1
|
Bouqellah NA, Farag PF. In Silico Evaluation, Phylogenetic Analysis, and Structural Modeling of the Class II Hydrophobin Family from Different Fungal Phytopathogens. Microorganisms 2023; 11:2632. [PMID: 38004644 PMCID: PMC10672791 DOI: 10.3390/microorganisms11112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The class II hydrophobin group (HFBII) is an extracellular group of proteins that contain the HFBII domain and eight conserved cysteine residues. These proteins are exclusively secreted by fungi and have multiple functions with a probable role as effectors. In the present study, a total of 45 amino acid sequences of hydrophobin class II proteins from different phytopathogenic fungi were retrieved from the NCBI database. We used the integration of well-designed bioinformatic tools to characterize and predict their physicochemical parameters, novel motifs, 3D structures, multiple sequence alignment (MSA), evolution, and functions as effector proteins through molecular docking. The results revealed new features for these protein members. The ProtParam tool detected the hydrophobicity properties of all proteins except for one hydrophilic protein (KAI3335996.1). Out of 45 proteins, six of them were detected as GPI-anchored proteins by the PredGPI server. Different 3D structure templates with high pTM scores were designed by Multifold v1, AlphaFold2, and trRosetta. Most of the studied proteins were anticipated as apoplastic effectors and matched with the ghyd5 gene of Fusarium graminearum as virulence factors. A protein-protein interaction (PPI) analysis unraveled the molecular function of this group as GTP-binding proteins, while a molecular docking analysis detected a chitin-binding effector role. From the MSA analysis, it was observed that the HFBII sequences shared conserved 2 Pro (P) and 2 Gly (G) amino acids besides the known eight conserved cysteine residues. The evolutionary analysis and phylogenetic tree provided evidence of episodic diversifying selection at the branch level using the aBSREL tool. A detailed in silico analysis of this family and the present findings will provide a better understanding of the HFBII characters and evolutionary relationships, which could be very useful in future studies.
Collapse
Affiliation(s)
- Nahla A. Bouqellah
- Department of Biology, College of Science, Taibah University, P.O. Box 344, Al Madinah Al Munawwarah 42317-8599, Saudi Arabia
| | - Peter F. Farag
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
2
|
Aspergillus Hydrophobins: Physicochemical Properties, Biochemical Properties, and Functions in Solid Polymer Degradation. Microorganisms 2022; 10:microorganisms10081498. [PMID: 35893556 PMCID: PMC9394342 DOI: 10.3390/microorganisms10081498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hydrophobins are small amphipathic proteins conserved in filamentous fungi. In this review, the properties and functions of Aspergillus hydrophobins are comprehensively discussed on the basis of recent findings. Multiple Aspergillus hydrophobins have been identified and categorized in conventional class I and two non-conventional classes. Some Aspergillus hydrophobins can be purified in a water phase without organic solvents. Class I hydrophobins of Aspergilli self-assemble to form amphipathic membranes. At the air–liquid interface, RolA of Aspergillus oryzae self-assembles via four stages, and its self-assembled films consist of two layers, a rodlet membrane facing air and rod-like structures facing liquid. The self-assembly depends mainly on hydrophobin conformation and solution pH. Cys4–Cys5 and Cys7–Cys8 loops, disulfide bonds, and conserved Cys residues of RodA-like hydrophobins are necessary for self-assembly at the interface and for adsorption to solid surfaces. AfRodA helps Aspergillus fumigatus to evade recognition by the host immune system. RodA-like hydrophobins recruit cutinases to promote the hydrolysis of aliphatic polyesters. This mechanism appears to be conserved in Aspergillus and other filamentous fungi, and may be beneficial for their growth. Aspergilli produce various small secreted proteins (SSPs) including hydrophobins, hydrophobic surface–binding proteins, and effector proteins. Aspergilli may use a wide variety of SSPs to decompose solid polymers.
Collapse
|
3
|
Ban S, Kasaishi R, Kamijo T, Noritake C, Kawasaki H. An exploratory MALDI-TOF MS library based on SARAMIS superspectra for rapid identification of Aspergillus section Nigri. MYCOSCIENCE 2021; 62:224-232. [PMID: 37092173 PMCID: PMC9721511 DOI: 10.47371/mycosci.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is a broadly used technique for identification and typing of microorganisms. However, its application to filamentous fungi has been delayed. The objective of this study was to establish a data library for rapid identification of the genus Aspergillus sect. Nigri using MALDI-TOF MS. With respect to sample preparation, we compared the utility of using mature mycelia, including conidial structures, to accumulate a wider range of proteins versus the conventional method relying on young hyphae. Mass spectral datasets obtained for 61 strains of 17 species were subjected to cluster analysis and compared with a phylogenetic tree based on calmodulin gene sequences. Specific and frequent mass spectral peaks corresponding to each phylogenetic group were selected (superspectra for the SARAMIS system). Fifteen superspectra representing nine species were ultimately created. The percentage of correct identification for 217 spectra was improved from 36.41% to 86.64% using the revised library. Additionally, 2.76% of the spectra were assigned to candidates that comprised several related species, including the correct species.
