1
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Cai M, Wang Z, Luu TTT, Zhang D, Finke B, He J, Tay LWR, Di Paolo G, Du G. PLD1 promotes reactive oxygen species production in vascular smooth muscle cells and injury-induced neointima formation. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159062. [PMID: 34610470 DOI: 10.1016/j.bbalip.2021.159062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Phospholipase D (PLD) generates the signaling lipid phosphatidic acid (PA) and has been known to mediate proliferation signal in vascular smooth muscle cells (VSMCs). However, it remains unclear how PLD contributes to vascular diseases. VSMC proliferation directly contributes to the development and progression of cardiovascular disease, such as atherosclerosis and restenosis after angioplasty. Using the mouse carotid artery ligation model, we find that deletion of Pld1 gene inhibits neointima formation of the injuried blood vessels. PLD1 deficiency reduces the proliferation of VSMCs in both injured artery and primary cultures through the inhibition of ERK1/2 and AKT signals. Immunohistochemical staining of injured artery and flow cytometry analysis of VSMCs shows a reduction of the levels of reactive oxygen species (ROS) in Pld1-/- VSMCs. An increase of intracellular ROS by hydrogen peroxide stimulation restored the reduced activities of ERK and AKT in Pld1-/- VSMCs, whereas a reduction of ROS by N-acetyl-l-cysteine (NAC) scavenger lowered their activity in wild-type VSMCs. These results indicate that PLD1 plays a critical role in neointima, and that PLD1 mediates VSMC proliferation signal through promoting the production of ROS. Therefore, inhibition of PLD1 may be used as a therapeutic approach to suppress neointimal formation in atherosclerosis and restenosis after angioplasty.
Collapse
Affiliation(s)
- Ming Cai
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Ziqing Wang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Thi Thu Trang Luu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Dakai Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brian Finke
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jingquan He
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Li Wei Rachel Tay
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Luo T, Pueyo JM, Wahni K, Yvanoff C, Lazar T, Pyr Dit Ruys S, Vertommen D, Ezeriņa D, Messens J. Thiol-disulphide independent in-cell trapping for the identification of peroxiredoxin 2 interactors. Redox Biol 2021; 46:102066. [PMID: 34340028 PMCID: PMC8346688 DOI: 10.1016/j.redox.2021.102066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 10/28/2022] Open
Abstract
Hydrogen peroxide (H2O2) acts as a signalling molecule by oxidising cysteine thiols in proteins. Recent evidence has established a role for cytosolic peroxiredoxins in transmitting H2O2-based oxidation to a multitude of target proteins. Moreover, it is becoming clear that peroxiredoxins fulfil their function in organised microdomains, where not all interactors are covalently bound. However, most studies aimed at identifying peroxiredoxin interactors were based on methods that only detect covalently linked partners. Here, we explore the applicability of two thiol-disulphide independent in-cell trapping methodological approaches in combination with mass spectrometry for the identification of interaction partners of peroxiredoxin 2 (Prdx2). The first is biotin-dependent proximity-labelling (BioID) with a biotin ligase A (BirA*)-fused Prdx2, which has never been applied on redox-active proteins. The second is crosslinker co-immunoprecipitation with an N-terminally His-tagged Prdx2. During the initial characterisation of the tagged Prdx2 constructs, we found that the His-tag, but not BirA*, compromises the peroxidase and signalling activities of Prdx2. Further, the Prdx2 interactors identified with each approach showed little overlap. We therefore concluded that BioID is a more reliable method than crosslinker co-immunoprecipitation. After a stringent mass spec data filtering, BioID identified 13 interactors under elevated H2O2 conditions, including subunit five of the COP9 signalosome complex (CSN5). The Prdx2:CSN5 interaction was further confirmed in a proximity ligation assay. Taken together, our results demonstrate that BioID can be used as a method for the identification of interactors of Prdxs, and that caution should be exercised when interpreting protein-protein interaction results using tagged Prdxs.
