1
|
Ding X, Bai S, Liu F, Michał N, Roman S, Peng N, Liu Y. NIR-II-triggered photothermal therapy with Au@PDA/PEG-PI for targeted downregulation of PSMA in prostate cancer. Acta Biomater 2023; 157:487-499. [PMID: 36521678 DOI: 10.1016/j.actbio.2022.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Although positron emission tomography (PET) imaging products targeting prostate-specific membrane antigen (PSMA) have been approved for marketing, clinical challenges remain in the study of its use as a therapeutic target, such as the complex synthesis process and side effects after treatment. Here, we developed a strategy for targeted photothermal therapy (PTT) using PSMA as the target. The results of molecular docking demonstrated that the synthesized PEG modified urea-based PSMA inhibitor (small molecular PSMA inhibitor, PI) PI-PEG has a high affinity energy (binding energy = - 8.3 kcal mol-1) for the PSMA target. Therefore, modification of PI-PEG onto the surface of gold@polydopamine (Au@PDA) with NIR-II absorption could enable targeted PTT against PSMA. This work revealed that the prepared Au@PDA/PEG-PI were not only highly selective for PSMA, but also could efficiently ablate PSMA expression by targeted PTT at the maximum permissible exposure (MPE) of the NIR-II laser. Moreover, Au@PDA/PEG-PI also have potential for photoacoustic (PA) imaging and computed tomography (CT) imaging. As the first strategy to downregulate the expression of PSMA and successfully inhibit prostate cancer by targeted PTT, this study case provides a new idea for the clinical translation of PSMA as an integrated target for tumor diagnosis and anti-tumor treatment. STATEMENT OF SIGNIFICANCE: (1) Au@PDA/PEG-PI NPs were the novel PTT agent to target PSMA and successfully down-regulate PSMA expression. (2) Molecular docking results demonstrated that PI-PEG inhibitors have a high affinity energy for PSMA (binding energy = - 8.3 kcal mol-1). (3) Au@PDA/PEG-PI NPs can be targeted for efficient PTT at the MPE of the NIR-II laser. (4) Au@PDA/PEG-PI NPs also have the potential for PA and CT imaging.
Collapse
Affiliation(s)
- Xin Ding
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Fachuang Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Nowicki Michał
- Institute of Metrology and Biomedical Engineering Faculty of Mechatronics, Warsaw University of Technology, Warsaw 00-661, Poland
| | - Szewczyk Roman
- Institute of Metrology and Biomedical Engineering Faculty of Mechatronics, Warsaw University of Technology, Warsaw 00-661, Poland
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
2
|
Jedlickova L, Peterkova K, Boateng EM, Ulrychova L, Vacek V, Kutil Z, Jiang Z, Novakova Z, Snajdr I, Kim J, O’Donoghue AJ, Barinka C, Dvorak J. Characterization of glutamate carboxypeptidase 2 orthologs in trematodes. Parasit Vectors 2022; 15:480. [PMID: 36539882 PMCID: PMC9768917 DOI: 10.1186/s13071-022-05556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glutamate carboxypeptidase 2 (GCP2) belongs to the M28B metalloprotease subfamily encompassing a variety of zinc-dependent exopeptidases that can be found in many eukaryotes, including unicellular organisms. Limited information exists on the physiological functions of GCP2 orthologs in mammalian tissues outside of the brain and intestine, and such data are completely absent for non-mammalian species. Here, we investigate GCP2 orthologs found in trematodes, not only as putative instrumental molecules for defining their basal function(s) but also as drug targets. METHODS Identified genes encoding M28B proteases Schistosoma mansoni and Fasciola hepatica genomes were analyzed and annotated. Homology modeling was used to create three-dimensional models of SmM28B and FhM28B proteins using published X-ray structures as the template. For S. mansoni, RT-qPCR was used to evaluate gene expression profiles, and, by RNAi, we exploited the possible impact of knockdown on the viability of worms. Enzymes from both parasite species were cloned for recombinant expression. Polyclonal antibodies raised against purified recombinant enzymes and RNA probes were used for localization studies in both parasite species. RESULTS Single genes encoding M28B metalloproteases were identified in the genomes of S. mansoni and F. hepatica. Homology models revealed the conserved three-dimensional fold as well as the organization of the di-zinc active site. Putative peptidase activities of purified recombinant proteins were assayed using peptidic libraries, yet no specific substrate was identified, pointing towards the likely stringent substrate specificity of the enzymes. The orthologs were found to be localized in reproductive, digestive, nervous, and sensory organs as well as parenchymal cells. Knockdown of gene expression by RNAi silencing revealed that the genes studied were non-essential for trematode survival under laboratory conditions, reflecting similar findings for GCP2 KO mice. CONCLUSIONS Our study offers the first insight to our knowledge into M28B protease orthologs found in trematodes. Conservation of their three-dimensional structure, as well as tissue expression pattern, suggests that trematode GCP2 orthologs may have functions similar to their mammalian counterparts and can thus serve as valuable models for future studies aimed at clarifying the physiological role(s) of GCP2 and related subfamily proteases.
