1
|
Breton-Larrivée M, Elder E, Legault LM, Langford-Avelar A, MacFarlane AJ, McGraw S. Mitigating the detrimental developmental impact of early fetal alcohol exposure using a maternal methyl donor-enriched diet. FASEB J 2023; 37:e22829. [PMID: 36856720 DOI: 10.1096/fj.202201564r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 03/02/2023]
Abstract
Fetal alcohol exposure at any stage of pregnancy can lead to fetal alcohol spectrum disorder (FASD), a group of life-long conditions characterized by congenital malformations, as well as cognitive, behavioral, and emotional impairments. The teratogenic effects of alcohol have long been publicized; yet fetal alcohol exposure is one of the most common preventable causes of birth defects. Currently, alcohol abstinence during pregnancy is the best and only way to prevent FASD. However, alcohol consumption remains astoundingly prevalent among pregnant women; therefore, additional measures need to be made available to help protect the developing embryo before irreparable damage is done. Maternal nutritional interventions using methyl donors have been investigated as potential preventative measures to mitigate the adverse effects of fetal alcohol exposure. Here, we show that a single acute preimplantation (E2.5; 8-cell stage) fetal alcohol exposure (2 × 2.5 g/kg ethanol with a 2h interval) in mice leads to long-term FASD-like morphological phenotypes (e.g. growth restriction, brain malformations, skeletal delays) in late-gestation embryos (E18.5) and demonstrate that supplementing the maternal diet with a combination of four methyl donor nutrients, folic acid, choline, betaine, and vitamin B12, prior to conception and throughout gestation effectively reduces the incidence and severity of alcohol-induced morphological defects without altering DNA methylation status of imprinting control regions and regulation of associated imprinted genes. This study clearly supports that preimplantation embryos are vulnerable to the teratogenic effects of alcohol, emphasizes the dangers of maternal alcohol consumption during early gestation, and provides a potential proactive maternal nutritional intervention to minimize FASD progression, reinforcing the importance of adequate preconception and prenatal nutrition.
Collapse
Affiliation(s)
- Mélanie Breton-Larrivée
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Canada
| | - Elizabeth Elder
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Canada
| | - Lisa-Marie Legault
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Canada
| | - Alexandra Langford-Avelar
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Canada
| | - Amanda J MacFarlane
- Agriculture, Food, and Nutrition Evidence Center, Texas A&M University, Texas, Fort Worth, USA.,Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Serge McGraw
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Canada.,Department of Obstetrics and Gynecology, Université de Montréal, Montreal, Canada
| |
Collapse
|
2
|
Butts M, Sundaram VL, Murughiyan U, Borthakur A, Singh S. The Influence of Alcohol Consumption on Intestinal Nutrient Absorption: A Comprehensive Review. Nutrients 2023; 15:nu15071571. [PMID: 37049411 PMCID: PMC10096942 DOI: 10.3390/nu15071571] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic alcohol use has been attributed to the development of malnutrition. This is in part due to the inhibitory effect of ethanol on the absorption of vital nutrients, including glucose, amino acids, lipids, water, vitamins, and minerals within the small intestine. Recent advances in research, along with new cutting-edge technologies, have advanced our understanding of the mechanism of ethanol's effect on intestinal nutrient absorption at the brush border membrane (BBM) of the small intestine. However, further studies are needed to delineate how ethanol consumption could have an impact on altered nutrient absorption under various disease conditions. Current research has elucidated the relationship of alcohol consumption on glucose, glutamine, vitamins B1 (thiamine), B2 (riboflavin), B9 (folate), C (ascorbic acid), selenium, iron, and zinc absorption within the small intestine. We conducted systematic computerized searches in PubMed using the following keywords: (1) "Alcohol effects on nutrient transport"; (2) "Alcohol mediated malabsorption of nutrients"; (3) "Alcohol effects on small intestinal nutrient transport"; and (4) "Alcohol mediated malabsorption of nutrients in small intestine". We included the relevant studies in this review. The main objective of this review is to marshal and analyze previously published research articles and discuss, in-depth, the understanding of ethanol's effect in modulating absorption of vital macro and micronutrients in health and disease conditions. This could ultimately provide great insights in the development of new therapeutic strategies to combat malnutrition associated with alcohol consumption.