Collapse
Affiliation(s)
- Ting Luo
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Julia Malo Pueyo
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Charlotte Yvanoff
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel, Brussels, Belgium and Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | | | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.
| |
Collapse
|
4
|
Bolduc J, Koruza K, Luo T, Malo Pueyo J, Vo TN, Ezeriņa D, Messens J. Peroxiredoxins wear many hats: Factors that fashion their peroxide sensing personalities. Redox Biol 2021; 42:101959. [PMID: 33895094 PMCID: PMC8113037 DOI: 10.1016/j.redox.2021.101959] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/07/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Peroxiredoxins (Prdxs) sense and assess peroxide levels, and signal through protein interactions. Understanding the role of the multiple structural and post-translational modification (PTM) layers that tunes the peroxiredoxin specificities is still a challenge. In this review, we give a tabulated overview on what is known about human and bacterial peroxiredoxins with a focus on structure, PTMs, and protein-protein interactions. Armed with numerous cellular and atomic level experimental techniques, we look at the future and ask ourselves what is still needed to give us a clearer view on the cellular operating power of Prdxs in both stress and non-stress conditions.
Collapse
Affiliation(s)
- Jesalyn Bolduc
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Katarina Koruza
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Ting Luo
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Julia Malo Pueyo
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Trung Nghia Vo
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.
| |
Collapse
|
5
|
Hong K, Zhang L, Zhan R, Huang B, Song K, Jia Z. Identification and Characterization of Phospholipase D Genes Putatively Involved in Internal Browning of Pineapple during Postharvest Storage. FRONTIERS IN PLANT SCIENCE 2017; 8:913. [PMID: 28674540 PMCID: PMC5474486 DOI: 10.3389/fpls.2017.00913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/15/2017] [Indexed: 05/28/2023]
Abstract
Phospholipase D (PLD) in plants plays vital roles in growth, development, and stress responses. However, the precise role of PLDs in pineapple remains poorly understood. In this study, 10 putative PLD genes, designated as AcPLD1-AcPLD10, were identified based on the pineapple genome database. The 10 AcPLDs could be clustered into five of the six known PLD families according to sequence characterization. Their deduced amino acid sequences displayed similarities to PLDs from other plant species. Expression analyses of PLD mRNAs from pineapple pulp were performed. The 10 PLDs exhibited differential expression patterns during storage periods of fruits treated with hexaldehyde (a specific PLD inhibitor) which could alleviate internal browning (IB) of pineapple after harvest. Functional subcellular localization signaling assays of two PLD proteins (AcPLD2 and AcPLD9) were performed by fluorescence microscopy. To further detect the potential action mechanism underlying PLD involved in the IB defense response, PLD, hydrogen peroxide (H2O2) and H2O2 associated with antioxidative enzymes such as superoxide dismutase, catalase, NADPH, and ascorbate peroxidase were quantified by enzyme-linked immunosorbent assay. This report is the first to provide a genome-wide description of the pineapple PLD gene family, and the results should expand knowledge of this family.
Collapse
Affiliation(s)
| | | | - Rulin Zhan
- *Correspondence: Lubin Zhang, Rulin Zhan,
| | | | | | | |
Collapse
|
6
|
2-cys peroxiredoxins: emerging hubs determining redox dependency of Mammalian signaling networks. Int J Cell Biol 2014; 2014:715867. [PMID: 24672551 PMCID: PMC3932224 DOI: 10.1155/2014/715867] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/25/2013] [Indexed: 01/28/2023] Open
Abstract
Mammalian cells have a well-defined set of antioxidant enzymes, which includes superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins. Peroxiredoxins are the most recently identified family of antioxidant enzymes that catalyze the reduction reaction of peroxides, such as H2O2. In particular, typical 2-Cys peroxiredoxins are the featured peroxidase enzymes that receive the electrons from NADPH by coupling with thioredoxin and thioredoxin reductase. These enzymes distribute throughout the cellular compartments and, therefore, are thought to be broad-range antioxidant defenders. However, recent evidence demonstrates that typical 2-Cys peroxiredoxins play key signal regulatory roles in the various signaling networks by interacting with or residing near a specific redox-sensitive molecule. These discoveries help reveal the redox signaling landscape in mammalian cells and may further provide a new paradigm of therapeutic approaches based on redox signaling.