Collapse
Affiliation(s)
- Lucie Jedlickova
- grid.15866.3c0000 0001 2238 631XDepartment of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 16521 Prague 6, Czech Republic
| | - Kristyna Peterkova
- grid.15866.3c0000 0001 2238 631XDepartment of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 16521 Prague 6, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844 Prague 2, Czech Republic
| | - Enoch Mensah Boateng
- grid.15866.3c0000 0001 2238 631XDepartment of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 16521 Prague 6, Czech Republic
| | - Lenka Ulrychova
- grid.4491.80000 0004 1937 116XDepartment of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844 Prague 2, Czech Republic ,grid.418095.10000 0001 1015 3316Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo N. 2, 16610 Prague 6, Czech Republic
| | - Vojtech Vacek
- grid.15866.3c0000 0001 2238 631XDepartment of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 16521 Prague 6, Czech Republic
| | - Zsofia Kutil
- grid.418095.10000 0001 1015 3316Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Zhenze Jiang
- grid.266100.30000 0001 2107 4242Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Zora Novakova
- grid.418095.10000 0001 1015 3316Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Ivan Snajdr
- grid.418095.10000 0001 1015 3316Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo N. 2, 16610 Prague 6, Czech Republic
| | - Juan Kim
- grid.15866.3c0000 0001 2238 631XDepartment of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 16521 Prague 6, Czech Republic
| | - Anthony J. O’Donoghue
- grid.266100.30000 0001 2107 4242Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Cyril Barinka
- grid.418095.10000 0001 1015 3316Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Jan Dvorak
- grid.15866.3c0000 0001 2238 631XDepartment of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 16521 Prague 6, Czech Republic ,grid.418095.10000 0001 1015 3316Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo N. 2, 16610 Prague 6, Czech Republic ,grid.15866.3c0000 0001 2238 631XFaculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 16521 Prague 6, Czech Republic
| |
Collapse
|
3
|
Metamorphosis of prostate specific membrane antigen (PSMA) inhibitors. Biophys Rev 2022; 14:303-315. [PMID: 35340601 PMCID: PMC8921357 DOI: 10.1007/s12551-021-00919-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/18/2021] [Indexed: 01/16/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA), also called glutamate carboxypeptidase II (GCP(II)), is a Zn-dependent metalloprotease that is known as a well prostate cancer indication and a potential targeting towards anti-cancer medicines and drug delivery. Because of its centrality in the diagnostics and treatment of prostate cancer, several types of inhibitors are designed with particular scaffolds. In this study, important groups of related inhibitors as well as reported experimental and computational studies are being reviewed, in which we examined three functional groups on each group of structures. The importance of computational biochemistry and the necessity of extensive research in this area on PSMA and its effective ligands are recommended.
Collapse
|
4
|
Bím D, Navrátil M, Gutten O, Konvalinka J, Kutil Z, Culka M, Navrátil V, Alexandrova AN, Bařinka C, Rulíšek L. Predicting Effects of Site-Directed Mutagenesis on Enzyme Kinetics by QM/MM and QM Calculations: A Case of Glutamate Carboxypeptidase II. J Phys Chem B 2022; 126:132-143. [PMID: 34978450 DOI: 10.1021/acs.jpcb.1c09240] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Quantum and molecular mechanics (QM/MM) and QM-only (cluster model) modeling techniques represent the two workhorses in mechanistic understanding of enzyme catalysis. One of the stringent tests for QM/MM and/or QM approaches is to provide quantitative answers to real-world biochemical questions, such as the effect of single-point mutations on enzyme kinetics. This translates into predicting the relative activation energies to 1-2 kcal·mol-1 accuracy; such predictions can be used for the rational design of novel enzyme variants with desired/improved characteristics. Herein, we employ glutamate carboxypeptidase II (GCPII), a dizinc metallopeptidase, also known as the prostate specific membrane antigen, as a model system. The structure and activity of this major cancer antigen have been thoroughly studied, both experimentally and computationally, which makes it an ideal model system for method development. Its reaction mechanism is quite well understood: the reaction coordinate comprises a "tetrahedral intermediate" and two transition states and experimental activation Gibbs free energy of ∼17.5 kcal·mol-1 can be inferred for the known kcat ≈ 1 s-1. We correlate experimental kinetic data (including the E424H variant, newly characterized in this work) for various GCPII mutants (kcat = 8.6 × 10-5 s-1 to 2.7 s-1) with the energy profiles calculated by QM/MM and QM-only (cluster model) approaches. We show that the near-quantitative agreement between the experimental values and the calculated activation energies (ΔH⧧) can be obtained and recommend the combination of the two protocols: QM/MM optimized structures and cluster model (QM) energetics. The trend in relative activation energies is mostly independent of the QM method (DFT functional) used. Last but not least, a satisfactory correlation between experimental and theoretical data allows us to provide qualitative and fairly simple explanations of the observed kinetic effects which are thus based on a rigorous footing.
