1
|
Bigalke A, Sponholz C, Schnabel C, Bauer M, Kiehntopf M. Multiplex quantification of C-terminal alpha-1-antitrypsin peptides provides a novel approach for characterizing systemic inflammation. Sci Rep 2022; 12:3844. [PMID: 35264629 PMCID: PMC8907207 DOI: 10.1038/s41598-022-07752-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
C-terminal peptides (CAAPs) of the highly abundant serine protease alpha-1-antitrypsin (A1AT) have been identified at various lengths in several human materials and have been proposed to serve as putative biomarkers for a variety of diseases. CAAPs are enzymatically formed and these enzymatic activities are often associated with excessive immune responses (e.g. sepsis, allergies). However, most of those CAAPs have been either detected using in vitro incubation experiments or in human materials which are not easily accessible. To gain a comprehensive understanding about the occurrence and function of CAAPs in health and disease, a LC-MS/MS method for the simultaneous detection of nine CAAPs was developed and validated for human plasma (EDTA and lithium-heparin) and serum. Using this newly developed method, we were able to detect and quantify five CAAPs in healthy individuals thereby providing an initial proof for the presence of C36, C37, C40 and C44 in human blood. Concentrations of four CAAPs in a clinical test cohort of patients suffering from sepsis were significantly higher compared to healthy controls. These results reveal that in addition to C42 other fragments of A1AT seem to play a crucial role during systemic infections. The proposed workflow is simple, rapid and robust; thus this method could be used as diagnostic tool in routine clinical chemistry as well as for research applications for elucidating the diagnostic potential of CAAPs in numerous diseases. To this end, we also provide an overview about the current state of knowledge for CAAPs identified in vitro and in vivo.
Collapse
Affiliation(s)
- Arite Bigalke
- grid.275559.90000 0000 8517 6224Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Christoph Sponholz
- grid.275559.90000 0000 8517 6224Department of Anesthesiology and Intensive Care Therapy, Jena University Hospital, Jena, Germany
| | - Claudia Schnabel
- grid.275559.90000 0000 8517 6224Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- grid.275559.90000 0000 8517 6224Department of Anesthesiology and Intensive Care Therapy, Jena University Hospital, Jena, Germany
| | - Michael Kiehntopf
- grid.275559.90000 0000 8517 6224Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
2
|
Zhang Q, Wang J, Huang D, Liu G. High Expression of PRSS3 Indicates Unfavorable Clinical Outcomes in Colon Adenocarcinoma. Appl Immunohistochem Mol Morphol 2021; 29:564-569. [PMID: 33758142 DOI: 10.1097/pai.0000000000000921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/27/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Serine proteases have been implicated as key drivers and facilitators of cancer malignancy. Protease, serine, 3 (PRSS3), which belongs to the serine proteases family, is reported to be abundantly expressed in a variety of types of tumor and contributes to the initiation and development of cancers. However, the clinical role of PRSS3 in colon adenocarcinoma (CAC) was not clarified yet. In the present study, we explored the potential effect of PRSS3 in CAC and whether it is related to the poor survival of CAC patients. MATERIALS AND METHODS The mRNA and protein levels of PRSS3 were examined in CAC samples and connective noncancerous colon samples through quantitative real-time polymerase chain reaction assay and immunohistochemistry staining. Univariate and multivariate analyses were performed to estimate the prognostic role of PRSS3 in enrolled CAC patients. RESULTS PRSS3 expression in CAC samples was significantly increased compared with connective noncancerous samples. Moreover, a higher level of PRSS3 was found to be correlated with the larger tumor size, advanced T stage, and positive lymph node metastasis. In addition, PRSS3 was also defined as an unfavorable prognosis factor for CAC patients. CONCLUSIONS High expression of PRSS3 was significantly related to the unfavorable clinical features and poor prognosis in CAC patients. It suggested that PRSS3 might serve as a novel prognostic indicator and potential drug target for CAC treatment.