Collapse
|
7
|
Zhang F, Wang Z, Lu M, Yonekubo Y, Liang X, Zhang Y, Wu P, Zhou Y, Grinstein S, Hancock JF, Du G. Temporal production of the signaling lipid phosphatidic acid by phospholipase D2 determines the output of extracellular signal-regulated kinase signaling in cancer cells. Mol Cell Biol 2014; 34:84-95. [PMID: 24164897 PMCID: PMC3911278 DOI: 10.1128/mcb.00987-13] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/22/2013] [Accepted: 10/21/2013] [Indexed: 01/14/2023] Open
Abstract
The Ras-extracellular signal-regulated kinase (ERK) cascade is an important signaling module in cells. One regulator of the Ras-ERK cascade is phosphatidic acid (PA) generated by phospholipase D (PLD) and diacylglycerol kinase (DGK). Using a newly developed PA biosensor, PASS (phosphatidic acid biosensor with superior sensitivity), we found that PA was generated sequentially by PLD and DGK in epidermal growth factor (EGF)-stimulated HCC1806 breast cancer cells. Inhibition of PLD2, one of the two PLD members, was sufficient to eliminate most of the PA production, whereas inhibition of DGK decreased PA production only at the later stages of EGF stimulation, suggesting that PLD2 precedes DGK activation. The temporal production of PA by PLD2 is important for the nuclear activation of ERK. While inhibition of both PLD and DGK had no effect on the overall ERK activity, inhibition of PLD2 but not PLD1 or DGK blocked the nuclear ERK activity in several cancer cell lines. The decrease of active ERK in the nucleus inhibited the activation of Elk1, c-fos, and Fra1, the ERK nuclear targets, leading to decreased proliferation of HCC1806 cells. Together, these findings reveal that PA production by PLD2 determines the output of ERK in cancer cell growth factor signaling.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ziqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maryia Lu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yoshiya Yonekubo
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiao Liang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Shanghai Institute of Digestive Disease, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueqiang Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ping Wu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
8
|
Shao ZR, Wang Q, Xu XF, Zhang Z, Lu YB, Shen G, Wu M. Phospholipase D participates in H(2)O(2)-induced A549 alveolar epithelial cell migration. Exp Lung Res 2013; 38:427-33. [PMID: 23030646 DOI: 10.3109/01902148.2012.719282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To investigate the effects of phospholipase D (PLD) on low-concentration hydrogen peroxide (H(2)O(2))-induced growth and migration in alveolar epithelial A549 cells, the cells were exposed to H(2)O(2) (3-100 μM) for 12-48 hours, cell proliferation was determined by MTT assay and cell migration was tested by a modified epithelial wound healing assay. We found that one bolus of H(2)O(2) (10-100 μM) did not affect proliferation, but significantly stimulated migration (143-161% of control) after a 12-hour exposure. Pretreatment with the antioxidants catalase (1000 U/ml), N-acetyl-cysteine (2 mM), or edaravone (10 μM) abolished the migration induced by 30 μM H(2)O(2); the PLD inhibitor 1-butanol (0.5%) also attenuated H(2)O(2)-induced migration to the control level; while exogenous phosphatidic acid (PA) (10(-7)-10(-4) M) mimicked the effects of PLD activation and induced migration in a dose-dependent manner. We suggest that the alveolar epithelial cell migration induced by exposure to low concentrations of H(2)O(2) benefits tissue repair during acute lung injury (ALI) and PLD is involved in the underlying mechanism.
Collapse
Affiliation(s)
- Zhe-Ren Shao
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Rhee SG, Woo HA. Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H₂O₂, and protein chaperones. Antioxid Redox Signal 2011; 15:781-94. [PMID: 20919930 DOI: 10.1089/ars.2010.3393] [Citation(s) in RCA: 335] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peroxiredoxins (Prxs) are a family of peroxidases that reduce peroxides, with a conserved cysteine residue (the peroxidatic Cys) serving as the site of oxidation by peroxides. Peroxides oxidize the peroxidatic Cys-SH to Cys-SOH, which then reacts with another cysteine residue (typically the resolving Cys [C(R)]) to form a disulfide that is subsequently reduced by an appropriate electron donor. On the basis of the location or absence of the C(R), Prxs are classified into 2-Cys, atypical 2-Cys, and 1-Cys Prx subfamilies. In addition to their peroxidase activity, members of the 2-Cys Prx subfamily appear to serve as peroxide sensors for other proteins and as molecular chaperones. During catalysis, the peroxidatic Cys-SOH of 2-Cys Prxs is occasionally further oxidized to Cys-SO(2)H before disulfide formation, resulting in inactivation of peroxidase activity. This hyperoxidation, which is reversed by the ATP-dependent enzyme sulfiredoxin, modulates the sensor and chaperone functions of 2-Cys Prxs. The peroxidase activity of 2-Cys Prxs is extensively regulated via tyrosine and threonine phosphorylation, which allows modulation of the local concentration of the intracellular messenger H(2)O(2). Finally, 2-Cys Prxs interact with a variety of proteins, with such interaction having been shown to modulate the function of the binding partners in a reciprocal manner.