Collapse
Affiliation(s)
- Sayaka Ban
- Medical Mycology Research Center, Chiba University
| | - Rieko Kasaishi
- Biological Resource Center, National Institute of Technology and Evaluation
| | - Tomoaki Kamijo
- Biological Resource Center, National Institute of Technology and Evaluation
| | - Chiaki Noritake
- Biological Resource Center, National Institute of Technology and Evaluation
| | - Hiroko Kawasaki
- Biological Resource Center, National Institute of Technology and Evaluation
| |
Collapse
|
4
|
MALDI-TOF mass spectrometry–based identification of Eurotiales from different substrates and locations in Brazil. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01691-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
El Enshasy HA, Ambehabati KK, El Baz AF, Ramchuran S, Sayyed RZ, Amalin D, Dailin DJ, Hanapi SZ. Trichoderma: Biocontrol Agents for Promoting Plant Growth and Soil Health. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Sánchez C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnol Adv 2019; 40:107501. [PMID: 31870825 DOI: 10.1016/j.biotechadv.2019.107501] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/18/2022]
Abstract
Petroleum-based plastic materials as pollutants raise concerns because of their impact on the global ecosystem and on animal and human health. There is an urgent need to remove plastic waste from the environment to overcome the environmental crisis of plastic pollution. This review describes the natural and unique ability of fungi to invade substrates by using enzymes that have the capacity to detoxify pollutants and are able to act on nonspecific substrates, the fungal ability to produce hydrophobins for surface coating to attach hyphae to hydrophobic substrates, and hyphal ability to penetrate three dimensional substrates. Fungal studies on macro- and microplastics biodegradation have shown that fungi are able to use these materials as the sole carbon and energy source. Further research is required on novel isolates from plastisphere ecosystems, on the use of molecular techniques to characterize plastic-degrading fungi and enhance enzymatic activity levels, and on the use of omics-based technologies to accelerate plastic waste biodegradation processes. The addition of pro-oxidants species (photosensitizers) and the reduction of biocides and antioxidant stabilizers used in the plastic manufacturing process should also be considered to promote biodegradation. Interdisciplinary research and innovative fungal strategies for plastic waste biodegradation, as well as ecofriendly manufacturing of petroleum-based plastics, may help to reduce the negative impacts of plastic waste pollution in the biosphere.
Collapse
Affiliation(s)
- Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, C.P. 90120 Tlaxcala, Mexico.
| |
Collapse
|
7
|
Deckers SM, Lorgouilloux Y, Gebruers K, Baggerman G, Verachtert H, Neven H, Michiels C, Derdelinckx G, Delcour JA, Martens J. Dynamic Light Scattering (DLS) as a Tool to Detect CO2-Hydrophobin Structures and Study the Primary Gushing Potential of Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2011-0524-01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sylvie M. Deckers
- KU Leuven, Department of Microbial and Molecular Systems (M2S), and Leuven Food Science and Nutrition Research Centre (LFoRCe-MaltBeerSci), Heverlee, Belgium
| | | | - Kurt Gebruers
- KULeuven, M2S, and LFoRCe-MaltBeerSci, Heverlee, Belgium
| | - Geert Baggerman
- KULeuven, ProMeta, Interfaculty Centre for Proteomics and Metabolomics, Leuven, Belgium
| | | | - Hedwig Neven
- KULeuven, M2S, and LFoRCe-MaltBeerSci, Heverlee, Belgium
- Brewery Duvel-Moortgat, Puurs, Belgium
| | - Chris Michiels
- KULeuven, M2S, and LFoRCe-MaltBeerSci, Heverlee, Belgium
| | | | - Jan A. Delcour
- KULeuven, M2S, and LFoRCe-MaltBeerSci, Heverlee, Belgium
| | - Johan Martens
- KULeuven, M2S, Centre for Surface Chemistry and Catalysis, Heverlee, Belgium
| |
Collapse
|
8
|
Deckers SM, Venken T, Khalesi M, Gebruers K, Baggerman G, Lorgouilloux Y, Shokribousjein Z, Ilberg V, Schönberger C, Titze J, Verachtert H, Michiels C, Neven H, Delcour J, Martens J, Derdelinckx G, De Maeyer M. Combined Modeling and Biophysical Characterisation of CO2 Interaction with Class II Hydrophobins: New Insight into the Mechanism Underpinning Primary Gushing. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2012-0905-01] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sylvie M. Deckers