Collapse
Affiliation(s)
- Quanyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin
- The Second Department of General Surgery, Affiliated Hospital of Shan Dong Medical College
| | | | - Di Huang
- Department of Gastrointestinal Oncological Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin
| |
Collapse
|
3
|
Mouse model suggests limited role for human mesotrypsin in pancreatitis. Pancreatology 2021; 21:342-352. [PMID: 33526384 PMCID: PMC7969449 DOI: 10.1016/j.pan.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Mesotrypsin is a low-abundance human trypsin isoform with a unique evolutionary mutation that conferred resistance to trypsin inhibitors and restricted substrate specificity. Mesotrypsin degrades the serine protease inhibitor Kazal type 1 (SPINK1) and thereby might increase risk for pancreatitis. Here, we report a mouse model designed to test the role of mesotrypsin in pancreatitis. We introduced the human mesotrypsin evolutionary signature mutation into mouse cationic trypsinogen (isoform T7), resulting in a Gly to Arg change at the corresponding position 199. In biochemical experiments using purified proteins, the p.G199R T7 mutant recapitulated all salient features of human mesotrypsin. T7G199R mice developed normally with no spontaneous pancreatitis or other obvious phenotypic changes. Cerulein-induced acute pancreatitis in C57BL/6N and T7G199R mice showed similar severity with respect to inflammatory parameters and acinar cell necrosis while plasma amylase activity was higher in T7G199R mice. Neither SPINK1 degradation nor elevated intrapancreatic trypsin activation was apparent in T7G199R mice. The results indicate that in T7G199R mice the newly created mesotrypsin-like activity has no significant impact on cerulein-induced pancreatitis. The observations suggest that human mesotrypsin is unimportant for pancreatitis; a notion that is consistent with published human genetic studies.
Collapse
|
4
|
Szabó A, Toldi V, Gazda LD, Demcsák A, Tőzsér J, Sahin-Tóth M. Defective binding of SPINK1 variants is an uncommon mechanism for impaired trypsin inhibition in chronic pancreatitis. J Biol Chem 2021; 296:100343. [PMID: 33515547 PMCID: PMC7949130 DOI: 10.1016/j.jbc.2021.100343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
The serine protease inhibitor Kazal type 1 (SPINK1) protects the pancreas from intrapancreatic trypsin activation that can lead to pancreatitis. Loss-of-function genetic variants of SPINK1 increase the risk for chronic pancreatitis, often by diminishing inhibitor expression or secretion. Variants that are secreted normally have been presumed to be pathogenic because of defective trypsin inhibition, but evidence has been lacking. Here, we report quantitative studies on the inhibition of human trypsins by wildtype SPINK1 and seven secreted missense variants. We found that tyrosine sulfation of human trypsins weakens binding of SPINK1 because of altered interactions with Tyr43 in the SPINK1 reactive loop. Using authentic sulfated human trypsins, we provide conclusive evidence that SPINK1 variants N34S, N37S, R65Q, and Q68R have unimpaired inhibitory activity, whereas variant P55S exhibits a small and clinically insignificant binding defect. In contrast, rare variants K41N and I42M that affect the reactive-site peptide bond of SPINK1 decrease inhibitor binding by 20,000- to 30,000-fold and three- to sevenfold, respectively. Taken together, the observations indicate that defective trypsin inhibition by SPINK1 variants is an uncommon mechanism in chronic pancreatitis. The results also strengthen the notion that a decline in inhibitor levels explains pancreatitis risk associated with the large majority of SPINK1 variants.
Collapse
Affiliation(s)
- András Szabó
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, USA.
| | - Vanda Toldi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular, Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Lívia Diána Gazda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular, Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, USA; Department of Surgery, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
5
|
Schilling O, Biniossek ML, Mayer B, Elsässer B, Brandstetter H, Goettig P, Stenman UH, Koistinen H. Specificity profiling of human trypsin-isoenzymes. Biol Chem 2019; 399:997-1007. [PMID: 29883318 DOI: 10.1515/hsz-2018-0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/05/2018] [Indexed: 01/18/2023]
Abstract
In humans, three different trypsin-isoenzymes have been described. Of these, trypsin-3 appears to be functionally different from the others. In order to systematically study the specificity of the trypsin-isoenzymes, we utilized proteome-derived peptide libraries and quantitative proteomics. We found similar specificity profiles dominated by the well-characterized preference for cleavage after lysine and arginine. Especially, trypsin-1 slightly favored lysine over arginine in this position, while trypsin-3 did not discriminate between them. In the P1' position, which is the residue C-terminal to the cleavage site, we noticed a subtle enrichment of alanine and glycine for all three trypsins and for trypsin-3 there were additional minor P1' and P2' preferences for threonine and aspartic acid, respectively. These findings were confirmed by FRET peptide substrates showing different susceptibility to cleavage by different trypsins. The preference of trypsin-3 for aspartic acid in P2' is explained by salt bridge formation with the unique Arg193. This salt bridge enables and stabilizes a canonical oxyanion conformation by the amides of Ser195 and Arg193, thus manifesting a selective substrate-assisted catalysis. As trypsin-3 has been proposed to be a therapeutic target and marker for cancers, our results may aid the development of specific inhibitors for cancer therapy and diagnostic probes.