Collapse
Affiliation(s)
- Molly Butts
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV 25755, USA
| | - Vijaya Lakshmi Sundaram
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV 25755, USA
| | - Usha Murughiyan
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV 25755, USA
| | - Alip Borthakur
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV 25755, USA
| | - Soudamani Singh
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
3
|
Guo X, Sha Y, Pu X, Xu Y, Yao L, Liu X, He Y, Hu J, Wang J, Li S, Chen G. Coevolution of Rumen Epithelial circRNAs with Their Microbiota and Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep. Int J Mol Sci 2022; 23:ijms231810488. [PMID: 36142400 PMCID: PMC9499677 DOI: 10.3390/ijms231810488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
This study explores the effects of the coevolution of the host genome (the first genome) and gut microbiome (the second genome) on nutrition stress in Tibetan sheep during the cold season. The rumen epithelial tissue of six Tibetan sheep (Oula-type) was collected as experimental samples during the cold and warm seasons and the study lasted for half a year. The cDNA library was constructed and subjected to high-throughput sequencing. The circRNAs with significant differential expression were identified through bioinformatics analysis and functional prediction, and verified by real-time quantitative PCR (qRT-PCR). The results showed that a total of 56 differentially expressed (DE) circRNAs of rumen epithelial tissue were identified using RNA-seq technology, among which 29 were significantly upregulated in the cold season. The circRNA-miRNA regulatory network showed that DE circRNAs promoted the adaptation of Tibetan sheep in the cold season by targeting miR-150 and oar-miR-370-3p. The results of correlation analysis among circRNAs, microbiota, and metabolites showed that the circRNA NC_040275.1:28680890|28683112 had a very significant positive correlation with acetate, propionate, butyrate, and total volatile fatty acid (VFA) (p < 0.01), and had a significant positive correlation with Ruminococcus-1 (p < 0.05). In addition, circRNA NC_040256.1:78451819|78454934 and metabolites were enriched in the same KEGG pathway biosynthesis of amino acids (ko01230). In conclusion, the host genome and rumen microbiome of Tibetan sheep co-encoded a certain glycoside hydrolase (β-glucosidase) and coevolved efficient VFA transport functions and amino acid anabolic processes; thus, helping Tibetan sheep adapt to nutrient stress in the cold season in high-altitude areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiu Liu
- Correspondence: (X.L.); (G.C.)
| | | | | | | | | | | |
Collapse
|
4
|
Sharma J, Krupenko SA. Folate pathways mediating the effects of ethanol in tumorigenesis. Chem Biol Interact 2020; 324:109091. [PMID: 32283069 DOI: 10.1016/j.cbi.2020.109091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
Folate and alcohol are dietary factors affecting the risk of cancer development in humans. The interaction between folate status and alcohol consumption in carcinogenesis involves multiple mechanisms. Alcoholism is typically associated with folate deficiency due to reduced dietary folate intake. Heavy alcohol consumption also decreases folate absorption, enhances urinary folate excretion and inhibits enzymes pivotal for one-carbon metabolism. While folate metabolism is involved in several key biochemical pathways, aberrant DNA methylation, due to the deficiency of methyl donors, is considered as a common downstream target of the folate-mediated effects of ethanol. The negative effects of low intakes of nutrients that provide dietary methyl groups, with high intakes of alcohol are additive in general. For example, low methionine, low-folate diets coupled with alcohol consumption could increase the risk for colorectal cancer in men. To counteract the negative effects of alcohol consumption, increased intake of nutrients, such as folate, providing dietary methyl groups is generally recommended. Here mechanisms involving dietary folate and folate metabolism in cancer disease, as well as links between these mechanisms and alcohol effects, are discussed. These mechanisms include direct effects on folate pathways and indirect mediation by oxidative stress, hypoxia, and microRNAs.
Collapse
Affiliation(s)
- Jaspreet Sharma
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA
| | - Sergey A Krupenko
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA; Department of Nutrition, University of North Carolina, Chapel Hill, USA.