Collapse
Affiliation(s)
- Daniel Bím
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Michal Navrátil
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Ondrej Gutten
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 2120 00 Prague, Czech Republic
| | - Zsófia Kutil
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Martin Culka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Václav Navrátil
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| |
Collapse
|
5
|
Krivitskaya AV, Khrenova MG, Nemukhin AV. Two Sides of Quantum-Based Modeling of Enzyme-Catalyzed Reactions: Mechanistic and Electronic Structure Aspects of the Hydrolysis by Glutamate Carboxypeptidase. Molecules 2021; 26:6280. [PMID: 34684866 PMCID: PMC8538779 DOI: 10.3390/molecules26206280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
We report the results of a computational study of the hydrolysis reaction mechanism of N-acetyl-l-aspartyl-l-glutamate (NAAG) catalyzed by glutamate carboxypeptidase II. Analysis of both mechanistic and electronic structure aspects of this multistep reaction is in the focus of this work. In these simulations, model systems are constructed using the relevant crystal structure of the mutated inactive enzyme. After selection of reaction coordinates, the Gibbs energy profiles of elementary steps of the reaction are computed using molecular dynamics simulations with ab initio type QM/MM potentials (QM/MM MD). Energies and forces in the large QM subsystem are estimated in the DFT(PBE0-D3/6-31G**) approximation. The established mechanism includes four elementary steps with the activation energy barriers not exceeding 7 kcal/mol. The models explain the role of point mutations in the enzyme observed in the experimental kinetic studies; namely, the Tyr552Ile substitution disturbs the "oxyanion hole", and the Glu424Gln replacement increases the distance of the nucleophilic attack. Both issues diminish the substrate activation in the enzyme active site. To quantify the substrate activation, we apply the QTAIM-based approaches and the NBO analysis of dynamic features of the corresponding enzyme-substrate complexes. Analysis of the 2D Laplacian of electron density maps allows one to define structures with the electron density deconcentration on the substrate carbon atom, i.e., at the electrophilic site of reactants. The similar electronic structure element in the NBO approach is a lone vacancy on the carbonyl carbon atom in the reactive species. The electronic structure patterns revealed in the NBO and QTAIM-based analyses consistently clarify the reactivity issues in this system.
Collapse
Affiliation(s)
- Alexandra V. Krivitskaya
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.K.); (M.G.K.)
| | - Maria G. Khrenova
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.K.); (M.G.K.)
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Alexander V. Nemukhin
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, 119334 Moscow, Russia
| |
Collapse
|
6
|
Siow A, Kowalczyk R, Brimble MA, Harris PWR. Evolution of Peptide-Based Prostate-Specific Membrane Antigen (PSMA) Inhibitors: An Approach to Novel Prostate Cancer Therapeutics. Curr Med Chem 2021; 28:3713-3752. [PMID: 33023429 DOI: 10.2174/0929867327666201006153847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prostate cancer is one of the most common cancers worldwide, with approximately 1.1 million cases diagnosed annually. The rapid development of molecular imaging has facilitated greater structural understanding, which can help formulate novel combinations of therapeutic regimens and more accurate diagnosis, avoiding unnecessary prostate biopsies. This accumulated knowledge also provides a greater understanding of the aggressive stages of the disease and tumor recurrence. Recently, much progress has been made on developing peptidomimetic-based inhibitors as promising candidates to effectively bind to the prostate- specific membrane antigen (PSMA), which is expressed by prostate cancer cells. OBJECTIVE In this review, recent advances covering small-molecule and peptide-based PSMA inhibitors will be extensively reviewed, providing a base for the rational design of future PSMA inhibitors. METHOD Herein, the literature on selected PSMA inhibitors that have been developed from 1996 to 2020 were reviewed, emphasizing recent synthetic advances and chemical strategies whilst highlighting therapeutic potential and drawbacks of each inhibitor. RESULTS Synthesized inhibitors presented in this review demonstrate the clinical application of certain PSMA inhibitors, exhibited in vitro and in vivo. CONCLUSION This review highlights the clinical potential of PSMA inhibitors, analyzing the advantages and setbacks of the chemical synthetic methodologies utilized, setting precedence for the discovery of novel PSMA inhibitors for future clinical applications.
Collapse
Affiliation(s)
- Andrew Siow
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Private Bag: 92019, Auckland 1010, New Zealand
| | - Renata Kowalczyk
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Private Bag: 92019, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Private Bag: 92019, Auckland 1010, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Private Bag: 92019, Auckland 1010, New Zealand
| |
Collapse
|
7
|
Machulkin AE, Shafikov RR, Uspenskaya AA, Petrov SA, Ber AP, Skvortsov DA, Nimenko EA, Zyk NU, Smirnova GB, Pokrovsky VS, Abakumov MA, Saltykova IV, Akhmirov RT, Garanina AS, Polshakov VI, Saveliev OY, Ivanenkov YA, Aladinskaya AV, Finko AV, Yamansarov EU, Krasnovskaya OO, Erofeev AS, Gorelkin PV, Dontsova OA, Beloglazkina EK, Zyk NV, Khazanova ES, Majouga AG. Synthesis and Biological Evaluation of PSMA Ligands with Aromatic Residues and Fluorescent Conjugates Based on Them. J Med Chem 2021; 64:4532-4552. [PMID: 33822606 DOI: 10.1021/acs.jmedchem.0c01935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is a suitable target for specific delivery of antitumor drugs and diagnostic agents due to its overexpression in prostate cancer cells. In the current work, we describe the design, synthesis, and biological evaluation of novel low-molecular PSMA ligands and conjugates with fluorescent dyes FAM-5, SulfoCy5, and SulfoCy7. In vitro evaluation of synthesized PSMA ligands on the activity of PSMA shows that the addition of aromatic amino acids into a linker structure leads to a significant increase in inhibition. The conjugates of the most potent ligand with FAM-5 as well as SulfoCy5 demonstrated high affinities to PSMA-expressing tumor cells in vitro. In vivo biodistribution in 22Rv1 xenografts in Balb/c nude mice of PSMA-SulfoCy5 and PSMA-SulfoCy7 conjugates with a novel PSMA ligand demonstrated good visualization of PSMA-expressing tumors. Also, the conjugate PSMA-SulfoCy7 demonstrated the absence of any explicit toxicity up to 87.9 mg/kg.