Collapse
Affiliation(s)
- Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Bettina Mayer
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Brigitta Elsässer
- Department of Biosciences, University of Salzburg, Billrothstr. 11, A-5020 Salzburg, Austria
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Billrothstr. 11, A-5020 Salzburg, Austria
| | - Peter Goettig
- Department of Biosciences, University of Salzburg, Billrothstr. 11, A-5020 Salzburg, Austria
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| |
Collapse
|
6
|
Miyai M, Matsumoto Y, Yamanishi H, Yamamoto-Tanaka M, Tsuboi R, Hibino T. Keratinocyte-specific mesotrypsin contributes to the desquamation process via kallikrein activation and LEKTI degradation. J Invest Dermatol 2014; 134:1665-1674. [PMID: 24390132 DOI: 10.1038/jid.2014.3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/09/2022]
Abstract
Kallikrein-related peptidases (KLKs) have critical roles in corneocyte desquamation and are regulated by lymphoepithelial Kazal-type inhibitor (LEKTI). However, it is unclear how these proteases are activated and how activated KLKs are released from LEKTI in the upper cornified layer. Recently, we reported cloning of a PRSS3 gene product, keratinocyte-specific mesotrypsin, from a cDNA library. We hypothesized that mesotrypsin is involved in the desquamation process, and the aim of the present study was to test this idea by examining the effects of mesotrypsin on representative desquamation-related enzymes pro-KLK5 and pro-KLK7. Incubation of mesotrypsin and these zymogens resulted in generation of the active forms. KLK activities were effectively inhibited by recombinant LEKTI domains D2, D2-5, D2-6, D2-7, D5, D6, D6-9, D7, D7-9, and D10-15, whereas mesotrypsin activity was not susceptible to these domains, and in fact degraded them. Immunoelectron microscopy demonstrated that mesotrypsin was localized in the cytoplasm of granular cells and intercellular spaces of the cornified layer. Proximity ligation assay showed close association between mesotrypsin and KLKs in the granular to cornified layers. Age-dependency analysis revealed that mesotrypsin was markedly downregulated in corneocyte extract from donors in their sixties, compared with younger donors. Collectively, our findings suggest that mesotrypsin contributes to the desquamation process by activating KLKs and degrading the intrinsic KLKs' inhibitor LEKTI.
Collapse
Affiliation(s)
- Masashi Miyai
- Shiseido Research Center, Kanazawa-ku, Yokohama, Japan
| | | | | | - Mami Yamamoto-Tanaka
- Shiseido Research Center, Kanazawa-ku, Yokohama, Japan; Department of Dermatology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Ryoji Tsuboi
- Department of Dermatology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | | |
Collapse
|
7
|
Mirigian LS, Makareeva E, Koistinen H, Itkonen O, Sorsa T, Stenman UH, Salo T, Leikin S. Collagen degradation by tumor-associated trypsins. Arch Biochem Biophys 2013; 535:111-4. [PMID: 23541862 PMCID: PMC3683366 DOI: 10.1016/j.abb.2013.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
Abstract
In normal soft tissues, collagen is degraded primarily by collagenases from the matrix metalloproteinase family. Yet, collagenase-like activity of tumor-associated isoforms of other enzymes might be involved in cancer invasion as well. In the present study, we systematically examined collagen degradation by non-sulfated isoforms of trypsins, which were proposed to possess such an activity. We found that non-sulfated trypsin-1, -2, and -3 were able to cleave non-helical and unfolded regions of collagen chains but not the intact triple helix, similar to sulfated trypsins produced by the pancreas. Trypsin-2 sulfation did not affect the cleavage rate either. An apparent triple helix cleavage by tumor-associated trypsin-2 reported earlier likely occurred after triple helix unfolding during sample denaturation for gel electrophoresis. Nevertheless, tumor-associated trypsins might be important for releasing collagen from fibers through telopeptide cleavage as well as for degrading unfolded collagen chains, e.g. after initial cleavage and destabilization of triple helices by collagenases.