Collapse
Affiliation(s)
- Sue Goo Rhee
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea.
| | | |
Collapse
|
10
|
Lowther WT, Haynes AC. Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin. Antioxid Redox Signal 2011; 15:99-109. [PMID: 20712415 PMCID: PMC3110103 DOI: 10.1089/ars.2010.3564] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The eukaryotic, typical 2-Cys peroxiredoxins (Prxs) are inactivated by hyperoxidation of one of their active-site cysteine residues to cysteine sulfinic acid. This covalent modification is thought to enable hydrogen peroxide-mediated cell signaling and to act as a functional switch between a peroxidase and a high-molecular-weight chaperone. Moreover, hyperoxidation has been implicated in a variety of disease states associated with oxidative stress, including cancer and aging-associated pathologies. A repair enzyme, sulfiredoxin (Srx), reduces the sulfinic acid moiety by using an unusual ATP-dependent mechanism. In this process, the Prx molecule undergoes dramatic structural rearrangements to facilitate repair. Structural, kinetic, mutational, and mass spectrometry-based approaches have been used to dissect the molecular basis for Srx catalysis. The available data support the direct formation of Cys sulfinic acid phosphoryl ester and protein-based thiosulfinate intermediates. This review discusses the role of Srx in the reversal of Prx hyperoxidation, the questions raised concerning the reductant required for human Srx regeneration, and the deglutathionylating activity of Srx. The complex interplay between Prx hyperoxidation, other forms of Prx covalent modification, and the oligomeric state also are discussed.
Collapse
Affiliation(s)
- W Todd Lowther
- Center for Structural Biology, Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | |
Collapse
|
11
|
Wu M, Wang Q, Luo JY, Jiang B, Li XY, Chen RK, Lu YB. Activation of phospholipase D involved in both injury and survival in A549 alveolar epithelial cells exposed to H2O2. Toxicol Lett 2010; 196:168-74. [PMID: 20417698 DOI: 10.1016/j.toxlet.2010.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 01/04/2023]
Abstract
To determine the role of the phospholipase D (PLD) pathway in injury and survival of alveolar epithelial cells, A549 cells were exposed to H(2)O(2) (500 microM) which resulted in time-dependent injury and bi-phasic increase of PLD activity at 5 min and at 3 h, respectively. n-Butanol (0.5%) inhibited PLD activation, attenuated cell injury at 5 min of H(2)O(2) exposure, but enhanced injury at 3h of exposure. This activation was inhibited by treatment with catalase (500 units/ml). Exogenous phosphatidic acid mimicked the effects of PLD activation, and diphenyliodonium (NADPH oxidase inhibitor) reversed the decline in cell viability induced by H(2)O(2) exposure. Propranolol (phosphatidic acid phospholydrolase inhibitor) and quinacrine (phospholipase A2 inhibitor) had weak effects on H(2)O(2)-induced PLD activation but reversed H(2)O(2)-induced injury. We speculate that PLD activation at the initiation of H(2)O(2) exposure predominantly results in NAPDH oxidase activation, which mediates A549 cell injury, but turns to mediating cell survival as the H(2)O(2) attack continues, which might be mainly due to the accumulation of intracellular phosphatidic acid.