Collapse
Affiliation(s)
- Aleksei E Machulkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Radik R Shafikov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow 117997, Russian Federation
| | - Anastasia A Uspenskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Stanislav A Petrov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Anton P Ber
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Dmitry A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Faculty of Biology and Biotechnologies, Higher School of Economics, Myasnitskaya 13, Moscow 101000, Russia
| | - Ekaterina A Nimenko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Nikolay U Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Galina B Smirnova
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye sh., Moscow 115478 , Russia
| | - Vadim S Pokrovsky
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye sh., Moscow 115478 , Russia.,RUDN University, Miklukho-Maklaya str. 6, Moscow 117198, Russian Federation
| | - Maxim A Abakumov
- National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Irina V Saltykova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Rauf T Akhmirov
- Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
| | - Anastasiia S Garanina
- National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Oleg Y Saveliev
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Yan A Ivanenkov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation.,The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow 127055, Russia.,Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Sciences (IBG RAS), Oktyabrya Prospekt 71, Ufa 450054, Russian Federation
| | - Anastasiya V Aladinskaya
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russian Federation
| | - Alexander V Finko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Emil U Yamansarov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Olga O Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Petr V Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Olga A Dontsova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow 117997, Russian Federation
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Elena S Khazanova
- Izvarino Pharma LLC, v. Vnukovskoe, Vnukovskoe sh., 5th km., Building 1, Moscow 108817, Russian Federation
| | - Alexander G Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow 119049, Russian Federation.,Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
| |
Collapse
|
8
|
Barinka C, Novakova Z, Hin N, Bím D, Ferraris DV, Duvall B, Kabarriti G, Tsukamoto R, Budesinsky M, Motlova L, Rojas C, Slusher BS, Rokob TA, Rulíšek L, Tsukamoto T. Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors. Bioorg Med Chem 2018; 27:255-264. [PMID: 30552009 DOI: 10.1016/j.bmc.2018.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 02/04/2023]
Abstract
A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII's preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.
Collapse
Affiliation(s)
- Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
| | - Zora Novakova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Niyada Hin
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Daniel Bím
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Dana V Ferraris
- McDaniel College, 2 College Hill, Westminster MD 21157, United States
| | - Bridget Duvall
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Gabriel Kabarriti
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Reiji Tsukamoto
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Milos Budesinsky
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Lucia Motlova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Camilo Rojas
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Tibor András Rokob
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Magyar Tudósok körútja 2, Hungary
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic.
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, United States.
| |
Collapse
|
9
|
Wüstemann T, Haberkorn U, Babich J, Mier W. Targeting prostate cancer: Prostate-specific membrane antigen based diagnosis and therapy. Med Res Rev 2018; 39:40-69. [PMID: 29771460 DOI: 10.1002/med.21508] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
The high incidence rates of prostate cancer (PCa) raise demand for improved therapeutic strategies. Prostate tumors specifically express the prostate-specific membrane antigen (PSMA), a membrane-bound protease. As PSMA is highly overexpressed on malignant prostate tumor cells and as its expression rate correlates with the aggressiveness of the disease, this tumor-associated biomarker provides the possibility to develop new strategies for diagnostics and therapy of PCa. Major advances have been made in PSMA targeting, ranging from immunotherapeutic approaches to therapeutic small molecules. This review elaborates the diversity of PSMA targeting agents while focusing on the radioactively labeled tracers for diagnosis and endoradiotherapy. A variety of radionuclides have been shown to either enable precise diagnosis or efficiently treat the tumor with minimal effects to nontargeted organs. Most small molecules with affinity for PSMA are based on either a phosphonate or a urea-based binding motif. Based on these pharmacophores, major effort has been made to identify modifications to achieve ideal pharmacokinetics while retaining the specific targeting of the PSMA binding pocket. Several tracers have now shown excellent clinical usability in particular for molecular imaging and therapy as proven by the efficiency of theranostic approaches in current studies. The archetypal expression profile of PSMA may be exploited for the treatment with alpha emitters to break radioresistance and thus to bring the power of systemic therapy to higher levels.
Collapse
Affiliation(s)
- Till Wüstemann
- Department for Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Haberkorn
- Department for Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - John Babich
- Department for Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Walter Mier
- Department for Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
10
|
Knedlík T, Vorlová B, Navrátil V, Tykvart J, Sedlák F, Vaculín Š, Franěk M, Šácha P, Konvalinka J. Mouse glutamate carboxypeptidase II (GCPII) has a similar enzyme activity and inhibition profile but a different tissue distribution to human GCPII. FEBS Open Bio 2017; 7:1362-1378. [PMID: 28904865 PMCID: PMC5586342 DOI: 10.1002/2211-5463.12276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/23/2017] [Accepted: 07/19/2017] [Indexed: 11/09/2022] Open
Abstract
Glutamate carboxypeptidase II (GCPII), also known as prostate-specific membrane antigen (PSMA) or folate hydrolase, is a metallopeptidase expressed predominantly in the human brain and prostate. GCPII expression is considerably increased in prostate carcinoma, and the enzyme also participates in glutamate excitotoxicity in the brain. Therefore, GCPII represents an important diagnostic marker of prostate cancer progression and a putative target for the treatment of both prostate cancer and neuronal disorders associated with glutamate excitotoxicity. For the development of novel therapeutics, mouse models are widely used. However, although mouse GCPII activity has been characterized, a detailed comparison of the enzymatic activity and tissue distribution of the mouse and human GCPII orthologs remains lacking. In this study, we prepared extracellular mouse GCPII and compared it with human GCPII. We found that mouse GCPII possesses lower catalytic efficiency but similar substrate specificity compared with the human protein. Using a panel of GCPII inhibitors, we discovered that inhibition constants are generally similar for mouse and human GCPII. Furthermore, we observed highest expression of GCPII protein in the mouse kidney, brain, and salivary glands. Importantly, we did not detect GCPII in the mouse prostate. Our data suggest that the differences in enzymatic activity and inhibition profile are rather small; therefore, mouse GCPII can approximate human GCPII in drug development and testing. On the other hand, significant differences in GCPII tissue expression must be taken into account when developing novel GCPII-based anticancer and therapeutic methods, including targeted anticancer drug delivery systems, and when using mice as a model organism.