Collapse
Affiliation(s)
- Lynn S. Mirigian
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Elena Makareeva
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland and Helsinki University Central Hospital, Helsinki, Finland
| | - Outi Itkonen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland and Helsinki University Central Hospital, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Institute of Dentistry, Helsinki University Central Hospital (HUCH), University of Helsinki, Helsinki, Finland and Institute of Dentistry, Helsinki University, Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland and Helsinki University Central Hospital, Helsinki, Finland
| | - Tuula Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, and the Oulu Center for Cell-Matrix-Research, University of Oulu, Oulu, Finland; Oulu University Hospital, Oulu, Finland; Institute of Dentistry, University of Helsinki, Helsinki, Finland
| | - Sergey Leikin
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
8
|
Salameh MA, Soares AS, Alloy A, Radisky ES. Presence versus absence of hydrogen bond donor Tyr-39 influences interactions of cationic trypsin and mesotrypsin with protein protease inhibitors. Protein Sci 2012; 21:1103-12. [PMID: 22610453 PMCID: PMC3537232 DOI: 10.1002/pro.2097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 01/07/2023]
Abstract
Mesotrypsin displays unusual resistance to inhibition by polypeptide trypsin inhibitors and cleaves some such inhibitors as substrates, despite a high degree of conservation with other mammalian trypsins. Substitution of Arg for the generally conserved Gly-193 has been implicated as a critical determinant of the unusual behavior of mesotrypsin toward protein protease inhibitors. Another relatively conserved residue near the trypsin active site, Tyr-39, is substituted by Ser-39 in mesotrypsin. Tyr-39, but not Ser-39, forms a hydrogen bond with the main chain amide nitrogen of the P(4) ' residue of a bound protease inhibitor. To investigate the role of the Tyr-39 H-bond in trypsin-inhibitor interactions, we reciprocally mutated position 39 in mesotrypsin and human cationic trypsin to Tyr-39 and Ser-39, respectively. We assessed inhibition constants and cleavage rates of canonical protease inhibitors bovine pancreatic trypsin inhibitor (BPTI) and the amyloid precursor protein Kunitz protease inhibitor domain by mesotrypsin and cationic trypsin variants, finding that the presence of Ser-39 relative to Tyr-39 results in a 4- to 13-fold poorer binding affinity and a 2- to 18-fold increase in cleavage rate. We also report the crystal structure of the mesotrypsin-S39Y•BPTI complex, in which we observe an H-bond between Tyr-39 OH and BPTI Ile-19 N. Our results indicate that the presence of Ser-39 in mesotrypsin, and corresponding absence of a single H-bond to the inhibitor backbone, makes a small but significant functional contribution to the resistance of mesotrypsin to inhibition and the ability of mesotrypsin to proteolyze inhibitors.
Collapse
Affiliation(s)
- Moh'd A Salameh
- Department of Cancer Biology, Mayo Clinic Cancer CenterJacksonville, Florida 32224
| | - Alexei S Soares
- Department of Biology, Brookhaven National LaboratoryUpton, New York 11973
| | - Alexandre Alloy
- Department of Cancer Biology, Mayo Clinic Cancer CenterJacksonville, Florida 32224
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Cancer CenterJacksonville, Florida 32224
| |
Collapse
|
9
|
Vukoti KM, Kadiyala CSR, Miyagi M. Streptomyces erythraeus trypsin inactivates α1-antitrypsin. FEBS Lett 2011; 585:3898-902. [PMID: 22115549 PMCID: PMC3236438 DOI: 10.1016/j.febslet.2011.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/06/2011] [Accepted: 11/08/2011] [Indexed: 11/16/2022]
Abstract
Streptomyces erythraeus trypsin (SET) is a serine protease that is secreted extracellularly by S. erythraeus. We investigated the inhibitory effect of α(1)-antitrypsin on the catalytic activity of SET. Intriguingly, we found that SET is not inhibited by α(1)-antitrypsin. Our investigations into the molecular mechanism underlying this observation revealed that SET hydrolyzes the Met-Ser bond in the reaction center loop of α(1)-antitrypsin. However, SET somehow avoids entrapment by α(1)-antitrypsin. We also confirmed that α(1)-antitrypsin loses its inhibitory activity after incubation with SET. Thus, our study demonstrates that SET is not only resistant to α(1)-antitrypsin but also inactivates α(1)-antitrypsin.