Collapse
Affiliation(s)
- Ming Wu
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Seo JH, Lim JC, Lee DY, Kim KS, Piszczek G, Nam HW, Kim YS, Ahn T, Yun CH, Kim K, Chock PB, Chae HZ. Novel protective mechanism against irreversible hyperoxidation of peroxiredoxin: Nalpha-terminal acetylation of human peroxiredoxin II. J Biol Chem 2009; 284:13455-13465. [PMID: 19286652 DOI: 10.1074/jbc.m900641200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxiredoxins (Prxs) are a group of peroxidases containing a cysteine thiol at their catalytic site. During peroxidase catalysis, the catalytic cysteine, referred to as the peroxidatic cysteine (C(P)), cycles between thiol (C(P)-SH) and disulfide (-S-S-) states via a sulfenic (C(P)-SOH) intermediate. Hyperoxidation of the C(P) thiol to its sulfinic (C(P)-SO(2)H) derivative has been shown to be reversible, but its sulfonic (C(P)-SO(3)H) derivative is irreversible. Our comparative study of hyperoxidation and regeneration of Prx I and Prx II in HeLa cells revealed that Prx II is more susceptible than Prx I to hyperoxidation and that the majority of the hyperoxidized Prx II formation is reversible. However, the hyperoxidized Prx I showed much less reversibility because of the formation of its irreversible sulfonic derivative, as verified with C(P)-SO(3)H-specific antiserum. In an attempt to identify the multiple hyperoxidized spots of the Prx I on two-dimensional PAGE analysis, an N-acetylated Prx I was identified as part of the total Prx I using anti-acetylated Lys antibody. Using peptidyl-Asp metalloendopeptidase (EC 3.4.24.33) peptide fingerprints, we found that N(alpha)-terminal acetylation (N(alpha)-Ac) occurred exclusively on Prx II after demethionylation. N(alpha)-Ac of Prx II blocks Prx II from irreversible hyperoxidation without altering its affinity for hydrogen peroxide. A comparative study of non-N(alpha)-acetylated and N(alpha)-terminal acetylated Prx II revealed that N(alpha)-Ac of Prx II induces a significant shift in the circular dichroism spectrum and elevation of T(m) from 59.6 to 70.9 degrees C. These findings suggest that the structural maintenance of Prx II by N(alpha)-Ac may be responsible for preventing its hyperoxidation to form C(P)-SO(3)H.
Collapse
Affiliation(s)
- Jae Ho Seo
- School of Biological Sciences and Technology Chonnam National University, Gwangju 500-757, Korea
| | - Jung Chae Lim
- School of Biological Sciences and Technology Chonnam National University, Gwangju 500-757, Korea
| | - Duck-Yeon Lee
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Kyung Seok Kim
- School of Biological Sciences and Technology Chonnam National University, Gwangju 500-757, Korea
| | - Grzegorz Piszczek
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Hyung Wook Nam
- Department of Biochemistry, College of Science, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea
| | - Yu Sam Kim
- Department of Biochemistry, College of Science, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea
| | - Taeho Ahn
- Department of Biochemistry, Chonnam National University, Gwangju 500-757, Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology Chonnam National University, Gwangju 500-757, Korea
| | - Kanghwa Kim
- Department of Food and Nutrition and College of Veterinary Medicine Chonnam National University, Gwangju 500-757, Korea
| | - P Boon Chock
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Ho Zoon Chae
- School of Biological Sciences and Technology Chonnam National University, Gwangju 500-757, Korea.
| |
Collapse
|
13
|
Kumagai T, Osada Y, Ohta N, Kanazawa T. Peroxiredoxin-1 from Schistosoma japonicum functions as a scavenger against hydrogen peroxide but not nitric oxide. Mol Biochem Parasitol 2008; 164:26-31. [PMID: 19041905 DOI: 10.1016/j.molbiopara.2008.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 11/19/2022]
Abstract
Three peroxiredoxins (Prxs) are expressed during most of the developmental stages in the schistosome. Prx-1 is localized on the surface of the schistosomula and adults of Schistosoma japonicum, while Prx-2 is localized in the sub-tegumental tissues, parenchyma, vitelline glands, and gut epithelium, but not on the surface of the worms. We applied RNA interference techniques to suppress the specific genes of S. japonicum Prxs. Schistosomula of S. japonicum were cultured together with long-dsRNA encoding Prx-1 and Prx-2 of S. japonicum (the soaking method). The transcription level of each Prx gene was reduced by an RNA interference (RNAi)-mediated effect specifically. Although neither Prx was the essential protein for survival of S. japonicum schistosomula, Prx-1 dsRNA-treated larvae were susceptible to hydrogen peroxide. Moreover, these larvae were also susceptible to t-butyl hydroperoxide and cumene-hydroperoxide. However, the knockdown of neither Prx-1 nor Prx-2 influenced the resistance against nitric oxide generated from DETA/NO. Prx-1 may work as a scavenger against reactive oxygen species (ROS) generated outside of the schistosomes to prevent the oxidation of the bodies and/or the attack by immune cells producing the ROS. These findings suggest that Prx-1 may become a novel target of drugs and vaccines for schistosomiasis.