Collapse
Affiliation(s)
- Tomáš Knedlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic.,Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
| | - Barbora Vorlová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic.,First Faculty of Medicine Charles University Prague Czech Republic
| | - Václav Navrátil
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic.,Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
| | - Jan Tykvart
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic.,Department of Biochemistry Faculty of Science Charles University Prague Czech Republic.,Present address: Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto ON Canada
| | - František Sedlák
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic.,First Faculty of Medicine Charles University Prague Czech Republic.,Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
| | - Šimon Vaculín
- Department of Normal, Pathological and Clinical Physiology Third Faculty of Medicine Charles University Prague Czech Republic
| | - Miloslav Franěk
- Department of Normal, Pathological and Clinical Physiology Third Faculty of Medicine Charles University Prague Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic.,Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
| |
Collapse
|
11
|
Still NAAG’ing After All These Years. NEUROPSYCHOPHARMACOLOGY: A TRIBUTE TO JOSEPH T. COYLE 2016; 76:215-55. [DOI: 10.1016/bs.apha.2016.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
12
|
Pavlicek J, Ptacek J, Cerny J, Byun Y, Skultetyova L, Pomper MG, Lubkowski J, Barinka C. Structural characterization of P1'-diversified urea-based inhibitors of glutamate carboxypeptidase II. Bioorg Med Chem Lett 2014; 24:2340-5. [PMID: 24731280 DOI: 10.1016/j.bmcl.2014.03.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 11/26/2022]
Abstract
Urea-based inhibitors of human glutamate carboxypeptidase II (GCPII) have advanced into clinical trials for imaging metastatic prostate cancer. In parallel efforts, agents with increased lipophilicity have been designed and evaluated for targeting GCPII residing within the neuraxis. Here we report the structural and computational characterization of six complexes between GCPII and P1'-diversified urea-based inhibitors that have the C-terminal glutamate replaced by more hydrophobic moieties. The X-ray structures are complemented by quantum mechanics calculations that provide a quantitative insight into the GCPII/inhibitor interactions. These data can be used for the rational design of novel glutamate-free GCPII inhibitors with tailored physicochemical properties.
Collapse
Affiliation(s)
- Jiri Pavlicek
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, v.v.i., Laboratory of Structural Biology, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Jakub Ptacek
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, v.v.i., Laboratory of Structural Biology, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Jiri Cerny
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, v.v.i., Laboratory of Structural Biology, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Youngjoo Byun
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 1550 Orleans Street, Baltimore, MD 21231, USA; College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 339-700, South Korea
| | - Lubica Skultetyova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, v.v.i., Laboratory of Structural Biology, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 1550 Orleans Street, Baltimore, MD 21231, USA
| | - Jacek Lubkowski
- Center for Cancer Research, Frederick National Laboratory for Cancer Research, Macromolecular Crystallography Laboratory, Frederick, MD 21702, USA
| | - Cyril Barinka
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, v.v.i., Laboratory of Structural Biology, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| |
Collapse
|
13
|
Shallal HM, Minn I, Banerjee SR, Lisok A, Mease RC, Pomper MG. Heterobivalent agents targeting PSMA and integrin-αvβ3. Bioconjug Chem 2014; 25:393-405. [PMID: 24410012 PMCID: PMC4112557 DOI: 10.1021/bc4005377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differential expression of surface proteins on normal vs malignant cells provides the rationale for the development of receptor-, antigen-, and transporter-based, cancer-selective imaging and therapeutic agents. However, tumors are heterogeneous, and do not always express what can be considered reliable, tumor-selective markers. That suggests development of more flexible targeting platforms that incorporate multiple moieties enabling concurrent targeting to a variety of putative markers. We report the synthesis, biochemical, in vitro, and preliminary in vivo evaluation of a new heterobivalent (HtBv) imaging agent targeting both the prostate-specific membrane antigen (PSMA) and integrin-αvβ3 surface markers, each of which can be overexpressed in certain tumor epithelium and/or neovasculature. The HtBv agent was functionalized with either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or the commercially available IRDye800CW. DOTA-conjugated HtBv probe 9 bound to PSMA or αvβ3 with affinities similar to those of monovalent (Mnv) compounds designed to bind to their targets independently. In situ energy minimization experiments support a model describing the conformations adapted by 9 that enable it to bind both targets. IRDye800-conjugated HtBv probe 10 demonstrated target-specific binding to either PSMA or integrin-αvβ3 overexpressing xenografts. HtBv agents 9 and 10 may enable dual-targeted imaging of malignant cells and tissues in an effort to address heterogeneity that confounds many cancer-targeted imaging agents.