Collapse
Affiliation(s)
- Krishna M. Vukoti
- Case Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106
| | - Chandra Sekhar Rao Kadiyala
- Case Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106
| | - Masaru Miyagi
- Case Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106
| |
Collapse
|
10
|
The P(2)' residue is a key determinant of mesotrypsin specificity: engineering a high-affinity inhibitor with anticancer activity. Biochem J 2011; 440:95-105. [PMID: 21806544 PMCID: PMC3380622 DOI: 10.1042/bj20110788] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PRSS3/mesotrypsin is an atypical isoform of trypsin, the up-regulation of which has been implicated in promoting tumour progression. Mesotrypsin inhibitors could potentially provide valuable research tools and novel therapeutics, but small-molecule trypsin inhibitors have low affinity and little selectivity, whereas protein trypsin inhibitors bind poorly and are rapidly degraded by mesotrypsin. In the present study, we use mutagenesis of a mesotrypsin substrate, APPI (amyloid precursor protein Kunitz protease inhibitor domain), and of a poor mesotrypsin inhibitor, BPTI (bovine pancreatic trypsin inhibitor), to dissect mesotrypsin specificity at the key P(2)' position. We find that bulky and charged residues strongly disfavour binding, whereas acidic residues facilitate catalysis. Crystal structures of mesotrypsin complexes with BPTI variants provide structural insights into mesotrypsin specificity and inhibition. Through optimization of the P(1) and P(2)' residues of BPTI, we generate a stable high-affinity mesotrypsin inhibitor with an equilibrium binding constant K(i) of 5.9 nM, a >2000-fold improvement in affinity over native BPTI. Using this engineered inhibitor, we demonstrate the efficacy of pharmacological inhibition of mesotrypsin in assays of breast cancer cell malignant growth and pancreatic cancer cell invasion. Although further improvements in inhibitor selectivity will be important before clinical potential can be realized, the results of the present study support the feasibility of engineering protein protease inhibitors of mesotrypsin and highlight their therapeutic potential.
Collapse
|
11
|
Oiva J, Itkonen O, Koistinen R, Hotakainen K, Zhang WM, Kemppainen E, Puolakkainen P, Kylänpää L, Stenman UH, Koistinen H. Specific Immunoassay Reveals Increased Serum Trypsinogen 3 in Acute Pancreatitis. Clin Chem 2011; 57:1506-13. [DOI: 10.1373/clinchem.2011.167965] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND
Trypsinogen 3 is a minor trypsinogen isoform in the pancreas. In contrast with trypsin 1 and 2, trypsin 3 degrades pancreatic secretory trypsin inhibitor, which may lead to an excess of active trypsin and acute pancreatitis (AP). We developed an immunoassay for trypsinogen 3 and studied whether an assay of serum trypsinogen 3 is of clinical utility in the diagnosis of AP.
METHODS
Monoclonal antibodies were generated using recombinant human trypsinogen 3 as the antigen and used to establish a sandwich-type immunoassay. We analyzed serum trypsinogen 3 concentrations in 82 patients with AP and 63 patients with upper abdominal pain (controls). The reference interval was determined using serum samples from 172 apparently healthy individuals.
RESULTS
The measuring range of the trypsinogen 3 assay was 1.0–250 μg/L. Intra- and interassay CVs were <11%, and cross-reactivity with other trypsinogen isoenzymes was <0.1%. The median trypsinogen 3 concentration in serum from healthy individuals was <1.0 μg/L, and the upper reference limit was 4.4 μg/L. We observed increased trypsinogen 3 concentrations in patients with mild (median 9.5 μg/L) and severe (15.0 μg/L) AP; in both groups, the concentrations were significantly higher than in controls (median <1.0 μg/L) (P < 0.0001). In ROC analysis, the area under the curve of trypsinogen 3 for separation between AP and controls was 0.90 (P < 0.0001).
CONCLUSIONS
We established for the first time a specific immunoassay for trypsinogen 3 using monoclonal antibodies. Patients with AP were found to have increased serum concentrations of trypsinogen 3. The availability of this assay will be useful for studies of the clinical utility of trypsinogen 3.
Collapse
Affiliation(s)
| | - Outi Itkonen
- Laboratory Division (HUSLAB), Helsinki University Central Hospital, Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Riitta Koistinen
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Kristina Hotakainen
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Wang-Ming Zhang
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH
| | | | | | | | | | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
12
|
Salameh MA, Soares AS, Navaneetham D, Sinha D, Walsh PN, Radisky ES. Determinants of affinity and proteolytic stability in interactions of Kunitz family protease inhibitors with mesotrypsin. J Biol Chem 2010; 285:36884-96. [PMID: 20861008 DOI: 10.1074/jbc.m110.171348] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An important functional property of protein protease inhibitors is their stability to proteolysis. Mesotrypsin is a human trypsin that has been implicated in the proteolytic inactivation of several protein protease inhibitors. We have found that bovine pancreatic trypsin inhibitor (BPTI), a Kunitz protease inhibitor, inhibits mesotrypsin very weakly and is slowly proteolyzed, whereas, despite close sequence and structural homology, the Kunitz protease inhibitor domain of the amyloid precursor protein (APPI) binds to mesotrypsin 100 times more tightly and is cleaved 300 times more rapidly. To define features responsible for these differences, we have assessed the binding and cleavage by mesotrypsin of APPI and BPTI reciprocally mutated at two nonidentical residues that make direct contact with the enzyme. We find that Arg at P(1) (versus Lys) favors both tighter binding and more rapid cleavage, whereas Met (versus Arg) at P'(2) favors tighter binding but has minimal effect on cleavage. Surprisingly, we find that the APPI scaffold greatly enhances proteolytic cleavage rates, independently of the binding loop. We draw thermodynamic additivity cycles analyzing the interdependence of P(1) and P'(2) substitutions and scaffold differences, finding multiple instances in which the contributions of these features are nonadditive. We also report the crystal structure of the mesotrypsin·APPI complex, in which we find that the binding loop of APPI displays evidence of increased mobility compared with BPTI. Our data suggest that the enhanced vulnerability of APPI to mesotrypsin cleavage may derive from sequence differences in the scaffold that propagate increased flexibility and mobility to the binding loop.
