Almog O, González A, Godin N, de Leeuw M, Mekel MJ, Klein D, Braun S, Shoham G, Walter RL. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state. Proteins 2009; 74:489-96. [PMID: 18655058 DOI: 10.1002/prot.22175] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We determine and compare the crystal structure of two proteases belonging to the subtilisin superfamily: S41, a cold-adapted serine protease produced by Antarctic bacilli, at 1.4 A resolution and Sph, a mesophilic serine protease produced by Bacillus sphaericus, at 0.8 A resolution. The purpose of this comparison was to find out whether multiple calcium ion binding is a molecular factor responsible for the adaptation of S41 to extreme low temperatures. We find that these two subtilisins have the same subtilisin fold with a root mean square between the two structures of 0.54 A. The final models for S41 and Sph include a calcium-loaded state of five ions bound to each of these two subtilisin molecules. None of these calcium-binding sites correlate with the high affinity known binding site (site A) found for other subtilisins. Structural analysis of the five calcium-binding sites found in these two crystal structures indicate that three of the binding sites have two side chains of an acidic residue coordinating the calcium ion, whereas the other two binding sites have either a main-chain carbonyl, or only one acidic residue side chain coordinating the calcium ion. Thus, we conclude that three of the sites are of high affinity toward calcium ions, whereas the other two are of low affinity. Because Sph is a mesophilic subtilisin and S41 is a psychrophilic subtilisin, but both crystal structures were found to bind five calcium ions, we suggest that multiple calcium ion binding is not responsible for the adaptation of S41 to low temperatures.
Collapse
Affiliation(s)
- Orna Almog
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer Sheva 84105, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Arnórsdóttir J, Sigtryggsdóttir AR, Thorbjarnardóttir SH, Kristjánsson MM. Effect of proline substitutions on stability and kinetic properties of a cold adapted subtilase. J Biochem 2008; 145:325-9. [PMID: 19074503 DOI: 10.1093/jb/mvn168] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A cold adapted subtilisin-like serine proteinase from a Vibrio species is two amino acids shorter at the N-terminus than related enzymes adapted to higher temperatures and has a 15 residues' C-terminal extension relative to the highly homologous thermophilic enzyme aqualysin I from Thermus aquaticus. These enzymes are produced as pro-enzymes with an N-terminal chaperone sequence for correct folding and a C-terminal signal peptide for secretion, which are subsequently cleaved off by autocatalysis to give the mature enzyme. A truncated form of the Vibrio proteinase where the C-terminal extension was removed and two residues near the N-terminus were substituted with proline, to resemble the N- and C-terminal regions in aqualysin I, resulted in increased thermostability and diminished catalytic efficiency. The proline substitutions shift the site of autocatalytic cleavage at the N-terminus by two amino acids, apparently by rigidifying the terminal residues and support the formation of a beta-sheet that fixes the N-terminus to the main body of the protein.