Collapse
Affiliation(s)
- Hassan M Shallal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | | | | | | | | | | |
Collapse
|
14
|
Navrátil V, Klusák V, Rulíšek L. Theoretical Aspects of Hydrolysis of Peptide Bonds by Zinc Metalloenzymes. Chemistry 2013; 19:16634-45. [DOI: 10.1002/chem.201302663] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/08/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Václav Navrátil
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6 (Czech Republic)
- Charles University in Prague, Faculty of Science, Department of Biochemistry, Hlavova 2030, 128 43 Praha 2 (Czech Republic)
| | - Vojtěch Klusák
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6 (Czech Republic)
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6 (Czech Republic)
| |
Collapse
|
15
|
Lee SK, Kim H, Cheong YH, Kim MJ, Jo SA, Youn HS, Park SI. S1 pocket of glutamate carboxypeptidase II: A new binding site for amyloid-β degradation. Biochem Biophys Res Commun 2013; 438:765-71. [DOI: 10.1016/j.bbrc.2013.07.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 11/16/2022]
|
16
|
Tykvart J, Šácha P, Bařinka C, Knedlík T, Starková J, Lubkowski J, Konvalinka J. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II. Protein Expr Purif 2012; 82:106-15. [PMID: 22178733 PMCID: PMC3443621 DOI: 10.1016/j.pep.2011.11.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
Affinity purification is a useful approach for purification of recombinant proteins. Eukaryotic expression systems have become more frequently used at the expense of prokaryotic systems since they afford recombinant eukaryotic proteins with post-translational modifications similar or identical to the native ones. Here, we present a one-step affinity purification set-up suitable for the purification of secreted proteins. The set-up is based on the interaction between biotin and mutated streptavidin. Drosophila Schneider 2 cells are chosen as the expression host, and a biotin acceptor peptide is used as an affinity tag. This tag is biotinylated by Escherichia coli biotin-protein ligase in vivo. We determined that localization of the ligase within the ER led to the most effective in vivo biotinylation of the secreted proteins. We optimized a protocol for large-scale expression and purification of AviTEV-tagged recombinant human glutamate carboxypeptidase II (Avi-GCPII) with milligram yields per liter of culture. We also determined the 3D structure of Avi-GCPII by X-ray crystallography and compared the enzymatic characteristics of the protein to those of its non-tagged variant. These experiments confirmed that AviTEV tag does not affect the biophysical properties of its fused partner. Purification approach, developed here, provides not only a sufficient amount of highly homogenous protein but also specifically and effectively biotinylates a target protein and thus enables its subsequent visualization or immobilization.
Collapse
Affiliation(s)
- J Tykvart
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| | - P Šácha
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| | - C Bařinka
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | - T Knedlík
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| | - J Starková
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 6, Czech Republic
| | - J Lubkowski
- Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - J Konvalinka
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| |
Collapse
|
17
|
Plechanovová A, Byun Y, Alquicer G, Škultétyová Ľ, Mlčochová P, Němcová A, Kim HJ, Navrátil M, Mease R, Lubkowski J, Pomper M, Konvalinka J, Rulíšek L, Bařinka C. Novel substrate-based inhibitors of human glutamate carboxypeptidase II with enhanced lipophilicity. J Med Chem 2011; 54:7535-46. [PMID: 21923190 PMCID: PMC3222833 DOI: 10.1021/jm200807m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Virtually all low molecular weight inhibitors of human glutamate carboxypeptidase II (GCPII) are highly polar compounds that have limited use in settings where more lipophilic molecules are desired. Here we report the identification and characterization of GCPII inhibitors with enhanced liphophilicity that are derived from a series of newly identified dipeptidic GCPII substrates featuring nonpolar aliphatic side chains at the C-terminus. To analyze the interactions governing the substrate recognition by GCPII, we determined crystal structures of the inactive GCPII(E424A) mutant in complex with selected dipeptides and complemented the structural data with quantum mechanics/molecular mechanics calculations. Results reveal the importance of nonpolar interactions governing GCPII affinity toward novel substrates as well as formerly unnoticed plasticity of the S1' specificity pocket. On the basis of those data, we designed, synthesized, and evaluated a series of novel GCPII inhibitors with enhanced lipophilicity, with the best candidates having low nanomolar inhibition constants and clogD > -0.3. Our findings offer new insights into the design of more lipophilic inhibitors targeting GCPII.