Collapse
Affiliation(s)
- Moh'd A Salameh
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida 32224, USA
| | | | | | | | | | | |
Collapse
|
13
|
Lampl N, Budai-Hadrian O, Davydov O, Joss TV, Harrop SJ, Curmi PMG, Roberts TH, Fluhr R. Arabidopsis AtSerpin1, crystal structure and in vivo interaction with its target protease RESPONSIVE TO DESICCATION-21 (RD21). J Biol Chem 2010; 285:13550-60. [PMID: 20181955 DOI: 10.1074/jbc.m109.095075] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In animals, protease inhibitors of the serpin family are associated with many physiological processes, including blood coagulation and innate immunity. Serpins feature a reactive center loop (RCL), which displays a protease target sequence as a bait. RCL cleavage results in an irreversible, covalent serpin-protease complex. AtSerpin1 is an Arabidopsis protease inhibitor that is expressed ubiquitously throughout the plant. The x-ray crystal structure of recombinant AtSerpin1 in its native stressed conformation was determined at 2.2 A. The electrostatic surface potential below the RCL was found to be highly positive, whereas the breach region critical for RCL insertion is an unusually open structure. AtSerpin1 accumulates in plants as a full-length and a cleaved form. Fractionation of seedling extracts by nonreducing SDS-PAGE revealed the presence of an additional slower migrating complex that was absent when leaves were treated with the specific cysteine protease inhibitor L-trans-epoxysuccinyl-L-leucylamido (4-guanidino)butane. Significantly, RESPONSIVE TO DESICCATION-21 (RD21) was the major protease labeled with the L-trans-epoxysuccinyl-L-leucylamido (4-guanidino)butane derivative DCG-04 in wild type extracts but not in extracts of mutant plants constitutively overexpressing AtSerpin1, indicating competition. Fractionation by nonreducing SDS-PAGE followed by immunoblotting with RD21-specific antibody revealed that the protease accumulated both as a free enzyme and in a complex with AtSerpin1. Importantly, both RD21 and AtSerpin1 knock-out mutants lacked the serpin-protease complex. The results establish that the major Arabidopsis plant serpin interacts with RD21. This is the first report of the structure and in vivo interaction of a plant serpin with its target protease.
Collapse
Affiliation(s)
- Nardy Lampl
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kereszturi E, Sahin-Tóth M. Intracellular autoactivation of human cationic trypsinogen mutants causes reduced trypsinogen secretion and acinar cell death. J Biol Chem 2009; 284:33392-9. [PMID: 19801634 DOI: 10.1074/jbc.m109.056812] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in the activation peptide of human cationic trypsinogen have been found in patients with chronic pancreatitis. Previous biochemical studies demonstrated that mutations p.D19A, p.D22G, and p.K23R strongly stimulate trypsinogen autoactivation. In the present study, we characterized the cell biological effects of these mutants using human embryonic kidney 293T and AR42J rat acinar cells. We found that relative to wild-type trypsinogen, secretion of the mutants from transfected cells was markedly decreased. This apparent secretion defect was completely rescued by inhibition of autoactivation via (1) inclusion of the small molecule trypsin inhibitor benzamidine in the growth medium; or (2) cotransfection with the physiological trypsin inhibitor SPINK1; or (3) by mutation of the catalytic Ser(200) residue in trypsinogen. In contrast, extracellularly added SPINK1 or other nonpermeable proteinaceous trypsin inhibitors did not restore normal secretion of the mutants, indicating that intracellular autoactivation is responsible for the observed secretion loss. Acinar cells expressing the p.D22G mutant detached from the culture plate over time, became terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive, and exhibited elevated levels of the proapoptotic transcription factor CHOP. The observations indicate that activation peptide mutants of human cationic trypsinogen undergo autoactivation intracellularly, which leads to decreased trypsinogen secretion and eventual acinar cell death. The results thus define a novel pathological pathway for parenchymal injury in hereditary chronic pancreatitis.
