1
|
Xu G, Lv J, Ding Q, Ma C, Jiang Y, Yu B. Direct C-H Alkylation of Benzothiadiazoles via Organic Photoredox Catalysis. J Org Chem 2024; 89:2777-2781. [PMID: 38315024 DOI: 10.1021/acs.joc.3c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
2,1,3-Benzothiadiazole is widely used as a privileged scaffold in pharmaceuticals and organic functional materials. Nonetheless, many current methods for the functionalization of 2,1,3-benzothiadiazole rely on preactivation, transition metal catalysts/promoters, or an elevated reaction temperature. Herein we disclose a transition-metal-free visible-light-induced photocatalytic method for the direct C-H alkylation of 2,1,3-benzothiadiazole using readily accessible carboxylic acid derivatives, i.e., N-hydroxyphthalimide esters (NHPEs), as alkylating reagents under room temperature. This mild and scalable method is highlighted by the late-stage installation of the benzothiadiazole scaffold in drugs and natural products.
Collapse
Affiliation(s)
- Guiqing Xu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiayuan Lv
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qingjie Ding
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
2
|
Jang M, Lim T, Park BY, Han MS. Metal-Free, Rapid, and Highly Chemoselective Reduction of Aromatic Nitro Compounds at Room Temperature. J Org Chem 2022; 87:910-919. [PMID: 34983185 DOI: 10.1021/acs.joc.1c01431] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, we developed a metal-free and highly chemoselective method for the reduction of aromatic nitro compounds. This reduction was performed using tetrahydroxydiboron [B2(OH)4] as the reductant and 4,4'-bipyridine as the organocatalyst and could be completed within 5 min at room temperature. Under optimal conditions, nitroarenes with sensitive functional groups, such as vinyl, ethynyl, carbonyl, and halogen, were converted into the corresponding anilines with excellent selectivity while avoiding the undesirable reduction of the sensitive functional groups.
Collapse
Affiliation(s)
- Mingyeong Jang
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Taeho Lim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Byoung Yong Park
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
3
|
Ghergurovich JM, Xu X, Wang JZ, Yang L, Ryseck RP, Wang L, Rabinowitz JD. Methionine synthase supports tumour tetrahydrofolate pools. Nat Metab 2021; 3:1512-1520. [PMID: 34799699 PMCID: PMC9284419 DOI: 10.1038/s42255-021-00465-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 09/01/2021] [Indexed: 01/02/2023]
Abstract
Mammalian cells require activated folates to generate nucleotides for growth and division. The most abundant circulating folate species is 5-methyl tetrahydrofolate (5-methyl-THF), which is used to synthesize methionine from homocysteine via the cobalamin-dependent enzyme methionine synthase (MTR). Cobalamin deficiency traps folates as 5-methyl-THF. Here, we show using isotope tracing that MTR is only a minor source of methionine in cell culture, tissues or xenografted tumours. Instead, MTR is required for cells to avoid folate trapping and assimilate 5-methyl-THF into other folate species. Under conditions of physiological extracellular folates, genetic MTR knockout in tumour cells leads to folate trapping, purine synthesis stalling, nucleotide depletion and impaired growth in cell culture and as xenografts. These defects are rescued by free folate but not one-carbon unit supplementation. Thus, MTR plays a crucial role in liberating THF for use in one-carbon metabolism.