Collapse
Affiliation(s)
- Anna Plechanovová
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center at IOCB, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic,Dept. of Biochemistry, Faculty of Natural Science, Charles University in Prague, Hlavova 2030, Prague, Czech Republic
| | - Youngjoo Byun
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, 1550 Orleans Street, Baltimore, Maryland 21231,College of Pharmacy, Korea University, Sejong-ro, Jochiwon-eup, Yeongi-gun, Chungnam 339-700, South Korea
| | - Glenda Alquicer
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska 1083, 14200 Praha 4, Czech Republic
| | - Ľubica Škultétyová
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska 1083, 14200 Praha 4, Czech Republic
| | - Petra Mlčochová
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center at IOCB, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic,Dept. of Biochemistry, Faculty of Natural Science, Charles University in Prague, Hlavova 2030, Prague, Czech Republic
| | - Adriana Němcová
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center at IOCB, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Hyung-Joon Kim
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, 1550 Orleans Street, Baltimore, Maryland 21231
| | - Michal Navrátil
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center at IOCB, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic,Dept. of Biochemistry, Faculty of Natural Science, Charles University in Prague, Hlavova 2030, Prague, Czech Republic
| | - Ronnie Mease
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, 1550 Orleans Street, Baltimore, Maryland 21231
| | - Jacek Lubkowski
- National Cancer Institute at Frederick, Center for Cancer Research, Frederick, MD 21702, USA
| | - Martin Pomper
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, 1550 Orleans Street, Baltimore, Maryland 21231
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center at IOCB, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic,Dept. of Biochemistry, Faculty of Natural Science, Charles University in Prague, Hlavova 2030, Prague, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center at IOCB, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | - Cyril Bařinka
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska 1083, 14200 Praha 4, Czech Republic,Address correspondence to: Institute of Biotechnology AS CR, v.v.i., Laboratory of Structural Biology, Videnska 1083, 14200 Praha 4, Czech Republic; phone: +420-296-443-615; fax: +420-296-443-610;
| |
Collapse
|
18
|
Klusák V, Bařinka C, Plechanovová A, Mlčochová P, Konvalinka J, Rulíšek L, Lubkowski J. Reaction mechanism of glutamate carboxypeptidase II revealed by mutagenesis, X-ray crystallography, and computational methods. Biochemistry 2009; 48:4126-38. [PMID: 19301871 PMCID: PMC7289149 DOI: 10.1021/bi900220s] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glutamate carboxypeptidase II (GCPII, EC 3.4.17.21) is a zinc-dependent exopeptidase and an important therapeutic target for neurodegeneration and prostate cancer. The hydrolysis of N-acetyl-l-aspartyl-l-glutamate (N-Ac-Asp-Glu), the natural dipeptidic substrate of the GCPII, is intimately involved in cellular signaling within the mammalian nervous system, but the exact mechanism of this reaction has not yet been determined. To investigate peptide hydrolysis by GCPII in detail, we constructed a mutant of human GCPII [GCPII(E424A)], in which Glu424, a putative proton shuttle residue, is substituted with alanine. Kinetic analysis of GCPII(E424A) using N-Ac-Asp-Glu as substrate revealed a complete loss of catalytic activity, suggesting the direct involvement of Glu424 in peptide hydrolysis. Additionally, we determined the crystal structure of GCPII(E424A) in complex with N-Ac-Asp-Glu at 1.70 A resolution. The presence of the intact substrate in the GCPII(E424A) binding cavity substantiates our kinetic data and allows a detailed analysis of GCPII/N-Ac-Asp-Glu interactions. The experimental data are complemented by the combined quantum mechanics/molecular mechanics calculations (QM/MM) which enabled us to characterize the transition states, including the associated reaction barriers, and provided detailed information concerning the GCPII reaction mechanism. The best estimate of the reaction barrier was calculated to be DeltaG(++) approximately 22(+/-5) kcal x mol(-1), which is in a good agreement with the experimentally observed reaction rate constant (k(cat) approximately 1 s(-1)). Combined together, our results provide a detailed and consistent picture of the reaction mechanism of this highly interesting enzyme at the atomic level.
Collapse
Affiliation(s)
- Vojtêch Klusák
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center and IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | - Cyril Bařinka
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, 539 Boyles Street, Frederick, Maryland 21702
| | - Anna Plechanovová
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center and IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | - Petra Mlčochová
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center and IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic,Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Praha 2, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center and IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic,Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Praha 2, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center and IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic,Corresponding authors. L.R.: tel, +420-220-183-263; fax, + 420-220-183-578; . J.L.: tel, (301) 846-5494; fax, (301) 846-7517;
| | - Jacek Lubkowski
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, 539 Boyles Street, Frederick, Maryland 21702,Corresponding authors. L.R.: tel, +420-220-183-263; fax, + 420-220-183-578; . J.L.: tel, (301) 846-5494; fax, (301) 846-7517;
| |
Collapse
|
19
|
