1
|
Meng X, Lian X, Li X, Ya Q, Li T, Zhang Y, Yang Y, Zhang Y. Synthesis of 2'-paclitaxel 2-deoxy-2-fluoro-glucopyranosyl carbonate for specific targeted delivery to cancer cells. Carbohydr Res 2020; 493:108034. [PMID: 32485481 DOI: 10.1016/j.carres.2020.108034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/28/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022]
Abstract
A novel 2-fluorodeoxyglucose conjugated derivative of paclitaxel was efficiently synthesized using a linker between 2'-OH of paclitaxel and C1-hydroxyl group of 2-fluorodeoxyglucose. In preparation of the prodrug, allyl carbonates were selected as the protective group and the efficient one-step removal of allyloxycarbonyl groups at the end of the synthesis using palladium chemistry gave the target molecule in good yield. The prodrug not only improved the pharmaceutical properties of paclitaxel, such as solubility and stability, but also demonstrated enhanced cytotoxicity and selectivity for cancer cells and less toxicity toward normal HUVEC cells.
Collapse
Affiliation(s)
- Xin Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China.
| | - Xujing Lian
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Xiao Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Qiang Ya
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Tingshen Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Yongmin Zhang
- Université Pierre et Marie Curie-Paris 6, Institut Parisien de Chimie Moléculaire, UMR, CNRS, 8232, 4 Place Jussieu, 75005, Paris, France
| | - Yang Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China.
| | - Yan Zhang
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, PR China
| |
Collapse
|
2
|
Borges MH, Pullockaran J, Catalano PM, Baumann MU, Zamudio S, Illsley NP. Human placental GLUT1 glucose transporter expression and the fetal insulin-like growth factor axis in pregnancies complicated by diabetes. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2411-2419. [PMID: 31175930 DOI: 10.1016/j.bbadis.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/30/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
Abstract
We have previously described regulation of syncytial GLUT1 glucose transporters by IGF-I. Despite this, it is not clear what signal regulates transplacental glucose transport. In this report we asked whether changes in GLUT1 expression and glucose transport activity in diabetic pregnancies were associated with alterations in the fetal IGF axis. Cord blood samples and paired syncytial microvillous and basal membranes were isolated from normal term pregnancies and pregnancies characterized by gestational diabetes type A2 (GDM A2) and pre-existing insulin-dependent diabetes mellitus (IDDM). Circulating IGF-I, basal membrane GLUT1 expression and glucose transporter activity were correlated with birth weight, but only in control, not diabetic groups. Basal membrane GLUT1 and transporter activity were correlated with IGF-I concentrations in control, but not diabetic groups. IGF binding protein (IGFBP) binding capacity showed a ≥50% reduction in the diabetic groups compared to control; both showed a higher level of free IGF-I. The absence of a correlation between birth weight and factors such as fetal IGF-I or GLUT1 expression in the diabetic groups suggests that IGF-I-stimulated effects may have reached a limiting threshold, such that further increases in IGF-I (or GLUT1) are without effect. These data support that fetal IGF-I acts as a fetal nutritional signal, modulating placental GLUT1 expression and birth weight via altered levels of fetal circulating IGFBPs. Diabetes appears to exert its effects on fetal and placental factors prior to the third trimester and, despite good glycemic control immediately prior to, and in the third trimester, these effects persist to term.
Collapse
Affiliation(s)
- Marcus H Borges
- Department of Obstetrics, Gynecology and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, United States of America
| | - Janet Pullockaran
- Department of Obstetrics, Gynecology and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, United States of America
| | - Patrick M Catalano
- Department of Obstetrics and Gynecology, MetroHealth Medical Center, Cleveland, OH, United States of America
| | - Marc U Baumann
- Department of Obstetrics, Gynecology and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, United States of America
| | - Stacy Zamudio
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ, United States of America
| | - Nicholas P Illsley
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ, United States of America.
| |
Collapse
|
3
|
Mechanistic insights into GLUT1 activation and clustering revealed by super-resolution imaging. Proc Natl Acad Sci U S A 2018; 115:7033-7038. [PMID: 29915035 DOI: 10.1073/pnas.1803859115] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The glucose transporter GLUT1, a plasma membrane protein that mediates glucose homeostasis in mammalian cells, is responsible for constitutive uptake of glucose into many tissues and organs. Many studies have focused on its vital physiological functions and close relationship with diseases. However, the molecular mechanisms of its activation and transport are not clear, and its detailed distribution pattern on cell membranes also remains unknown. To address these, we first investigated the distribution and assembly of GLUT1 at a nanometer resolution by super-resolution imaging. On HeLa cell membranes, the transporter formed clusters with an average diameter of ∼250 nm, the majority of which were regulated by lipid rafts, as well as being restricted in size by both the cytoskeleton and glycosylation. More importantly, we found that the activation of GLUT1 by azide or MβCD did not increase its membrane expression but induced the decrease of the large clusters. The results suggested that sporadic distribution of GLUT1 may facilitate the transport of glucose, implying a potential association between the distribution and activation. Collectively, our work characterized the clustering distribution of GLUT1 and linked its spatial structural organization to the functions, which would provide insights into the activation mechanism of the transporter.