Collapse
Affiliation(s)
- Jonathan M Ghergurovich
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xincheng Xu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Joshua Z Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Lifeng Yang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Rolf-Peter Ryseck
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lin Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
4
|
Wu Z, Tam WL. A new foe in folate metabolism. Nat Metab 2021; 3:1436-1438. [PMID: 34799700 DOI: 10.1038/s42255-021-00474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhengwei Wu
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
Design, synthesis and biological activity of N 5-substituted tetrahydropteroate analogs as non-classical antifolates against cobalamin-dependent methionine synthase and potential anticancer agents. Eur J Med Chem 2020; 190:112113. [PMID: 32058237 DOI: 10.1016/j.ejmech.2020.112113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
Cobalamin-dependent methionine synthase (MetH) is involved in the process of tumor cell growth and survival. In this study, a novel series of N5-electrophilic substituted tetrahydropteroate analogs without glutamate residue were designed as non-classical antifolates and evaluated for their inhibitory activities against MetH. In addition, the cytotoxicity of target compounds was evaluated in human tumor cell lines. With N5-chloracetyl as the optimum group, further structure research on the benzene substituent and on the 2,4-diamino group was also performed. Compound 6c, with IC50 value of 12.1 μM against MetH and 0.16-6.12 μM against five cancer cells, acted as competitive inhibitor of MetH. Flow cytometry studies indicated that compound 6c arrested HL-60 cells in the G1-phase and then inducted late apoptosis. The molecular docking further explained the structure-activity relationship.
Collapse
|
6
|
Metabolite Profiling: A Tool for the Biochemical Characterisation of Mycobacterium sp. Microorganisms 2019; 7:microorganisms7050148. [PMID: 31130621 PMCID: PMC6560386 DOI: 10.3390/microorganisms7050148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/13/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022] Open
Abstract
Over the last decades, the prevalence of drug-resistance in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has increased. These findings have rekindled interest in elucidating the unique adaptive molecular and biochemistry physiology of Mycobacterium. The use of metabolite profiling independently or in combination with other levels of "-omic" analyses has proven an effective approach to elucidate key physiological/biochemical mechanisms associated with Mtb throughout infection. The following review discusses the use of metabolite profiling in the study of tuberculosis, future approaches, and the technical and logistical limitations of the methodology.
Collapse
|
7
|
Abstract
INTRODUCTION For a drug that has been omnipresent for nearly 200 years, nitrous oxide's (N2O) future seems less certain than its illustrious past. Environmental concerns are coming to the fore and may yet outweigh important clinical benefits. SOURCES OF DATA After determining the scope of the review, the authors used PubMed with select phrases encompassing the words in the scope. Both preclinical and clinical reports were considered. AREAS OF AGREEMENT The analgesic and anaesthetic advantages of N2O remain despite a plethora of newer agents. AREAS OF CONTROVERSY N2O greenhouse gas effect and its inhibition of key enzymes involved in protein and DNA synthesis have provided further fuel for those intent on eliminating its further clinical use. GROWING POINTS The use of N2O for treatment-resistant depression has gained traction. AREAS TIMELY FOR DEVELOPING RESEARCH Comparative studies for N2O role in combatting the prescription opioid analgesic epidemic may well provide further clinical impetus.
Collapse
Affiliation(s)
- V Lew
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA,USA
| | - E McKay
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA,USA
| | - M Maze
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA,USA
| |
Collapse
|
8
|
Chen PY, Zhang L, Zhu SG, Cheng GB, Li NR. Investigation of TNB/NNAP cocrystal synthesis, molecular interaction and formation process. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Deng X, Guo Y, Tian C, Liu J, Wang X, Zhang Z. Design, synthesis and activities of aziridine derivatives of N5-methyltetrahydrofolate against methionine synthase. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5194-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Feng YS, Mao L, Bu XS, Dai JJ, Xu HJ. Pd(OAc)2-catalyzed dinitration reaction of aromatic amines. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Elfekki IM, Hassan WFM, Elshihawy HEAE, Ali IAI, Eltamany EHM. Molecular Modeling Studies and Synthesis of Novel Methyl 2-(2-(4-Oxo-3-aryl-3,4-dihydroquinazolin-2-ylthio)acetamido)alkanoates with Potential Anti-cancer Activity as Inhibitors for Methionine Synthase. Chem Pharm Bull (Tokyo) 2014; 62:675-94. [DOI: 10.1248/cpb.c14-00158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Elshihawy H, Helal MA, Said M, Hammad MA. Design, synthesis, and enzyme kinetics of novel benzimidazole and quinoxaline derivatives as methionine synthase inhibitors. Bioorg Med Chem 2013; 22:550-8. [PMID: 24268539 DOI: 10.1016/j.bmc.2013.10.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/19/2013] [Accepted: 10/29/2013] [Indexed: 12/14/2022]
Abstract
Methionine synthase catalyzes the transfer of a methyl group from 5-methyltetrahydrofolate to homocysteine, producing methionine and tetrahydrofolate. Benzimidazole and deazatetrahydrofolates derivatives have been shown to inhibit methionine synthase by competing with the substrate 5-methyltetrahydrofolate. In this study, a novel series of substituted benzimidazoles and quinoxalines were designed and assessed for inhibitory activity against purified rat liver methionine synthase using a radiometric enzyme assay. Compounds 3g, 3j, and 5c showed the highest activity against methionine synthase (IC₅₀: 20 μM, 18 μM, 9 μM, respectively). Kinetic analysis of these compounds using Lineweaver-Burk plots revealed characteristics of mixed inhibition for 3g and 5c; and uncompetitive inhibition for 3j. Docking study into a homology model of the rat methionine synthase gave insights into the molecular determinants of the activity of this class of compounds. The identification of these drug-like inhibitors could lead the design of the next generation modulators of methionine synthase.