- KU Leuven, Department of Microbial and Molecular Systems (M2S), and Leuven Food Science and Nutrition Research Centre (LFoRCe), BE-3001 Heverlee, Belgium
| | - Tom Venken
- KU Leuven, Department of Chemistry, Division of Chemistry, section: Molecular and Structural Biology, Laboratory for Biomolecular Modelling and BioMacS, BE-3001 Heverlee, Belgium
| | - Mohammadreza Khalesi
- KU Leuven, Department of Microbial and Molecular Systems (M2S), and Leuven Food Science and Nutrition Research Centre (LFoRCe), BE-3001 Heverlee, Belgium
| | - Kurt Gebruers
- KU Leuven, Department of Microbial and Molecular Systems (M2S), and Leuven Food Science and Nutrition Research Centre (LFoRCe), BE-3001 Heverlee, Belgium
| | - Geert Baggerman
- KU Leuven, Facility for Systems Biology based Mass Spectrometry (SyBioMa), BE-3000 Leuven, Belgium
| | - Yannick Lorgouilloux
- KU Leuven, Facility for Systems Biology based Mass Spectrometry (SyBioMa), BE-3000 Leuven, Belgium
| | - Zahra Shokribousjein
- KU Leuven, Department of Microbial and Molecular Systems (M2S), and Leuven Food Science and Nutrition Research Centre (LFoRCe), BE-3001 Heverlee, Belgium
| | - Vladimir Ilberg
- Hochschule Weihenstephan-Triesdorf, Fakultät Gartenbau und Lebensmitteltechnologie, D-85350 Freisinig, Germany
| | - Christina Schönberger
- KU Leuven, Department of Microbial and Molecular Systems (M2S), and Leuven Food Science and Nutrition Research Centre (LFoRCe), BE-3001 Heverlee, Belgium
| | - Jean Titze
- Barth-Haas Group, Barth Innovations, D-90482 Nuremberg, Germany
| | - Hubert Verachtert
- KU Leuven, Department of Microbial and Molecular Systems (M2S), and Leuven Food Science and Nutrition Research Centre (LFoRCe), BE-3001 Heverlee, Belgium
| | - Chris Michiels
- National University of Ireland, University College Cork, School of Food and Nutritional Sciences, Cork, Ireland
| | - Hedwig Neven
- KU Leuven, Department of Microbial and Molecular Systems (M2S), and Leuven Food Science and Nutrition Research Centre (LFoRCe), BE-3001 Heverlee, Belgium
| | - Jan Delcour
- KU Leuven, Department of Microbial and Molecular Systems (M2S), and Leuven Food Science and Nutrition Research Centre (LFoRCe), BE-3001 Heverlee, Belgium
| | - Johan Martens
- KU Leuven, Department of Microbial and Molecular Systems (M2S), and Leuven Food Science and Nutrition Research Centre (LFoRCe), BE-3001 Heverlee, Belgium
| | - Guy Derdelinckx
- KU Leuven, Department of Microbial and Molecular Systems (M2S), and Leuven Food Science and Nutrition Research Centre (LFoRCe), BE-3001 Heverlee, Belgium
| | - Marc De Maeyer
- KU Leuven, Department of Microbial and Molecular Systems (M2S), and Leuven Food Science and Nutrition Research Centre (LFoRCe), BE-3001 Heverlee, Belgium
- KU Leuven, Department of Chemistry, Division of Chemistry, section: Molecular and Structural Biology, Laboratory for Biomolecular Modelling and BioMacS, BE-3001 Heverlee, Belgium
| |
Collapse
|
9
|
Przylucka A, Akcapinar GB, Bonazza K, Mello-de-Sousa TM, Mach-Aigner AR, Lobanov V, Grothe H, Kubicek CP, Reimhult E, Druzhinina IS. COMPARATIVE PHYSIOCHEMICAL ANALYSIS OF HYDROPHOBINS PRODUCED IN ESCHERICHIA COLI AND PICHIA PASTORIS. Colloids Surf B Biointerfaces 2017; 159:913-923. [DOI: 10.1016/j.colsurfb.2017.08.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/16/2017] [Accepted: 08/28/2017] [Indexed: 01/24/2023]
|
10
|
|
11
|
Abstract
Beer lovers all over the world like to get their drink with a certain volume of stabile foam, which mainly depends on the beer style. However, sometimes this foam comes in form of a sudden, eruptive, and uncontrolled over-foaming (gushing) of beer. Gushing occurs after the bottle has been opened, without previously being treated inappropriately (exposure to high temperatures, shaking, or any other kind of agitation). According to recent scientific and professional literature, gushing may be induced by many factors, but fungal proteins are directly connected to this phenomenon. Gushing caused by fungal proteins—hydrophobins—is called primary gushing, and depends solely on raw material quality. Other reasons for extensive foaming after the bottle has been opened can be of chemical or technological nature in the course of the brewing process. This is called secondary gushing, which can be influenced and reduced by applying good manufacturing practice protocols.