Collapse
Affiliation(s)
- Eva Kereszturi
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
15
|
Koistinen H, Koistinen R, Zhang WM, Valmu L, Stenman UH. Nexin-1 inhibits the activity of human brain trypsin. Neuroscience 2009; 160:97-102. [PMID: 19249338 DOI: 10.1016/j.neuroscience.2009.02.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/18/2008] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Trypsin and other trypsin-like serine proteases have been shown to play important roles in neural development, plasticity and neurodegeneration. Their activity is modulated by serine protease inhibitors, serpins. However, for human brain trypsin, trypsin-4, no brain-derived inhibitors have been described. Here, we report that nexin-1 inhibits trypsin-4, and forms stable complexes only with this trypsin-isoenzyme. This result suggests that nexin-1 could modulate trypsin activity in brain where both nexin-1 and trypsin-4 are expressed.
Collapse
Affiliation(s)
- H Koistinen
- Department of Clinical Chemistry, Biomedicum, University of Helsinki and Helsinki University Central Hospital, PO Box 63, FIN 00014, Finland.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Chronic pancreatitis (CP) is a persistent inflammation of the pancreas. Over the past 12 years, genetic studies of hereditary, familial, and idiopathic forms of CP have made great progress in defining the disease pathogenesis. Identification of gain-of-function missense and copy number mutations in the cationic trypsinogen gene (PRSS1) and loss-of-function variants in both the pancreatic secretory trypsin inhibitor (SPINK1) and chymotrypsinogen C (CTRC) genes has firmly established the pivotal role of prematurely activated trypsin within the pancreas in the etiology of CP. Loss-of-function variants in the cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-sensing receptor (CASR) genes also increase the risk of CP. Here, we review recent developments in this rapidly evolving field, highlight the importance of gene-gene and gene-environment interactions in causing the disease, and discuss the opportunities and challenges in identifying novel genetic factors that affect susceptibility/resistance to CP.
Collapse
Affiliation(s)
- Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U613, Brest, France.
| | | |
Collapse
|
17
|
|
18
|
Salameh MA, Soares AS, Hockla A, Radisky ES. Structural basis for accelerated cleavage of bovine pancreatic trypsin inhibitor (BPTI) by human mesotrypsin. J Biol Chem 2007; 283:4115-23. [PMID: 18077447 DOI: 10.1074/jbc.m708268200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human mesotrypsin is an isoform of trypsin that displays unusual resistance to polypeptide trypsin inhibitors and has been observed to cleave several such inhibitors as substrates. Whereas substitution of arginine for the highly conserved glycine 193 in the trypsin active site has been implicated as a critical factor in the inhibitor resistance of mesotrypsin, how this substitution leads to accelerated inhibitor cleavage is not clear. Bovine pancreatic trypsin inhibitor (BPTI) forms an extremely stable and cleavage-resistant complex with trypsin, and thus provides a rigorous challenge of mesotrypsin catalytic activity toward polypeptide inhibitors. Here, we report kinetic constants for mesotrypsin and the highly homologous (but inhibitor sensitive) human cationic trypsin, describing inhibition by, and cleavage of BPTI, as well as crystal structures of the mesotrypsin-BPTI and human cationic trypsin-BPTI complexes. We find that mesotrypsin cleaves BPTI with a rate constant accelerated 350-fold over that of human cationic trypsin and 150,000-fold over that of bovine trypsin. From the crystal structures, we see that small conformational adjustments limited to several side chains enable mesotrypsin-BPTI complex formation, surmounting the predicted steric clash introduced by Arg-193. Our results show that the mesotrypsin-BPTI interface favors catalysis through (a) electrostatic repulsion between the closely spaced mesotrypsin Arg-193 and BPTI Arg-17, and (b) elimination of two hydrogen bonds between the enzyme and the amine leaving group portion of BPTI. Our model predicts that these deleterious interactions accelerate leaving group dissociation and deacylation.