Collapse
Affiliation(s)
- Jóhanna Arnórsdóttir
- Deparment of Biochemistry, Science Institute, University of Iceland, 107 Reykjavík, Iceland
| | | | | | | |
Collapse
|
43
|
Sigurdardóttir AG, Arnórsdóttir J, Thorbjarnardóttir SH, Eggertsson G, Suhre K, Kristjánsson MM. Characteristics of mutants designed to incorporate a new ion pair into the structure of a cold adapted subtilisin-like serine proteinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:512-8. [PMID: 19100869 DOI: 10.1016/j.bbapap.2008.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/31/2008] [Accepted: 11/19/2008] [Indexed: 12/01/2022]
Abstract
Structural comparisons of VPR, a subtilisin-like serine proteinase from a psychrotrophic Vibrio species and a thermophilic homologue, aqualysin I, have led us to hypothesize about the roles of different residues in the temperature adaptation of the enzymes. Some of these hypotheses are now being examined by analysis of mutants of the enzymes. The selected substitutions are believed to increase the stability of the cold adapted enzyme based on structural analysis of the thermostable structure. We report here on mutants, which were designed to incorporate an ion pair into the structure of VPR. The residues Asp17 and Arg259 are assumed to form an ion pair in aqualysin I. The cold adapted VPR contains Asn (Asn15) and Lys (Lys257) at corresponding sites in its structure. In VPR, Asn 15 is located on a surface loop with its side group pointing towards the side chain of Lys257. By substituting Asn15 by Asp (N15D) it was considered feasible that a salt bridge would form between the oppositely charged groups. To mimic further the putative salt bridge from the thermophile enzyme the corresponding double mutant (N15D/K257R) was also produced. The N15D mutation increased the thermal stability of VPR by approximately 3 degrees C, both in T(50%) and T(m). Addition of the K257R mutation did not however, increase the stability of the double mutant any further. Despite this stabilization of the VPR mutants the catalytic activity (k(cat)) against the substrate Suc-AAPF-NH-Np was increased in the mutants. Molecular dynamics simulations on wild type and the two mutant proteins suggested that indeed a salt bridge was formed in both cases. Furthermore, a truncated form of the N15D mutant (N15DDeltaC) was produced, lacking a 15 residue long C-terminal extended sequence not present in the thermophilic enzyme. In wild type VPR this supposedly moveable, negatively charged arm on the protein molecule might interfere with the new salt bridge introduced as a result of the N15D mutation. Removal of the C-terminal arm improved the thermal stability (T(m) approximately +1.5 degrees C) of the truncated enzyme (VPRDeltaC) as compared to the wild type VPR. Introduction of the N15D substitution into VPRDeltaC improved the thermal stability further by about 3 degrees C, or to about the same extent as in the wild type. However, contrary to what was observed for the wild type, the introduction of the putative salt bridge did not affect the catalytic properties (k(cat)) of the C-terminal truncated enzyme.
Collapse
Affiliation(s)
- Anna Gudný Sigurdardóttir
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland
| | | | | | | | | | | |
Collapse
|
44
|
Almog O, Kogan A, Leeuw MD, Gdalevsky GY, Cohen-Luria R, Parola AH. Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41. Biopolymers 2008; 89:354-9. [PMID: 17937401 DOI: 10.1002/bip.20866] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A wide variety of enzymes can undergo a reversible loss of activity at low temperature, a process that is termed cold inactivation. This phenomenon is found in oligomeric enzymes such as tryptophanase (Trpase) and other pyridoxal phosphate dependent enzymes. On the other hand, cold-adapted, or psychrophilic enzymes, isolated from organisms able to thrive in permanently cold environments, have optimal activity at low temperature, which is associated with low thermal stability. Since cold inactivation may be considered "contradictory" to cold adaptation, we have looked into the amino acid sequences and the crystal structures of two families of enzymes, subtilisin and tryptophanase. Two cold adapted subtilisins, S41 and subtilisin-like protease from Vibrio, were compared to a mesophilic and a thermophilic subtilisins, as well as to four PLP-dependent enzymes in order to understand the specific surface residues, specific interactions, or any other molecular features that may be responsible for the differences in their tolerance to cold temperatures. The comparison between the psychrophilic and the mesophilic subtilisins revealed that the cold adapted subtilisins have a high content of acidic residues mainly found on their surface, making it charged. The analysis of the Trpases showed that they have a high content of hydrophobic residues on their surface. Thus, we suggest that the negatively charged residues on the surface of the subtilisins may be responsible for their cold adaptation, whereas the hydrophobic residues on the surface of monomeric Trpase molecules are responsible for the tetrameric assembly, and may account for their cold inactivation and dissociation.