| |
Collapse
|
5
|
Butts M, Singh S, Haynes J, Arthur S, Sundaram U. Moderate Alcohol Consumption Uniquely Regulates Sodium-Dependent Glucose Co-Transport in Rat Intestinal Epithelial Cells In Vitro and In Vivo. J Nutr 2020; 150:747-755. [PMID: 31769840 PMCID: PMC7138678 DOI: 10.1093/jn/nxz277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic alcohol use often leads to malnutrition. However, how the intestinal absorption of nutrients such as glucose may be affected during moderate ethanol use has not been investigated. Glucose is absorbed via sodium (Na)-dependent glucose co-transport (SGLT1; SLC5A1) along the brush border membrane (BBM) of intestinal absorptive villus cells. OBJECTIVE The aim of this study was to investigate how moderate alcohol consumption affects the absorption of glucose via SGLT1. METHODS Intestinal epithelial cells (IEC-18; rat) were exposed to 8.64 mM ethanol over 1, 3, 6, and 12 h. Rats (16-wk-old, male, Sprague-Dawley) were administered 2 g/kg ethanol over 1, 3, and 6 h. Na-dependent 3H-O-methyl-d-glucose uptake was measured to assess SGLT1 activity. Na-K-ATPase activity was measured as a function of inorganic phosphate release. Protein expression was analyzed by Western blot analysis and immunohistochemical staining. RESULTS Ethanol significantly decreased Na-dependent glucose absorption in enterocytes in vitro (ethanol treatment: 48.4% of controls at 1 h; P < 0.01) and in vivo (ethanol treatment: 60.0% of controls at 1 h; P < 0.01). Na-K-ATPase activity was significantly inhibited in vitro (ethanol treatment: 36.9% of controls at 1 h; P < 0.01) and in vivo (ethanol treatment: 42.1% of controls at 1 h; P < 0.01). Kinetic studies showed that the mechanism of inhibition of Na-glucose co-transport was secondary to a decrease in the affinity (1/Km) of the co-transporter for glucose both in vitro and in vivo. Western blots and immunohistochemistry further demonstrated unaltered amounts of SGLT1 after ethanol treatment. CONCLUSIONS Moderate ethanol significantly decreases glucose absorption in IEC-18 cells and in villus cells of Sprague-Dawley rats. The inhibition of SGLT1 is secondary to an altered Na gradient at the cellular level and secondary to diminished affinity of the co-transporter for glucose at the protein level in the BBM. These observations may, at least in part, explain 1 possible mechanism of the onset of malnutrition associated with alcohol consumption.
Collapse
Affiliation(s)
- Molly Butts
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV, USA
| | - Soudamani Singh
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV, USA
| | - Jennifer Haynes
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV, USA
| | - Subha Arthur
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV, USA
| | - Uma Sundaram
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV, USA,Address correspondence to US (e-mail: )
| |
Collapse
|
6
|
Moderate Alcohol Consumption Inhibits Sodium-Dependent Glutamine Co-Transport in Rat Intestinal Epithelial Cells in Vitro and Ex Vivo. Nutrients 2019; 11:nu11102516. [PMID: 31635319 PMCID: PMC6835445 DOI: 10.3390/nu11102516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
Malnutrition is present in chronic alcoholics. However, how moderate alcohol consumption affects the absorption of nutrients like glutamine has not been investigated. Glutamine, an amino acid, is vital to gastrointestinal health. Glutamine is absorbed via sodium-dependent glutamine co-transport (B0AT1; SLC6A19) along the brush border membrane of absorptive villus cells. Rat intestinal epithelial cells (IEC-18) and sixteen-week-old Sprague Dawley rats were administered the equivalent of a 0.04% blood alcohol content of ethanol (8.64 mM; 2 g/kg) to investigate the effect of moderate alcohol on sodium-glutamine co-transport. Sodium-dependent 3H-glutamine uptakes were performed to measure B0AT1 activity. Inorganic phosphate was measured as a function of Na-K-ATPase activity. Protein expression was analyzed by immunohistochemical and Western blot analysis. Ethanol significantly inhibited sodium-dependent glutamine absorption and Na-K-ATPase activity in enterocytes in vitro and ex vivo. Kinetic studies suggested that the mechanism of inhibition was due to decreased maximal rate of uptake (Vmax) of the B0AT1 co-transporter, corresponding to decreased B0AT1 protein expression and secondary to an inhibited sodium-gradient at the cellular level in vitro and ex vivo. In all, moderate ethanol significantly inhibited glutamine absorption at the level of decreased B0AT1 expression at the brush border membrane and a reduced sodium gradient, which may contribute to malnutrition present in chronic alcoholics.