Collapse
|
12
|
Samuels GJ, Ismaiel A. Hypocrea peltata: a mycological Dr Jekyll and Mr Hyde? Mycologia 2017; 103:616-30. [DOI: 10.3852/10-227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Adnan Ismaiel
- United States Department of Agriculture, Agriculture Research Service, Systematic Mycology and Microbiology Laboratory, Room 213, B-010a, 10300 Baltimore Avenue, Beltsville, Maryland 20705
| |
Collapse
|
13
|
Shamim M, Kumar P, Kumar RR, Kumar M, Kumar RR, Singh KN. Assessing Fungal Biodiversity Using Molecular Markers. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Proteomics of survival structures of fungal pathogens. N Biotechnol 2016; 33:655-665. [DOI: 10.1016/j.nbt.2015.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/09/2015] [Accepted: 12/16/2015] [Indexed: 11/21/2022]
|
15
|
Sharma R, Singh VP, Singh D, Yusuf F, Kumar A, Vishwakarma RA, Chaubey A. Optimization of nonribosomal peptides production by a psychrotrophic fungus: Trichoderma velutinum ACR-P1. Appl Microbiol Biotechnol 2016; 100:9091-9102. [DOI: 10.1007/s00253-016-7622-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/02/2016] [Indexed: 02/03/2023]
|
16
|
Khalesi M, Mandelings N, Herrera-Malaver B, Riveros-Galan D, Gebruers K, Derdelinckx G. Improvement of the retention of ocimene in water phase using Class II hydrophobin HFBII. FLAVOUR FRAG J 2015. [DOI: 10.1002/ffj.3260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mohammadreza Khalesi
- Department of Microbial and Molecular Systems (M S); KU Leuven; B-3001 Heverlee Belgium
| | - Nathalie Mandelings
- Department of Microbial and Molecular Systems (M S); KU Leuven; B-3001 Heverlee Belgium
| | - Beatriz Herrera-Malaver
- Department of Microbial and Molecular Systems (M S); KU Leuven; B-3001 Heverlee Belgium
- VIB Laboratory of Systems Biology; Gaston Geenslaan 1 B-3001 Heverlee Belgium
| | - David Riveros-Galan
- Department of Microbial and Molecular Systems (M S); KU Leuven; B-3001 Heverlee Belgium
| | - Kurt Gebruers
- Department of Microbial and Molecular Systems (M S); KU Leuven; B-3001 Heverlee Belgium
| | - Guy Derdelinckx
- Department of Microbial and Molecular Systems (M S); KU Leuven; B-3001 Heverlee Belgium
| |
Collapse
|
17
|
Degenkolb T, Fog Nielsen K, Dieckmann R, Branco-Rocha F, Chaverri P, Samuels GJ, Thrane U, von Döhren H, Vilcinskas A, Brückner H. Peptaibol, Secondary-Metabolite, and Hydrophobin Pattern of Commercial Biocontrol Agents Formulated with Species of theTrichoderma harzianumComplex. Chem Biodivers 2015; 12:662-84. [DOI: 10.1002/cbdv.201400300] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Indexed: 11/05/2022]
|
18
|
Khalesi M, Zune Q, Telek S, Riveros-Galan D, Verachtert H, Toye D, Gebruers K, Derdelinckx G, Delvigne F. Fungal biofilm reactor improves the productivity of hydrophobin HFBII. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Chalupová J, Raus M, Sedlářová M, Sebela M. Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv 2013; 32:230-41. [PMID: 24211254 DOI: 10.1016/j.biotechadv.2013.11.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/24/2013] [Accepted: 11/03/2013] [Indexed: 12/26/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a reliable tool for fast identification and classification of microorganisms. In this regard, it represents a strong challenge to microscopic and molecular biology methods. Nowadays, commercial MALDI systems are accessible for biological research work as well as for diagnostic applications in clinical medicine, biotechnology and industry. They are employed namely in bacterial biotyping but numerous experimental strategies have also been developed for the analysis of fungi, which is the topic of the present review. Members of many fungal genera such as Aspergillus, Fusarium, Penicillium or Trichoderma and also various yeasts from clinical samples (e.g. Candida albicans) have been successfully identified by MALDI-TOF MS. However, there is no versatile method for fungi currently available even though the use of only a limited number of matrix compounds has been reported. Either intact cell/spore MALDI-TOF MS is chosen or an extraction of surface proteins is performed and then the resulting extract is measured. Biotrophic fungal phytopathogens can be identified via a direct acquisition of MALDI-TOF mass spectra e.g. from infected plant organs contaminated by fungal spores. Mass spectrometric peptide/protein profiles of fungi display peaks in the m/z region of 1000-20000, where a unique set of biomarker ions may appear facilitating a differentiation of samples at the level of genus, species or strain. This is done with the help of a processing software and spectral database of reference strains, which should preferably be constructed under the same standardized experimental conditions.