Collapse
Affiliation(s)
- Orna Almog
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel.
| | | | | | | | | | | |
Collapse
|
45
|
Bauvois C, Jacquamet L, Huston AL, Borel F, Feller G, Ferrer JL. Crystal structure of the cold-active aminopeptidase from Colwellia psychrerythraea, a close structural homologue of the human bifunctional leukotriene A4 hydrolase. J Biol Chem 2008; 283:23315-25. [PMID: 18539590 DOI: 10.1074/jbc.m802158200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of a cold-active aminopeptidase (ColAP) from Colwellia psychrerythraea strain 34H has been determined, extending the number of crystal structures of the M1 metallopeptidase family to four among the 436 members currently identified. In agreement with their sequence similarity, the overall structure of ColAP displayed a high correspondence with leukotriene A4 hydrolase (LTA4H), a human bifunctional enzyme that converts leukotriene A4 (LTA4) in the potent chemoattractant leukotriene B4. Indeed, both enzymes are composed of three domains, an N-terminal saddle-like domain, a catalytic thermolysin-like domain, and a less conserved C-terminal alpha-helical flat spiral domain. Together, these domains form a deep cavity harboring the zinc binding site formed by residues included in the conserved HEXXHX(18)H motif. A detailed structural comparison of these enzymes revealed several plausible determinants of ColAP cold adaptation. The main differences involve specific amino acid substitutions, loop content and solvent exposure, complexity and distribution of ion pairs, and differential domain flexibilities. Such elements may act synergistically to allow conformational flexibility needed for an efficient catalysis in cold environments. Furthermore, the region of ColAP corresponding to the aminopeptidase active site of LTA4H is much more conserved than the suggested LTA4 substrate binding region. This observation supports the hypothesis that this region of the LTA4H active site has evolved in order to fit the lipidic substrate.
Collapse
Affiliation(s)
- Cédric Bauvois
- Laboratoire de Microbiologie, Université Libre de Bruxelles, B-1070 Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Botos I, Wlodawer A. The expanding diversity of serine hydrolases. Curr Opin Struct Biol 2007; 17:683-90. [PMID: 17890078 PMCID: PMC2173878 DOI: 10.1016/j.sbi.2007.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 08/01/2007] [Accepted: 08/05/2007] [Indexed: 11/21/2022]
Abstract
Serine hydrolases use a hydroxyl of a serine, assisted by one or more other residues, to cleave peptide bonds. They belong to several different families whose general mechanism is well known. However, the subtle structural differences that have recently been observed across a variety of families shed light on their functional diversity, including variations in mechanism of action, differences in the modes of substrate binding, and substrate-assisted orientation of catalytic residues. Of particular interest are the Rhomboid family serine proteinases that are active within the plasma membrane, for which several new structures have been reported. Because these enzymes are involved in biological and pathological processes, many are becoming important targets of drug design.
Collapse
Affiliation(s)
- Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
47
|
Pedrini B, Placzek WJ, Koculi E, Alimenti C, LaTerza A, Luporini P, Wüthrich K. Cold-adaptation in Sea-water-borne Signal Proteins: Sequence and NMR Structure of the Pheromone En-6 from the Antarctic Ciliate Euplotes nobilii. J Mol Biol 2007; 372:277-86. [PMID: 17663000 DOI: 10.1016/j.jmb.2007.06.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/15/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
Ciliates of Euplotes species constitutively secrete pleiotropic protein pheromones, which are capable to function as prototypic autocrine growth factors as well as paracrine inducers of mating processes. This paper reports the amino acid sequence and the NMR structure of the pheromone En-6 isolated from the antarctic species Euplotes nobilii. The 63-residue En-6 polypeptide chain forms three alpha-helices in positions 18-25, 36-40 and 46-56, which are arranged in an up-down-up three-helix bundle forming the edges of a distorted trigonal pyramid. The base of the pyramid is covered by the N-terminal heptadecapeptide segment, which includes a 3(10)-turn of residues 3-6. This topology is covalently anchored by four long-range disulfide bonds. Comparison with the smaller pheromones of E. raikovi, a closely related species living in temperate waters, shows that the two-pheromone families have the same three-helix bundle architecture. It then appears that cold-adaptation of the En proteins is primarily related to increased lengths of the chain-terminal peptide segments and the surface-exposed loops connecting the regular secondary structures, and to the presence of solvent-exposed clusters of negatively charged side-chains.