Barinka C, Byun Y, Dusich CL, Banerjee SR, Chen Y, Castanares M, Kozikowski AP, Mease RC, Pomper MG, Lubkowski J. Interactions between human glutamate carboxypeptidase II and urea-based inhibitors: structural characterization. J Med Chem 2008; 51:7737-43. [PMID: 19053759 PMCID: PMC5516903 DOI: 10.1021/jm800765e] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Urea-based, low molecular weight ligands of glutamate carboxypeptidase II (GCPII) have demonstrated efficacy in various models of neurological disorders and can serve as imaging agents for prostate cancer. To enhance further development of such compounds, we determined X-ray structures of four complexes between human GCPII and urea-based inhibitors at high resolution. All ligands demonstrate an invariant glutarate moiety within the S1' pocket of the enzyme. The ureido linkage between P1 and P1' inhibitor sites interacts with the active-site Zn(1)(2+) ion and the side chains of Tyr552 and His553. Interactions within the S1 pocket are defined primarily by a network of hydrogen bonds between the P1 carboxylate group of the inhibitors and the side chains of Arg534, Arg536, and Asn519. Importantly, we have identified a hydrophobic pocket accessory to the S1 site that can be exploited for structure-based design of novel GCPII inhibitors with increased lipophilicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Martin G. Pomper
- To whom correspondence should be addressed. for J.L.: phone, 301-846-5494; fax, 301-846-7517; ; address: Macromolecular Crystallography Laboratory, 539 Boyles Street, National Cancer Institute at Frederick, Frederick, MD 21702. For M.G.P.: phone, 410-955-2789; fax, 443-956-5055; ; address: 1550 Orleans Street, 492 CRB II, Johns Hopkins Medical Institutions Baltimore, MD 21213
| | - Jacek Lubkowski
- To whom correspondence should be addressed. for J.L.: phone, 301-846-5494; fax, 301-846-7517; ; address: Macromolecular Crystallography Laboratory, 539 Boyles Street, National Cancer Institute at Frederick, Frederick, MD 21702. For M.G.P.: phone, 410-955-2789; fax, 443-956-5055; ; address: 1550 Orleans Street, 492 CRB II, Johns Hopkins Medical Institutions Baltimore, MD 21213
| |
Collapse
|
20
|
Banerjee SR, Foss CA, Castanares M, Mease RC, Byun Y, Fox JJ, Hilton J, Lupold SE, Kozikowski AP, Pomper MG. Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA). J Med Chem 2008; 51:4504-17. [PMID: 18637669 DOI: 10.1021/jm800111u] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The prostate-specific membrane antigen (PSMA) is increasingly recognized as a viable target for imaging and therapy of cancer. We prepared seven (99m)Tc/Re-labeled compounds by attaching known Tc/Re chelating agents to an amino-functionalized PSMA inhibitor (lys-NHCONH-glu) with or without a variable length linker moiety. K i values ranged from 0.17 to 199 nM. Ex vivo biodistribution and in vivo imaging demonstrated the degree of specific binding to engineered PSMA+ PC3 PIP tumors. PC3-PIP cells are derived from PC3 that have been transduced with the gene for PSMA. Despite demonstrating nearly the lowest PSMA inhibitory potency of this series, [(99m)Tc(CO)3( L1)] (+) ( L1 = (2-pyridylmethyl)2N(CH2) 4CH(CO2H)NHCO-(CH2) 6CO-NH-lys-NHCONH-glu) showed the highest, most selective PIP tumor uptake, at 7.9 +/- 4.0% injected dose per gram of tissue at 30 min postinjection. Radioactivity cleared from nontarget tissues to produce a PIP to flu (PSMA-PC3) ratio of 44:1 at 120 min postinjection. PSMA can accommodate the steric requirements of (99m)Tc/Re complexes within PSMA inhibitors, the best results achieved with a linker moiety between the epsilon amine of the urea lysine and the chelator.
Collapse
Affiliation(s)
- Sangeeta R Banerjee
- Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Barinka C, Hlouchova K, Rovenska M, Majer P, Dauter M, Hin N, Ko YS, Tsukamoto T, Slusher BS, Konvalinka J, Lubkowski J. Structural basis of interactions between human glutamate carboxypeptidase II and its substrate analogs. J Mol Biol 2008; 376:1438-50. [PMID: 18234225 PMCID: PMC2753231 DOI: 10.1016/j.jmb.2007.12.066] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/12/2007] [Accepted: 12/24/2007] [Indexed: 01/07/2023]
Abstract
Human glutamate carboxypeptidase II (GCPII) is involved in neuronal signal transduction and intestinal folate absorption by means of the hydrolysis of its two natural substrates, N-acetyl-aspartyl-glutamate and folyl-poly-gamma-glutamates, respectively. During the past years, tremendous efforts have been made toward the structural analysis of GCPII. Crystal structures of GCPII in complex with various ligands have provided insight into the binding of these ligands, particularly to the S1' site of the enzyme. In this article, we have extended structural characterization of GCPII to its S1 site by using dipeptide-based inhibitors that interact with both S1 and S1' sites of the enzyme. To this end, we have determined crystal structures of human GCPII in complex with phosphapeptide analogs of folyl-gamma-glutamate, aspartyl-glutamate, and gamma-glutamyl-glutamate, refined at 1.50, 1.60, and 1.67 A resolution, respectively. The S1 pocket of GCPII could be accurately defined and analyzed for the first time, and the data indicate the importance of Asn519, Arg463, Arg534, and Arg536 for recognition of the penultimate (i.e., P1) substrate residues. Direct interactions between the positively charged guanidinium groups of Arg534 and Arg536 and a P1 moiety of a substrate/inhibitor provide mechanistic explanation of GCPII preference for acidic dipeptides. Additionally, observed conformational flexibility of the Arg463 and Arg536 side chains likely regulates GCPII affinity toward different inhibitors and modulates GCPII substrate specificity. The biochemical experiments assessing the hydrolysis of several GCPII substrate derivatives modified at the P1 position, also included in this report, further complement and extend conclusions derived from the structural analysis. The data described here form an a solid foundation for the structurally aided design of novel low-molecular-weight GCPII inhibitors and imaging agents.
Collapse
Affiliation(s)
- Cyril Barinka
- Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Klara Hlouchova
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 6, Czech Republic,Dept. of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| | - Miroslava Rovenska
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 6, Czech Republic,Dept. of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| | - Pavel Majer
- MGI Pharma, Inc., 6611 Tributary Street, Baltimore, MD, USA
| | - Miroslawa Dauter
- SAIC-Frederick, Inc., Basic Research Program, Argonne National Laboratory, Argonne, IL, USA
| | - Niyada Hin
- MGI Pharma, Inc., 6611 Tributary Street, Baltimore, MD, USA
| | - Yao-Sen Ko
- MGI Pharma, Inc., 6611 Tributary Street, Baltimore, MD, USA
| | | | | | - Jan Konvalinka
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 6, Czech Republic,Dept. of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, Prague 2, Czech Republic
| | - Jacek Lubkowski
- Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|