Collapse
|
4
|
Lim JC, Perwick RD, Li B, Donaldson PJ. Comparison of the expression and spatial localization of glucose transporters in the rat, bovine and human lens. Exp Eye Res 2017. [PMID: 28625822 DOI: 10.1016/j.exer.2017.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The energy required to drive lens transparency is derived from the metabolism of glucose. In the lens, the uptake of glucose is likely to involve either facilitative glucose uptake mediated by members of the GLUT family or Na+ dependent glucose uptake via members of the SGLT family, or both. While GLUT1 and GLUT3 have previously been identified in the rat lens, the expression of SGLTs is unknown. Since antibodies directed against the N and C-terminal epitopes of the GLUT and SGLT family are now commercially available, the purpose of this study is to extend our screening of glucose transporters in the rat lens to include the SGLTs and compare the expression profiles of GLUTs and SGLTs in the different regions of the rat, bovine and human lens. Using a combination of reverse transcriptase PCR, western blotting and immunohistochemistry, we have shown that GLUT1 appears to be the predominant glucose transporter in the rat lens since it was expressed in all regions of the lens. In contrast GLUT3, SGLT1 and SGLT2 had more restricted expression patterns and were only found localised to the inner cortex and core regions of the rat lens. GLUT1 was the only transporter found in the epithelium and appears to exist as a full length form in this region, while in differentiating fiber cells; GLUT1 appears to undergo a modification to its N-terminus. Translating our work to bovine and human lenses revealed that GLUT1 is the only glucose transporter expressed in bovine and human lenses. While GLUT1 in the bovine lens appears to be unmodified throughout the entire lens, GLUT1 in human lenses appears to be N-terminally modified in all regions, including the epithelium. Finally, it appears that GLUT1 expression is maintained in all regions of the human lens with increasing age indicating that there is no further regional or age-dependent processing of GLUT1 in the human lens. Taken together, these studies have identified GLUT1 to be the primary transporter that mediates glucose uptake in the rat, bovine and human lens.
Collapse
Affiliation(s)
- Julie C Lim
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, New Zealand.
| | - Rebecca D Perwick
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Bo Li
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
5
|
In Vitro Infection of Trypanosoma cruzi Causes Decrease in Glucose Transporter Protein-1 (GLUT1) Expression in Explants of Human Placental Villi Cultured under Normal and High Glucose Concentrations. J Trop Med 2011; 2012:969243. [PMID: 21941569 PMCID: PMC3173881 DOI: 10.1155/2012/969243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/15/2011] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma cruzi, the etiologic Chagas' disease agent, induces changes in protein pattern of the human placenta syncytiotrophoblast. The glucose transporter protein-1 (GLUT1) is the primary isoform involved in transplacental glucose transport. We carried out in vitro assays to determine if T. cruzi infection would induce changes in placental GLUT1 protein expression under normal and high concentration of glucose. Using Western blot and immunohistological techniques, GLUT1 expression was determined in normal placental villi cultured under normal or high concentrations of glucose, with or without in vitro T. cruzi infection, for 24 and 48 hours. High glucose media or T. cruzi infection alone reduced GLUT1 expression. A yet more accentuated reduction was observed when infection and high glucose condition took place together. We inform, for the first time, that T. cruzi infection may induce reduction of GLUT1 expression under normal and high glucose concentrations, and this effect is synergic to high glucose concentrations.