Collapse
Affiliation(s)
- Hosam Elshihawy
- Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed A Helal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Said
- Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed A Hammad
- Eli & Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo Street, BCC 505, Los Angeles, CA 90033, USA.
| |
Collapse
|
13
|
Zhang Z, Tian C, Zhou S, Wang W, Guo Y, Xia J, Liu Z, Wang B, Wang X, Golding BT, Griff RJ, Du Y, Liu J. Mechanism-based design, synthesis and biological studies of N5-substituted tetrahydrofolate analogs as inhibitors of cobalamin-dependent methionine synthase and potential anticancer agents. Eur J Med Chem 2012; 58:228-36. [DOI: 10.1016/j.ejmech.2012.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/17/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
|
14
|
Abdel-Azeim S, Li X, Chung LW, Morokuma K. Zinc-Homocysteine binding in cobalamin-dependent methionine synthase and its role in the substrate activation: DFT, ONIOM, and QM/MM molecular dynamics studies. J Comput Chem 2011; 32:3154-67. [DOI: 10.1002/jcc.21895] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 06/16/2011] [Accepted: 06/28/2011] [Indexed: 12/20/2022]
|
15
|
Okada K, Tanaka H, Temporin K, Okamoto M, Kuroda Y, Moritomo H, Murase T, Yoshikawa H. Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model. Exp Neurol 2010; 222:191-203. [DOI: 10.1016/j.expneurol.2009.12.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/24/2009] [Accepted: 12/17/2009] [Indexed: 11/15/2022]
|
16
|
Angeles García M, Claramunt RM, Solcan T, Milata V, Alkorta I, Elguero J. 13C and 15N NMR spectra of aminobenzimidazoles in solution and in the solid state. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2009; 47:100-104. [PMID: 19006105 DOI: 10.1002/mrc.2357] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The (13)C [hexadeutero-dimethylsulfoxide (DMSO-d(6)), hexamethyl-phosphoramide (HMPA)-d(18)and solid-state] and (15)N (solid-state) NMR spectra of six C-aminobenzimidazoles have been recorded. The tautomerism of 4(7)-aminobenzimidazoles and 5(6)-aminobenzimidazoles has been determined and compared with B3LYP/6-311 + + G(d,p) calculations confirming the clear predominance of the 4-amino tautomer and the slight preference for the 6-amino tautomer. GIAO-calculated absolute shieldings compare well with experimental chemical shifts.
Collapse
Affiliation(s)
- M Angeles García
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Senda del Rey 9, E-28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
17
|
Two newly synthesized 5-methyltetrahydrofolate-like compounds inhibit methionine synthase activity accompanied by cell cycle arrest in G1/S phase and apoptosis in vitro. Anticancer Drugs 2008; 19:697-704. [DOI: 10.1097/cad.0b013e32830317f2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|