Collapse
Affiliation(s)
- Jana Chalupová
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Martin Raus
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Marek Sebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
20
|
Stoppacher N, Neumann NKN, Burgstaller L, Zeilinger S, Degenkolb T, Brückner H, Schuhmacher R. The Comprehensive Peptaibiotics Database. Chem Biodivers 2013; 10:734-43. [DOI: 10.1002/cbdv.201200427] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Indexed: 11/10/2022]
|
21
|
Two novel class II hydrophobins from Trichoderma spp. stimulate enzymatic hydrolysis of poly(ethylene terephthalate) when expressed as fusion proteins. Appl Environ Microbiol 2013; 79:4230-8. [PMID: 23645195 DOI: 10.1128/aem.01132-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Poly(ethylene terephthalate) (PET) can be functionalized and/or recycled via hydrolysis by microbial cutinases. The rate of hydrolysis is however low. Here, we tested whether hydrophobins (HFBs), small secreted fungal proteins containing eight positionally conserved cysteine residues, are able to enhance the rate of enzymatic hydrolysis of PET. Species of the fungal genus Trichoderma have the most proliferated arsenal of class II hydrophobin-encoding genes among fungi. To this end, we studied two novel class II HFBs (HFB4 and HFB7) of Trichoderma. HFB4 and HFB7, produced in Escherichia coli as fusions to the C terminus of glutathione S-transferase, exhibited subtle structural differences reflected in hydrophobicity plots that correlated with unequal hydrophobicity and hydrophily, respectively, of particular amino acid residues. Both proteins exhibited a dosage-dependent stimulation effect on PET hydrolysis by cutinase from Humicola insolens, with HFB4 displaying an adsorption isotherm-like behavior, whereas HFB7 was active only at very low concentrations and was inhibitory at higher concentrations. We conclude that class II HFBs can stimulate the activity of cutinases on PET, but individual HFBs can display different properties. The present findings suggest that hydrophobins can be used in the enzymatic hydrolysis of aromatic-aliphatic polyesters such as PET.
Collapse
|
22
|
Welker M. Proteomics for routine identification of microorganisms. Proteomics 2011; 11:3143-53. [DOI: 10.1002/pmic.201100049] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/31/2011] [Accepted: 04/20/2011] [Indexed: 11/10/2022]
|
23
|
Identification of lethal Aspergillus at early growth stages based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Diagn Microbiol Infect Dis 2011; 70:344-54. [PMID: 21546196 DOI: 10.1016/j.diagmicrobio.2011.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 11/22/2022]
Abstract
Delayed and incorrect diagnoses are potential risk factors leading to high mortality of invasive aspergillosis (IA). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to acquire a wide mass spectral range and characterize the early process of asexual sporulation of lethal IA pathogens recovered on agar plates. Proteins were extracted using trifluoroacetic acid and soft ionized using an ultraviolet laser with the assistance of ferulic acid. At the second stage of sporulation with various differentiated structures, there are more specific peaks that can be used to discriminate different Aspergillus species than at the first stage, which features vegetative hyphae. Certain specific peaks are found in different strains of the same species, Aspergillus fumigatus. In addition, the relative standard deviations of the m/z ratios are much smaller than those of the relative intensities in these peaks. Therefore, common lethal Aspergillus species can be identified after short-term cultivation by matching species-specific m/z values.
Collapse
|
24
|
Novel hydrophobins from Trichoderma define a new hydrophobin subclass: protein properties, evolution, regulation and processing. J Mol Evol 2011; 72:339-51. [PMID: 21424760 DOI: 10.1007/s00239-011-9438-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
Hydrophobins are small proteins, characterised by the presence of eight positionally conserved cysteine residues, and are present in all filamentous asco- and basidiomycetes. They are found on the outer surfaces of cell walls of hyphae and conidia, where they mediate interactions between the fungus and the environment. Hydrophobins are conventionally grouped into two classes (class I and II) according to their solubility in solvents, hydropathy profiles and spacing between the conserved cysteines. Here we describe a novel set of hydrophobins from Trichoderma spp. that deviate from this classification in their hydropathy, cysteine spacing and protein surface pattern. Phylogenetic analysis shows that they form separate clades within ascomycete class I hydrophobins. Using T. atroviride as a model, the novel hydrophobins were found to be expressed under conditions of glucose limitation and to be regulated by differential splicing.
Collapse
|
25
|
|
26
|
Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 2010; 5:1733-54. [DOI: 10.2217/fmb.10.127] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MALDI-TOF-mass spectrometry (MS) has been successfully adapted for the routine identification of microorganisms in clinical microbiology laboratories in the past 10 years. This revolutionary technique allows for easier and faster diagnosis of human pathogens than conventional phenotypic and molecular identification methods, with unquestionable reliability and cost–effectiveness. This article will review the application of MALDI-TOF-MS tools in routine clinical diagnosis, including the identification of bacteria at the species, subspecies, strain and lineage levels, and the identification of bacterial toxins and antibiotic-resistance type. We will also discuss the application of MALDI-TOF-MS tools in the identification of Archaea, eukaryotes and viruses. Pathogenic identification from colony-cultured, blood-cultured, urine and environmental samples is also reviewed.