Collapse
|
7
|
Kalisch-Smith JI, Steane SE, Simmons DG, Pantaleon M, Anderson ST, Akison LK, Wlodek ME, Moritz KM. Periconceptional alcohol exposure causes female-specific perturbations to trophoblast differentiation and placental formation in the rat. Development 2019; 146:dev172205. [PMID: 31182432 DOI: 10.1242/dev.172205] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
The development of pathologies during pregnancy, including pre-eclampsia, hypertension and fetal growth restriction (FGR), often originates from poor functioning of the placenta. In vivo models of maternal stressors, such as nutrient deficiency, and placental insufficiency often focus on inadequate growth of the fetus and placenta in late gestation. These studies rarely investigate the origins of poor placental formation in early gestation, including those affecting the pre-implantation embryo and/or the uterine environment. The current study characterises the impact on blastocyst, uterine and placental outcomes in a rat model of periconceptional alcohol exposure, in which 12.5% ethanol is administered in a liquid diet from 4 days before until 4 days after conception. We show female-specific effects on trophoblast differentiation, embryo-uterine communication, and formation of the placental vasculature, resulting in markedly reduced placental volume at embryonic day 15. Both sexes exhibited reduced trophectoderm pluripotency and global hypermethylation, suggestive of inappropriate epigenetic reprogramming. Furthermore, evidence of reduced placental nutrient exchange and reduced pre-implantation maternal plasma choline levels offers significant mechanistic insight into the origins of FGR in this model.
Collapse
Affiliation(s)
- Jacinta I Kalisch-Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Sarah E Steane
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David G Simmons
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Marie Pantaleon
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Stephen T Anderson
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lisa K Akison
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
| | - Mary E Wlodek
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
| |
Collapse
|
8
|
Legault LM, Bertrand-Lehouillier V, McGraw S. Pre-implantation alcohol exposure and developmental programming of FASD: an epigenetic perspective. Biochem Cell Biol 2018; 96:117-130. [DOI: 10.1139/bcb-2017-0141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exposure to alcohol during in-utero development can permanently change the developmental programming of physiological responses, thereby increasing the risk of neurological illnesses during childhood and later adverse health outcomes associated with fetal alcohol spectrum disorder (FASD). There is an increasing body of evidence indicating that exposure to alcohol during gestation triggers lasting epigenetic alterations in offspring, long after the initial insult; together, these studies support the role of epigenetics in FASD etiology. However, we still have little information about how ethanol interferes with the fundamental epigenetic reprogramming wave (e.g., erasure and re-establishment of DNA methylation marks) that characterizes pre-implantation embryo development. This review examines key epigenetic processes that occur during pre-implantation development and especially focus on the current knowledge regarding how prenatal exposure to alcohol during this period could affect the developmental programming of the early stage pre-implantation embryo. We will also outline the current limitations of studies examining the in-vivo and in-vitro effects of alcohol exposure on embryos and underline the next critical steps to be taken if we want to better understand the implicated mechanisms to strengthen the translational potential for epigenetic markers for non-invasive early detection, and the treatment of newborns that have higher risk of developing FASD.
Collapse
Affiliation(s)
- Lisa-Marie Legault
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Virginie Bertrand-Lehouillier
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Serge McGraw
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
- Obstetrics and Gynecology, Université de Montreal, Research Center of the CHU Sainte-Justine, Montreal, Canada
| |
Collapse
|
9
|
Kapur BM, Baber M. FASD: folic acid and formic acid — an unholy alliance in the alcohol abusing mother. Biochem Cell Biol 2018; 96:189-197. [DOI: 10.1139/bcb-2017-0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alcohol consumption during pregnancy remains a significant cause of preventable birth defects and developmental disabilities; however, the mechanism of toxicity remains unclear. Methanol is present as a congener in many alcoholic beverages and is formed endogenously. Because ethanol is preferentially metabolized over methanol, it has been found in the sera and cerebro-spinal fluid of alcoholics. Toxicity resulting from methanol has been attributed to formic acid. Formic acid is present in significantly higher quantities in the biofluids of alcoholics. These higher levels can be cytotoxic and cause neuronal cell death. However, the adverse effects can be mitigated by adequate levels of hepatic folic acid, because formic acid elimination depends on folic acid. During pregnancy, folate concentrations are at least 2-fold higher in cord blood then in maternal blood, owing to increased folate requirements. The reverse has been demonstrated in pregnancies with alcohol abuse, suggesting downregulation of folate transporters and low fetal folate levels. Moreover, formic acid can cross the placenta and its adverse effects can be mitigated by folic acid. Thus, the combination of low fetal folate levels and presence of formic acid form a potent cytotoxic combination that may play a significant role in the etiology of fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Bhushan M. Kapur