Collapse
Affiliation(s)
- Takashi Kumagai
- Section of Environmental Parasitology, Department of International Health Development, Division of Public Health, Tokyo Medical and Dental University Graduate School, Japan.
| | | | | | | |
Collapse
|
14
|
Fourquet S, Huang ME, D'Autreaux B, Toledano MB. The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling. Antioxid Redox Signal 2008; 10:1565-76. [PMID: 18498222 DOI: 10.1089/ars.2008.2049] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thiol-based peroxidases consist of the peroxiredoxins (Prx) and the related glutathione peroxidase (GPx)-like enzymes. Their catalytic function is to reduce peroxides by using the reactivity of the cysteine residue, and their presumed primary physiologic role is to protect living organisms from peroxide toxicity. However, as peroxide-metabolizing enzymes, they also regulate hydrogen peroxide (H2O2) signaling. We review here enzymatic and biochemical attributes of thiol peroxidases that specify both distinctive peroxide-scavenging functions and the property of regulating H2O2 signaling. We then discuss possible thiol peroxidase physiologic functions, based on selected observations made in microorganisms and mammals.
Collapse
Affiliation(s)
- Simon Fourquet
- CEA, DSV, IBITECS, Laboratoire Stress Oxydants et Cancer, CEA-Saclay, Gif-sur-Yvette France
| | | | | | | |
Collapse
|
15
|
Abstract
The mammalian target of rapamycin (mTOR) assembles a signaling network essential for the regulation of cell growth, which has emerged as a major target of anticancer therapies. The tuberous sclerosis complex 1 and 2 (TSC1/2) proteins and their target, the small GTPase Rheb, constitute a key regulatory pathway upstream of mTOR. Phospholipase D (PLD) and its product phosphatidic acid are also upstream regulators of the mitogenic mTOR signaling. However, how the TSC/Rheb and PLD pathways interact or integrate in the rapamycin-sensitive signaling network has not been examined before. Here, we find that PLD1, but not PLD2, is required for Rheb activation of the mTOR pathway, as demonstrated by the effects of RNAi. The overexpression of Rheb activates PLD1 in cells in the absence of mitogenic stimulation, and the knockdown of Rheb impairs serum stimulation of PLD activation. Furthermore, the overexpression of TSC2 suppresses PLD1 activation, whereas the knockdown or deletion of TSC2 leads to elevated basal activity of PLD. Consistent with a TSC-Rheb-PLD signaling cascade, AMPK and PI3K, both established regulators of TSC2, appear to lie upstream of PLD as revealed by the effects of pharmacological inhibitors, and serum activation of PLD is also dependent on amino acid sufficiency. Finally, Rheb binds and activates PLD1 in vitro in a GTP-dependent manner, strongly suggesting that PLD1 is a bona fide effector for Rheb. Hence, our findings reveal an unexpected interaction between two cascades in the mTOR signaling pathways and open up additional possibilities for targeting this important growth-regulating network for the development of anticancer drugs.
Collapse
|
16
|
Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace. Nature 2008; 451:98-101. [PMID: 18172504 DOI: 10.1038/nature06415] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 10/24/2007] [Indexed: 11/09/2022]
Abstract
Typical 2-Cys peroxiredoxins (Prxs) have an important role in regulating hydrogen peroxide-mediated cell signalling. In this process, Prxs can become inactivated through the hyperoxidation of an active site Cys residue to Cys sulphinic acid. The unique repair of this moiety by sulphiredoxin (Srx) restores peroxidase activity and terminates the signal. The hyperoxidized form of Prx exists as a stable decameric structure with each active site buried. Therefore, it is unclear how Srx can access the sulphinic acid moiety. Here we present the 2.6 A crystal structure of the human Srx-PrxI complex. This complex reveals the complete unfolding of the carboxy terminus of Prx, and its unexpected packing onto the backside of Srx away from the Srx active site. Binding studies and activity analyses of site-directed mutants at this interface show that the interaction is required for repair to occur. Moreover, rearrangements in the Prx active site lead to a juxtaposition of the Prx Gly-Gly-Leu-Gly and Srx ATP-binding motifs, providing a structural basis for the first step of the catalytic mechanism. The results also suggest that the observed interactions may represent a common mode for other proteins to bind to Prxs.