Collapse
Affiliation(s)
- Piseth Seng
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Jean-Marc Rolain
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Pierre Edouard Fournier
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Bernard La Scola
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Michel Drancourt
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | | |
Collapse
|
27
|
Samuels GJ, Ismaiel A, Bon MC, De Respinis S, Petrini O. Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia 2010; 102:944-66. [PMID: 20648760 DOI: 10.3852/09-243] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Analysis of a worldwide collection of strains of Trichoderma asperellum sensu lato using multilocus genealogies of four genomic regions (tef1, rpb2, act, ITS1, 2 and 5.8s rRNA), sequence polymorphism-derived (SPD) markers, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) of the proteome and classical mycological techniques revealed two morphologically cryptic sister species within T. asperellum, T. asperellum, T. asperelloides sp. nov. and a third closely related but morphologically distinct species. T. yunnanense. Trichoderma asperellum and T. asperelloides have wide sympatric distribution on multiple continents; T. yunnanense is represented by a single strain from China. Several strains reported in the literature or represented in GenBank as T. asperellum are re-identified as T. asperelloides. Four molecular SPD typing patterns (I-IV) were found over a large geographic range. Patterns I-III were produced only by T. asperellum and pattern IV by T. asperelloides and T. yunnanense. Pattern I was found in North America, South America, Africa and Europe and Asia (Saudi Arabia). Pattern III was found in Africa, North America, South America and Asia, not in Europe. Pattern II was found only in Cameroon (central Africa) and Peru. Pattern IV was found in all continents. All SPD II pattern strains formed a strongly supported subclade within the T. asperellum clade in the phylogenetic tree based on rpb2 and MLS (combined multilocus sequence). The diversity of DNA sequences, SPD markers and polypeptides in T. asperellum suggests that further speciation is under way within T. asperellum. MALDI-TOF MS distinguished T. yunnanense from related taxa by UPGMA clustering, but separation between T. asperellum and T. asperelloides was less clear.
Collapse
Affiliation(s)
- Gary J Samuels
- United States Department of Agriculture, Agriculture Research Service, Systematic Mycology & Microbiology Laboratory, Room 304, B-0lla, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA.
| | | | | | | | | |
Collapse
|
28
|
Santos C, Paterson R, Venâncio A, Lima N. Filamentous fungal characterizations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Appl Microbiol 2010; 108:375-85. [DOI: 10.1111/j.1365-2672.2009.04448.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Lorito M, Woo SL, Harman GE, Monte E. Translational research on Trichoderma: from 'omics to the field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:395-417. [PMID: 20455700 DOI: 10.1146/annurev-phyto-073009-114314] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Structural and functional genomics investigations are making an important impact on the current understanding and application of microbial agents used for plant disease control. Here, we review the case of Trichoderma spp., the most widely applied biocontrol fungi, which have been extensively studied using a variety of research approaches, including genomics, transcriptomics, proteomics, metabolomics, etc. Known for almost a century for their beneficial effects on plants and the soil, these fungi are the subject of investigations that represent a successful case of translational research, in which 'omics-generated novel understanding is directly translated in to new or improved crop treatments and management methods. We present an overview of the latest discoveries on the Trichoderma expressome and metabolome, of the complex and diverse biotic interactions established in nature by these microbes, and of their proven or potential importance to agriculture and industry.
Collapse
Affiliation(s)
- Matteo Lorito
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale (ArBoPaVe), Università di Napoli Federico II, Portici, Napoli, Italy 80138.
| | | | | | | |
Collapse
|
30
|
|
31
|
De Respinis S, Vogel G, Benagli C, Tonolla M, Petrini O, Samuels GJ. MALDI-TOF MS of Trichoderma: a model system for the identification of microfungi. Mycol Prog 2009. [DOI: 10.1007/s11557-009-0621-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Mikus M, Hatvani L, Neuhof T, Komoń-Zelazowska M, Dieckmann R, Schwecke T, Druzhinina IS, von Döhren H, Kubicek CP. Differential regulation and posttranslational processing of the class II hydrophobin genes from the biocontrol fungus Hypocrea atroviridis. Appl Environ Microbiol 2009; 75:3222-9. [PMID: 19329667 PMCID: PMC2681635 DOI: 10.1128/aem.01764-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 03/16/2009] [Indexed: 11/20/2022] Open
Abstract
Hydrophobins are small extracellular proteins, unique to and ubiquitous in filamentous fungi, which mediate interactions between the fungus and environment. The mycoparasitic fungus Hypocrea atroviridis has recently been shown to possess 10 different class II hydrophobin genes, which is a much higher number than that of any other ascomycete investigated so far. In order to learn the potential advantage of this hydrophobin multiplicity for the fungus, we have investigated their expression patterns under different physiological conditions (e.g., vegetative growth), various conditions inducing sporulation (light, carbon starvation, and mechanical injury-induced stress), and confrontation with potential hosts for mycoparasitism. The results show that the 10 hydrophobins display different patterns of response to these conditions: one hydrophobin (encoded by hfb-2b) is constitutively induced under all conditions, whereas other hydrophobins were formed only under conditions of carbon starvation (encoded by hfb-1c and hfb-6c) or light plus carbon starvation (encoded by hfb-2c, hfb-6a, and hfb-6b). The hydrophobins encoded by hfb-1b and hfb-5a were primarily formed during vegetative growth and under mechanical injury-provoked stress. hfb-22a was not expressed under any conditions and is likely a pseudogene. None of the 10 genes showed a specific expression pattern during mycoparasitic interaction. Most, but not all, of the expression patterns under the three different conditions of sporulation were dependent on one or both of the two blue-light regulator proteins BLR1 and BLR2, as shown by the use of respective loss-of-function mutants. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of mycelial solvent extracts provided sets of molecular ions corresponding to HFB-1b, HFB-2a, HFB-2b, and HFB-5a in their oxidized and processed forms. These in silico-deduced sequences of the hydrophobins indicate cleavages at known signal peptide sites as well as additional N- and C-terminal processing. Mass peaks observed during confrontation with plant-pathogenic fungi indicate further proteolytic attack on the hydrophobins. Our study illustrates both divergent and redundant functions of the 10 hydrophobins of H. atroviridis.