- Department of Clinical Pathology, Sunnybrook Health Science Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Marta Baber
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
10
|
Sanvisens A, Zuluaga P, Pineda M, Fuster D, Bolao F, Juncà J, Tor J, Muga R. Folate deficiency in patients seeking treatment of alcohol use disorder. Drug Alcohol Depend 2017; 180:417-422. [PMID: 28988003 DOI: 10.1016/j.drugalcdep.2017.08.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Nutritional deficiency is frequent in patients with an alcohol use disorder (AUD). We aimed to analyze serum and erythrocyte folate deficiency in a case series of patients that initiated treatment of AUD. PATIENTS AND METHODS A cross-sectional study in patients admitted for detoxification between 2007 and 2015 was performed. Sociodemographic characteristics, history of alcohol consumption, type of alcohol, and medical co-morbidity were assessed at admission. Blood samples for biochemistry and hematological parameters were collected at admission. Logistic regression models were used to establish predictors of folate deficiency. RESULTS 211 patients (79.1% men) were eligible; age at admission was 46 years [IQR:40-51], and the amount of alcohol consumption was of 160g/day [IQR:120-200]. Thirty four percent of patients had macrocytosis (MCV>100fL), 12.8% had anemia, 23% of cases presented with serum folate deficiency and 7% presented with erythrocyte folate deficiency. Most (69%) of the patients with serum folate deficiency had normal erythrocyte folate levels. In univariate analysis, macrocytosis (OR=3.4, 95%CI:1.7-6.6), alcohol-related liver disease (ARLD) (OR=2.5, 95%CI:1.0-6.1) and drinking alcoholic beverages other than beer (OR=3.3, 95%CI:1.5-7.3) were associated with folate deficiency. However, only macrocytosis was significantly associated with serum folate deficiency in multivariate analysis (OR=3.1, 95%CI:1.1-8.9). Macrocytosis (P<0.001), ARLD (P=0.01) and the type of alcohol consumption (P<0.001) were factors associated with erythrocyte folate deficiency in univariate analysis. In multivariate analysis only macrocytosis remained significantly associated to erythrocyte folate deficiency (P=0.037). CONCLUSION Folate deficiency is a relatively frequent finding in contemporary, middle-aged patients with AUD, and macrocytosis is significantly associated with the deficiency.
Collapse
Affiliation(s)
- Arantza Sanvisens
- Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Paola Zuluaga
- Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Miriam Pineda
- Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Daniel Fuster
- Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ferran Bolao
- Department of Internal Medicine, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Universitat de Barcelona, Spain
| | - Jordi Juncà
- Department of Hematology, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Jordi Tor
- Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Robert Muga
- Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| |
Collapse
|
11
|
Ahmad Najar R, Rahat B, Hussain A, Thakur S, Kaur J, Kaur J, Hamid A. Gene specific epigenetic regulation of hepatic folate transport system is responsible for perturbed cellular folate status during aging and exogenous modulation. Mol Nutr Food Res 2016; 60:1501-13. [PMID: 26990146 DOI: 10.1002/mnfr.201500991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 01/11/2023]
Abstract
SCOPE The present study was designed to identify the molecular mechanism of folate modulation and aging on aberrant liver folate transporter system. METHODS AND RESULTS An in vivo rat model was used, in which weanling, young and adult rats were given folate deficient diet for 3 and 5 months and after 3 months of folate deficiency, one group received physiological folate repletion (2 mg/kg diet) and another group received over supplemented folate diet (8 mg/kg diet) for another 2 months. In adult group, 3 and 5 months of folate deficiency decreased serum and tissue folate levels with decreased uptake of folate, further associated with decreased expression levels of reduced folate carrier (RFC) and increased expression levels of folate exporter (ABCG2) at both mRNA and protein levels, which in turn regulated by promoter hypermethylation of RFC and promoter hypomethylation of ABCG2 gene. CONCLUSION Promoter hypermethylation of RFC and promoter hypomethylation of ABCG2 may be attributed to the down regulation of RFC and up regulation of ABCG2 at mRNA and protein levels in conditions of 3 and 5 months of folate deficiency in the adult group.