Collapse
Affiliation(s)
- Moh'd A Salameh
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida 32224, USA
| | | | | | | |
Collapse
|
19
|
Knecht W, Cottrell GS, Amadesi S, Mohlin J, Skåregärde A, Gedda K, Peterson A, Chapman K, Hollenberg MD, Vergnolle N, Bunnett NW. Trypsin IV or Mesotrypsin and p23 Cleave Protease-activated Receptors 1 and 2 to Induce Inflammation and Hyperalgesia. J Biol Chem 2007; 282:26089-100. [PMID: 17623652 DOI: 10.1074/jbc.m703840200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although principally produced by the pancreas to degrade dietary proteins in the intestine, trypsins are also expressed in the nervous system and in epithelial tissues, where they have diverse actions that could be mediated by protease-activated receptors (PARs). We examined the biological actions of human trypsin IV (or mesotrypsin) and rat p23, inhibitor-resistant forms of trypsin. The zymogens trypsinogen IV and pro-p23 were expressed in Escherichia coli and purified to apparent homogeneity. Enteropeptidase cleaved both zymogens, liberating active trypsin IV and p23, which were resistant to soybean trypsin inhibitor and aprotinin. Trypsin IV cleaved N-terminal fragments of PAR(1), PAR(2), and PAR(4) at sites that would expose the tethered ligand (PAR(1) = PAR(4) > PAR(2)). Trypsin IV increased [Ca(2+)](i) in transfected cells expressing human PAR(1) and PAR(2) with similar potencies (PAR(1), 0.5 microm; PAR(2), 0.6 microm). p23 also cleaved fragments of PAR(1) and PAR(2) and signaled to cells expressing these receptors. Trypsin IV and p23 increased [Ca(2+)](i) in rat dorsal root ganglion neurons that responded to capsaicin and which thus mediate neurogenic inflammation and nociception. Intraplantar injection of trypsin IV and p23 in mice induced edema and granulocyte infiltration, which were not observed in PAR (-/-)(1)(trypsin IV) and PAR (-/-)(2) (trypsin IV and p23) mice. Trypsin IV and p23 caused thermal hyperalgesia and mechanical allodynia and hyperalgesia in mice, and these effects were absent in PAR (-/-)(2) mice but maintained in PAR (-/-)(1) mice. Thus, trypsin IV and p23 are inhibitor-resistant trypsins that can cleave and activate PARs, causing PAR(1)- and PAR(2)-dependent inflammation and PAR(2)-dependent hyperalgesia.
Collapse
MESH Headings
- Animals
- Aprotinin/chemistry
- Calcium Signaling/drug effects
- Capsaicin/pharmacology
- Edema/chemically induced
- Edema/genetics
- Edema/metabolism
- Edema/pathology
- Enteropeptidase/chemistry
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Granulocytes/metabolism
- Granulocytes/pathology
- Humans
- Hyperalgesia/chemically induced
- Hyperalgesia/genetics
- Hyperalgesia/metabolism
- Hyperalgesia/pathology
- Inflammation/chemically induced
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Male
- Mice
- Mice, Knockout
- Nociceptors/metabolism
- Nociceptors/pathology
- Pain Measurement
- Rats
- Rats, Sprague-Dawley
- Receptor, PAR-1/deficiency
- Receptor, PAR-1/metabolism
- Receptor, PAR-2/deficiency
- Receptor, PAR-2/physiology
- Receptors, Proteinase-Activated/metabolism
- Receptors, Thrombin/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Trypsin/chemistry
- Trypsin/genetics
- Trypsin/metabolism
- Trypsin/pharmacology
- Trypsin Inhibitors/chemistry
Collapse
Affiliation(s)
- Wolfgang Knecht
- Molecular Pharmacology and Lead Generation, AstraZeneca Research and Development, Mölndal 431 83, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tóth J, Siklódi E, Medveczky P, Gallatz K, Németh P, Szilágyi L, Gráf L, Palkovits M. Regional distribution of human trypsinogen 4 in human brain at mRNA and protein level. Neurochem Res 2007; 32:1423-33. [PMID: 17406981 DOI: 10.1007/s11064-007-9327-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
Gene PRSS3 on chromosome 9 of the human genome encodes, due to alternative splicing, both mesotrypsinogen and trypsinogen 4. Mesotrypsinogen has long been known as a minor component of trypsinogens expressed in human pancreas, while the mRNA for trypsinogen 4 has recently been identified in brain and other human tissues. We measured the amount of trypsinogen 4 mRNA and the quantity of the protein as well in 17 selected areas of the human brain. Our data suggest that human trypsinogen 4 is widely but unevenly distributed in the human brain. By immunohistochemistry, here we show that this protease is localized in neurons and glial cells, predominantly in astrocytes. In addition to cellular immunoreactivity, human trypsinogen 4 immunopositive dots were detected in the extracellular matrix, supporting the view that human trypsinogen 4 might be released from the cells under special conditions.
Collapse
Affiliation(s)
- Júlia Tóth
- Department of Biochemistry, Eötvös Loránd University, Pázmány Street 1/C, 1117 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|