Collapse
|
6
|
Watanabe M, Naraba H, Sakyo T, Kitagawa T. DNA damage-induced modulation of GLUT3 expression is mediated through p53-independent extracellular signal-regulated kinase signaling in HeLa cells. Mol Cancer Res 2010; 8:1547-57. [PMID: 20870738 DOI: 10.1158/1541-7786.mcr-10-0011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many cancer cells exhibit increased rates of uptake and metabolism of glucose compared with normal cells. Glucose uptake in mammalian cells is mediated by the glucose transporter (GLUT) family. Here, we report that DNA-damaging anticancer agents such as Adriamycin and etoposide suppressed the expression of GLUT3, but not GLUT1, in HeLa cells and a tumorigenic HeLa cell hybrid. Suppression of GLUT3 expression determined by the real-time PCR was also evident with another DNA-damaging agent, camptothecin, which reduced the promoter's activity as determined with a luciferase-linked assay. The suppression by these agents seemed to be induced independently of p53, and it was evident when wild-type p53 was overproduced in these cells. In contrast, the mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) kinase (MEK) inhibitor U0126 (but not the phosphoinositide 3-kinase inhibitor LY294002) prevented the drug-induced suppression as determined by reverse transcription-PCR and promoter assays. Furthermore, overexpression of GLUT3 in HeLa cell hybrids increased resistance to these drugs, whereas depletion of the gene by small interfering RNA rendered the cells more sensitive to the drugs, decreasing glucose consumption. The results suggest that DNA-damaging agents reduce GLUT3 expression in cancer cells through activation of the MEK-ERK pathway independently of p53, leading to cell death or apoptosis. The findings may contribute to the development of new chemotherapeutic drugs based on the GLUT3-dependent metabolism of glucose.
Collapse
Affiliation(s)
- Masaru Watanabe
- Department of Cell Biology and Molecular Pathology, Iwate Medical University, School of Pharmacy, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | | | | | | |
Collapse
|
7
|
Lin YS, Tungpradit R, Sinchaikul S, An FM, Liu DZ, Phutrakul S, Chen ST. Targeting the delivery of glycan-based paclitaxel prodrugs to cancer cells via glucose transporters. J Med Chem 2009; 51:7428-41. [PMID: 19053781 DOI: 10.1021/jm8006257] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report describes the synthesis of four novel paclitaxel based prodrugs with glycan conjugation (1-4). Glycans were conjugated using an ester or ether bond as the linker between 2'-paclitaxel and the 2'-glucose or glucuronic acid moiety. These prodrugs showed good water solubility and selective cytotoxicity against cancer cell lines, but showed reduced toxicity toward normal cell lines and cancer cell lines with low expression levels of GLUTs. The ester conjugated prodrug 1 showed the most cytotoxicity among the prodrugs examined and could be transported into cells via GLUTs. Fluorescent and confocal microscopy demonstrated that targeted cells exhibited morphological changes in tubulin and chromosomal alterations that were similar to those observed with paclitaxel treatment. Therefore, these glycan-based prodrugs may be good drug candidates for cancer therapy, and the glycan conjugation approach is an alternative method to enhance the targeted delivery of other drugs to cancer cells that overexpress GLUTs.
Collapse
Affiliation(s)
- Yih-Shyan Lin
- Institute of Biological Chemistry and Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | |
Collapse
|
8
|
Jiang X, Kenerson H, Aicher L, Miyaoka R, Eary J, Bissler J, Yeung RS. The tuberous sclerosis complex regulates trafficking of glucose transporters and glucose uptake. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1748-56. [PMID: 18511518 DOI: 10.2353/ajpath.2008.070958] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human cancers often display an avidity for glucose, a feature that is exploited in clinical staging and response monitoring by using (18)F-fluoro-deoxyglucose (FDG) positron emission tomography. Determinants of FDG accumulation include tumor blood flow, glucose transport, and glycolytic rate, but the underlying molecular mechanisms are incompletely understood. The phosphoinositide-3 kinase/Akt/mammalian target of rapamycin complex (mTORC) 1 pathway has been implicated in this process via the hypoxia-inducible factor alpha-dependent expression of vascular endothelial growth factor and glycolytic enzymes. Thus, we predicted that tumors with elevated mTORC1 activity would be accompanied by high FDG uptake. We tested this hypothesis in eight renal angiomyolipomas in which the loss of tuberous sclerosis complex (TSC) 1/2 function gave rise to constitutive mTORC1 activation. Surprisingly, these tumors displayed low FDG uptake on positron emission tomography. Exploring the underlying mechanisms in vitro revealed that Tsc2 regulates the membrane localization of the glucose transporter proteins (Glut)1, Glut2, and Glut4, and, therefore, glucose uptake. Down-regulation of cytoplasmic linker protein 170, an mTOR effector, rescued Glut4 trafficking in Tsc2(-/-) cells, whereas up-regulation of Akt activity in these cells was insufficient to redistribute Glut4 to the plasma membrane. The effect of mTORC1 on glucose uptake was confirmed using a liver-specific Tsc1- deletion mouse model in which FDG uptake was reduced in the livers of mutant mice compared with wild-type controls. Together, these data show that mTORC1 activity is insufficient for increased glycolysis in tumors and that constitutive mTOR activity negatively regulates glucose transporter trafficking.
Collapse
Affiliation(s)
- Xiuyun Jiang
- Department of Surgery, Box 356410, University of Washington, 1959 NE Pacific, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Corrigendum. FEBS J 2007. [DOI: 10.1111/j.1742-4658.2007.05938.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|