Moreau M, Boucher JL, Mattioli TA, Stuehr DJ, Mansuy D, Santolini J. Differential Effects of Alkyl- and Arylguanidines on the Stability and Reactivity of Inducible NOS Heme−Dioxygen Complexes.
Biochemistry 2006;
45:3988-99. [PMID:
16548526 DOI:
10.1021/bi051488p]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NO-Synthases are heme proteins that catalyze the oxidation of L-arginine into NO and L-citrulline. Some non-amino acid alkylguanidines may serve as substrates of inducible NOS (iNOS), while no NO* production is obtained from arylguanidines. All studied guanidines induce uncoupling between electrons transferred from the reductase domain and those required for NO formation. This uncoupling becomes critical with arylguanidines, leading to the exclusive formation of superoxide anion O2*- as well as hydrogen peroxide H2O2. To understand these different behaviors, we have conducted rapid scanning stopped-flow experiments with dihydrobiopterin (BH2) and tetrahydrobiopterin (BH4) to study, respectively, the (i) autoxidation and (ii) activation processes of heme ferrous-O2 complexes (Fe(II)O2) in the presence of eight alkyl- and arylguanidines. The Fe(II)O2 complex is more easily autooxidized by alkylguanidines (10-fold) and arylguanidines (100-fold) compared to L-arginine. In the presence of alkylguanidines and BH4, the oxygen-activation kinetics are very similar to those observed with L-arginine. Conversely, in the presence of arylguanidines, no Fe(II)O2 intermediate is detected. To understand such variations in reactivity and stability of Fe(II)O2 complex, we have characterized the effects of alkyl- and arylguanidines on Fe(II)O2 structure using the Fe(II)CO complex as a mimic. Resonance Raman and FTIR spectroscopies show that the two classes of guanidine derivatives induce different polar effects on Fe(II)CO environment. Our data suggest that the structure of the substituted guanidine can modulate the stability and the reactivity of heme-dioxygen complexes. We thus propose differential mechanisms for the electron- and proton-transfer steps in the NOS-dependent, oxygen-activation process, contingent upon whether alkyl- or arylguanidines are bound.
Collapse