Collapse
Affiliation(s)
- Bill Pedrini
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Fedøy AE, Yang N, Martinez A, Leiros HKS, Steen IH. Structural and Functional Properties of Isocitrate Dehydrogenase from the Psychrophilic Bacterium Desulfotalea psychrophila Reveal a Cold-active Enzyme with an Unusual High Thermal Stability. J Mol Biol 2007; 372:130-49. [PMID: 17632124 DOI: 10.1016/j.jmb.2007.06.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 06/08/2007] [Accepted: 06/13/2007] [Indexed: 11/30/2022]
Abstract
Isocitrate dehydrogenase (IDH) has been studied extensively due to its central role in the Krebs cycle, catalyzing the oxidative NAD(P)(+)-dependent decarboxylation of isocitrate to alpha-ketoglutarate and CO(2). Here, we present the first crystal structure of IDH from a psychrophilic bacterium, Desulfotalea psychrophila (DpIDH). The structural information is combined with a detailed biochemical characterization and a comparative study with IDHs from the mesophilic bacterium Desulfitobacterium hafniense (DhIDH), porcine (PcIDH), human cytosolic (HcIDH) and the hyperthermophilic Thermotoga maritima (TmIDH). DpIDH was found to have a higher melting temperature (T(m)=66.9 degrees C) than its mesophilic homologues and a suboptimal catalytic efficiency at low temperatures. The thermodynamic activation parameters indicated a disordered active site, as seen also for the drastic increase in K(m) for isocitrate at elevated temperatures. A methionine cluster situated at the dimeric interface between the two active sites and a cluster of destabilizing charged amino acids in a region close to the active site might explain the poor isocitrate affinity. On the other hand, DpIDH was optimized for interacting with NADP(+) and the crystal structure revealed unique interactions with the cofactor. The highly acidic surface, destabilizing charged residues, fewer ion pairs and reduced size of ionic networks in DpIDH suggest a flexible global structure. However, strategic placement of ionic interactions stabilizing the N and C termini, and additional ionic interactions in the clasp domain as well as two enlarged aromatic clusters might counteract the destabilizing interactions and promote the increased thermal stability. The structure analysis of DpIDH illustrates how psychrophilic enzymes can adjust their flexibility in dynamic regions during their catalytic cycle without compromising the global stability of the protein.
Collapse
Affiliation(s)
- Anita-Elin Fedøy
- Department of Biology, University of Bergen, P.O. Box 7800, Jahnebakken 5, N-5020 Bergen, Norway
| | | | | | | | | |
Collapse
|
49
|
Malikova LA, Mardanova AM, Sokolova OV, Balaban NP, Rudenskaya GN, Sharipova MR. Conditions of the biosynthesis of an extracellular subtilisin-like proteinase by Bacillus pumilus KMM 62. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
50
|
Arnórsdóttir J, Helgadóttir S, Thorbjarnardóttir SH, Eggertsson G, Kristjánsson MM. Effect of selected Ser/Ala and Xaa/Pro mutations on the stability and catalytic properties of a cold adapted subtilisin-like serine proteinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:749-55. [PMID: 17490920 DOI: 10.1016/j.bbapap.2007.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 11/22/2022]
Abstract
A subtilisin-like serine proteinase from a psychrotrophic Vibrio species (VPR) shows distinct cold adapted traits regarding stability and catalytic properties, while sharing high sequence homology with enzymes adapted to higher temperatures. Based on comparisons of sequences and examination of 3D structural models of VPR and related enzymes of higher temperature origin, five sites were chosen to be subject to site directed mutagenesis. Three serine residues were substituted with alanine and two residues in loops were substituted with proline. The single mutations were combined to make double and triple mutants. The single Ser/Ala mutations had a moderately stabilizing effect and concomitantly decreased catalytic efficiency. Introducing a second Ser/Ala mutation did not have additive effect on stability; on the contrary a double Ser/Ala mutant had reduced stability with regard to both wild type and single mutants. The Xaa/Pro mutations stabilized the enzyme and did also tend to decrease the catalytic efficiency more than the Ser/Ala mutations.
Collapse
Affiliation(s)
- Jóhanna Arnórsdóttir
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavík, Iceland
| | | | | | | | | |
Collapse
|