Collapse
Affiliation(s)
- Marianna Mikus
- FB Gentechnik und Angewandte Biochemie, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, TU Wien, Getreidemarkt 9-166, 1060 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kisko K, Szilvay GR, Vuorimaa E, Lemmetyinen H, Linder MB, Torkkeli M, Serimaa R. Self-assembled films of hydrophobin proteins HFBI and HFBII studied in situ at the air/water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1612-1619. [PMID: 19093751 DOI: 10.1021/la803252g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydrophobins are a group of surface-active fungal proteins known to adsorb to the air/water interface and self-assemble into highly crystalline films. We characterized the self-assembled protein films of two hydrophobins, HFBI and HFBII from Trichoderma reesei, directly at the air/water interface using Brewster angle microscopy, grazing-incidence X-ray diffraction, and reflectivity. Already in zero surface pressure, HFBI and HFBII self-assembled into micrometer-sized rafts containing hexagonally ordered two-dimensional crystallites with lattice constants of 55 A and 56 A, respectively. Increasing the pressure did not change the ordering of the proteins in the crystallites. According to the reflectivity measurements, the thicknesses of the hydrophobin films were 28 A (HFBI) and 24 A (HFBII) at 20 mN/m. The stable films could also be transferred to a silicon substrate. Modeling of the diffraction data indicated that both hydrophobin films contained six molecules in the unit cell, but the ordering of the molecules was somewhat different for HFBI and HFBII, suggesting specific protein-protein interactions.
Collapse
Affiliation(s)
- Kaisa Kisko
- Division of Materials Physics, Department of Physics, University of Helsinki, POB 64, FI-00014, Finland.
| | | | | | | | | | | | | |
Collapse
|
34
|
Degenkolb T, Brückner H. Peptaibiomics: Towards a Myriad of Bioactive Peptides Containing Cα-Dialkylamino Acids? Chem Biodivers 2008; 5:1817-43. [DOI: 10.1002/cbdv.200890171] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Prog 2008. [DOI: 10.1007/s11557-008-0563-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Degenkolb T, von Döhren H, Fog Nielsen K, Samuels G, Brückner H. Recent Advances and Future Prospects in Peptaibiotics, Hydrophobin, and Mycotoxin Research, and Their Importance for Chemotaxonomy ofTrichoderma andHypocrea. Chem Biodivers 2008; 5:671-80. [DOI: 10.1002/cbdv.200890064] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Kubicek CP, Baker S, Gamauf C, Kenerley CM, Druzhinina IS. Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea. BMC Evol Biol 2008; 8:4. [PMID: 18186925 PMCID: PMC2253510 DOI: 10.1186/1471-2148-8-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 01/10/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hydrophobins are proteins containing eight conserved cysteine residues that occur uniquely in mycelial fungi. Their main function is to confer hydrophobicity to fungal surfaces in contact with air or during attachment of hyphae to hydrophobic surfaces of hosts, symbiotic partners or themselves resulting in morphogenetic signals. Based on their hydropathy patterns and solubility characteristics, hydrophobins are divided into two classes (I and II), the latter being found only in ascomycetes. RESULTS We have investigated the mechanisms driving the evolution of the class II hydrophobins in nine species of the mycoparasitic ascomycetous genus Trichoderma/Hypocrea, using three draft sequenced genomes (H. jecorina = T. reesei, H. atroviridis = T. atroviride; H. virens = T. virens) an additional 14,000 ESTs from six other Trichoderma spp. (T. asperellum, H. lixii = T. harzianum, T. aggressivum var. europeae, T. longibrachiatum, T. cf. viride). The former three contained six, ten and nine members, respectively. Ten is the highest number found in any ascomycete so far. All the hydrophobins we examined had the conserved four beta-strands/one helix structure, which is stabilized by four disulfide bonds. In addition, a small number of these hydrophobins (HFBs)contained an extended N-terminus rich in either proline and aspartate, or glycine-asparagine. Phylogenetic analysis reveals a mosaic of terminal clades containing duplicated genes and shows only three reasonably supported clades. Calculation of the ratio of differences in synonymous vs. non-synonymous nucleotide substitutions provides evidence for strong purifying selection (KS/Ka >> 1). A genome database search for class II HFBs from other ascomycetes retrieved a much smaller number of hydrophobins (2-4) from each species, and most were from Sordariomycetes. A combined phylogeny of these sequences with those of Trichoderma showed that the Trichoderma HFBs mostly formed their own clades, whereas those of other Sordariomycetes occurred in shared clades. CONCLUSION Our study shows that the genus Trichoderma/Hypocrea has a proliferated arsenal of class II hydrophobins which arose by birth-and-death evolution followed by purifying selection.