Collapse
|
17
|
Abstract
It is well established that oxidative stress is an important cause of cell damage associated with the initiation and progression of many diseases. Consequently, all air-living organisms contain antioxidant enzymes that limit oxidative stress by detoxifying reactive oxygen species, including hydrogen peroxide. However, in eukaryotes, hydrogen peroxide also has important roles as a signaling molecule in the regulation of a variety of biological processes. Here, we will discuss the molecular mechanisms by which hydrogen peroxide is sensed and the increasing evidence that antioxidant enzymes play multiple, key roles as sensors and regulators of signal transduction in response to hydrogen peroxide.
Collapse
Affiliation(s)
- Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, Tyne and Wear, UK.
| | | | | |
Collapse
|
18
|
Phalen TJ, Weirather K, Deming PB, Anathy V, Howe AK, van der Vliet A, Jönsson TJ, Poole LB, Heintz NH. Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. ACTA ACUST UNITED AC 2007; 175:779-89. [PMID: 17145963 PMCID: PMC2064677 DOI: 10.1083/jcb.200606005] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inactivation of eukaryotic 2-Cys peroxiredoxins (Prxs) by hyperoxidation has been proposed to promote accumulation of hydrogen peroxide (H2O2) for redox-dependent signaling events. We examined the oxidation and oligomeric states of PrxI and -II in epithelial cells during mitogenic signaling and in response to fluxes of H2O2. During normal mitogenic signaling, hyperoxidation of PrxI and -II was not detected. In contrast, H2O2-dependent cell cycle arrest was correlated with hyperoxidation of PrxII, which resulted in quantitative recruitment of ∼66- and ∼140-kD PrxII complexes into large filamentous oligomers. Expression of cyclin D1 and cell proliferation did not resume until PrxII-SO2H was reduced and native PrxII complexes were regenerated. Ectopic expression of PrxI or -II increased Prx-SO2H levels in response to oxidant exposure and failed to protect cells from arrest. We propose a model in which Prxs function as peroxide dosimeters in subcellular processes that involve redox cycling, with hyperoxidation controlling structural transitions that alert cells of perturbations in peroxide homeostasis.
Collapse
Affiliation(s)
- Timothy J Phalen
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kumagai T, Osada Y, Kanazawa T. 2-Cys peroxiredoxins from Schistosoma japonicum: The expression profile and localization in the life cycle. Mol Biochem Parasitol 2006; 149:135-43. [PMID: 16806527 DOI: 10.1016/j.molbiopara.2006.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/06/2006] [Accepted: 05/08/2006] [Indexed: 01/19/2023]
Abstract
Peroxiredoxin (Prx) is known to be an antioxidant protein that protects the organisms against various oxidative stresses and functions as a signal transductor. Here, we determined the full-length cDNA sequences of three types of Prx from an Asian blood fluke, Schistosoma japonicum: Prx-1, Prx-2 and Prx-3. According to the deduced amino acid sequences, only Prx-3 had a mitochondria-targeting sequence. Using RT-PCR, it was shown that these Prx genes were constitutively expressed in the eggs, cercariae and adult worms of the schistosome. Western blot analysis using antisera specific for each Prx revealed that all the three Prx proteins existed in these developmental stages. By immunolocalization analysis, Prx-1 existed on the surface of a miracidium and in the space between a miracidium and an eggshell. Furthermore, Prx-1 was deposited in the host tissues around the eggs. In adult worms, Prx-1 was not only expressed in the tegument, but also contained in their excretory/secretory products. The surface of the 7 day-schistosomula was stained with anti-Prx-1 antiserum. On the other hand, Prx-2 only existed inside the miracidia in eggs. In addition, Prx-2 was mainly detected in the sub-tegumental tissues, parenchyma, vitelline gland and gut epithelium of the adult worms, but was not detected in the tegument of adults and schistosomula. Taken together with previous reports by other investigators, these data suggest that Prx-1 acts to protect the parasite against the ROS produced by host immune cells, and that Prx-2 plays important roles in intracellular redox signaling and/or in the reduction of ROS generated through the hemoglobinolytic process in the digestive tract.
Collapse
Affiliation(s)
- Takashi Kumagai
- Department of Parasitology and Tropical Public Health, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Japan.
| | | | | |
Collapse
|