Collapse
Affiliation(s)
- Christian P Kubicek
- Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9-1665, A-1060 Vienna, Austria
| | - Scott Baker
- Fungal Biotechnology Team, Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
| | - Christian Gamauf
- Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9-1665, A-1060 Vienna, Austria
| | - Charles M Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Irina S Druzhinina
- Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9-1665, A-1060 Vienna, Austria
| |
Collapse
|
38
|
Neuhof T, Dieckmann R, Druzhinina IS, Kubicek CP, von Döhren H. Intact-cell MALDI-TOF mass spectrometry analysis of peptaibol formation by the genus Trichoderma/Hypocrea: can molecular phylogeny of species predict peptaibol structures? Microbiology (Reading) 2007; 153:3417-3437. [PMID: 17906141 DOI: 10.1099/mic.0.2007/006692-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptaibols are characteristic linear alpha-aminoisobutyrate-containing peptides produced by certain Ascomycetes, especially of the genus Hypocrea/Trichoderma [Hypocrea and Trichoderma are the names for the teleo- and anamorph forms of the same taxon; where known to occur in nature, the teleomorph is used to name the species. To aid the inexperienced reader, both names (the less well known one in parentheses) are given at the first mention of each species.] Here we have investigated whether phylogenetic relationships within Trichoderma permit a prediction of the peptaibol production profiles. To this end, representative strains from a third (28) of the known species of Trichoderma, identified by the sequences of diagnostic genes and covering most clades of the established multilocus phylogeny of Trichoderma/Hypocrea, were investigated by intact-cell MALDI-TOF mass spectrometry. Peptaibols were detected in all strains, and some strains were found to produce up to five peptide families of different sizes. Comparison of the data with phylogenies derived from rRNA spacer regions (ITS1 and 2) and RNA polymerase subunit B (rpb2) gene sequences did not show a strict correlation with the types and sequences of the peptaibols produced, but the production of some groups of peptaibols appears to be found only in some clades or sections of the genus, which could be used for more targeted screening of novel compounds of this type. In an analysis of peptaibol structures, we have defined conserved key positions and have further identified and compared sequences of the corresponding adenylate domains within non-ribosomal peptide synthetases producing trichovirins, paracelsins and atroviridins. These phylogenies are not concordant with those of their producers Hypocrea virens, Hypocrea jecorina and Hypocrea atroviridis as obtained from ITS1 and 2, and rpb2, respectively, and therefore hint at a complex history of peptaibol diversity.
Collapse
Affiliation(s)
- Torsten Neuhof
- TU Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie, Franklinstr. 29, 10587 Berlin, Germany
| | - Ralf Dieckmann
- TU Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie, Franklinstr. 29, 10587 Berlin, Germany
| | - Irina S Druzhinina
- Forschungsbereich Gentechnik und Angewandte Biochemie, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, TU Wien, Getreidemarkt 9-166, 1060 Wien, Austria
| | - Christian P Kubicek
- Forschungsbereich Gentechnik und Angewandte Biochemie, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, TU Wien, Getreidemarkt 9-166, 1060 Wien, Austria
| | - Hans von Döhren
- TU Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie, Franklinstr. 29, 10587 Berlin, Germany
| |
Collapse
|
39
|
Neuhof T, Berg A, Besl H, Schwecke T, Dieckmann R, von Döhren H. Peptaibol production by sepedonium strains parasitizing boletales. Chem Biodivers 2007; 4:1103-15. [PMID: 17589879 DOI: 10.1002/cbdv.200790099] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fungi of the genus Sepedonium (anamorphic ascomycetes) are known to infect fruiting bodies of Basidiomycetes of the order Boletales. We have characterized twelve Sepedonium isolates by intact-cell mass spectrometry (IC-MS) with the help of respective biomarkers and their metabolite spectra focusing on peptaibol production. A strain of mycoparasitic S. chalcipori was grown in solid-state fermentation, and tylopeptin production was found, suggesting an ascomycete origin of these peptaibols, which were first described in the basidiomycete Tylopilus neofelleus. In addition, the structures of two new peptaibols, chalciporin A (=Ac-Trp-Val-Aib-Val-Ala-Gln-Ala-Aib-Ser-Leu-Ala-Leu-Aib-Gln-Leuol) and chalciporin B (=Ac-Trp-Val-Aib-Val-Ala-Gln-Ala-Aib-Gln-Aib-Ala-Leu-Aib-Gln-Leuol) are presented. The IC-MS technique was applied for in situ peptaibol analysis of Sepedonium strains growing on Boletales, in particular S. chrysospermum infecting Xerocomus cf. badius. We found chrysospermins at the surface and within basidiomycete tissue, as well as in the cultivated parasite.
Collapse
Affiliation(s)
- Torsten Neuhof
- Technische Universität Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie, Berlin, Germany
| | | | | | | | | | | |
Collapse
|