Collapse
Affiliation(s)
- Rauf Ahmad Najar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Department of Biochemistry, Panjab University, Chandigarh, India
| | - Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aashiq Hussain
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Shilpa Thakur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jaspreet Kaur
- University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abid Hamid
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,CSIR-Academy of Scientific & Innovative Research, New Delhi, India
| |
Collapse
|
12
|
Increased synthesis of folate transporters regulates folate transport in conditions of ethanol exposure and folate deficiency. Mol Cell Biochem 2015; 411:151-60. [PMID: 26433955 DOI: 10.1007/s11010-015-2577-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/26/2015] [Indexed: 01/31/2023]
Abstract
Excessive alcohol consumption and dietary folate inadequacy are the main contributors leading to folate deficiency (FD). The present study was planned to study regulation of folate transport in conditions of FD and ethanol exposure in human embryonic kidney cell line. Also, the reversible nature of effects mediated by ethanol exposure and FD was determined by folate repletion and ethanol removal. For ethanol treatment, HEK293 cells were grown in medium containing 100 mM ethanol, and after treatment, one group of cells was shifted on medium that was free from ethanol. For FD treatment, cells were grown in folate-deficient medium followed by shifting of one group of cells on folate containing medium. FD as well as ethanol exposure resulted in an increase in folate uptake which was due to an increase in expression of folate transporters, i.e., reduced folate carrier, proton-coupled folate transporter, and folate receptor, both at the mRNA and protein level. The effects mediated by ethanol exposure and FD were reversible on removal of treatment. Promoter region methylation of folate transporters remained unaffected after FD and ethanol exposure. As far as transcription rate of folate transporters is concerned, an increase in rate of synthesis was observed in both ethanol exposure and FD conditions. Additionally, mRNA life of folate transporters was observed to be reduced by FD. An increased expression of folate transporters under ethanol exposure and FD conditions can be attributed to enhanced rate of synthesis of folate transporters.
Collapse
|
13
|
Yamashiro T, Ohta K, Inoue K, Furumiya M, Hayashi Y, Yuasa H. Kinetic and time-dependent features of sustained inhibitory effect of myricetin on folate transport by proton-coupled folate transporter. Drug Metab Pharmacokinet 2015; 30:341-6. [PMID: 26403086 DOI: 10.1016/j.dmpk.2015.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/07/2015] [Accepted: 06/15/2015] [Indexed: 01/11/2023]
Abstract
Myricetin is a flavonoid that has recently been suggested to induce sustained inhibition of proton-coupled folate transporter (PCFT/SLC46A1), which operates for intestinal folate uptake. The present study was conducted to characterize the inhibitory effect in more detail, using human PCFT stably expressed in Madin-Darby canine kidney II cells, to gain information to cope with problems potentially arising from that. The kinetics of saturable folate transport was first assessed in the absence of myricetin in the cells pretreated with the flavonoid for 60 min. The pretreatment induced PCFT inhibition in a manner dependent on the concentration of myricetin, where the maximum transport rate was reduced by 35.5% and 83.1%, respectively, at its concentrations of 20 μM and 50 μM. The inhibitory effect was, however, less extensive at lower folate concentrations, because the Michaelis constant was also reduced similarly in a manner dependent on myricetin concentration. The inhibition was induced depending on the time of pretreatment and, after removal of myricetin (50 μM) upon the manifestation of an extensive inhibition at 60 min, reversed almost completely in 90 min. This rather short time required for recovery may suggest that the sustained inhibition of PCFT is of a reversible type.
Collapse
Affiliation(s)
- Takahiro Yamashiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kinya Ohta
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mai Furumiya
- Department of Biopharmaceutics, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Yayoi Hayashi
- Department of Biopharmaceutics, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| |
Collapse
|
14
|
Thakur S, Rahat B, More D, Kaur J. Reduced SP1-mediated transcriptional activation decreases expression of intestinal folate transporters in response to ethanol exposure. Mol Nutr Food Res 2015; 59:1713-24. [PMID: 26012520 DOI: 10.1002/mnfr.201400874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/16/2023]
Abstract
SCOPE The study was designed to identify the regulatory mechanisms underlying the effects of ethanol exposure on intestinal folate transport and to investigate the reversibility of such effects. METHODS AND RESULTS Caco-2 cells were grown in control and ethanol containing medium for 96 h. Thereafter, one subgroup of cells was shifted on ethanol free medium and grown for next 72 h. For in vivo studies, rats were given 1g ethanol/kg body weight/day either for 3 or 5 months and after 3 months of ethanol treatment, one group of rats received no ethanol for 2 months. A significant decrease in folic acid transport as well as expression of folate transporters was observed on ethanol treatment and the effects were reversible upon removal of ethanol. Ethanol exposure had no impact on CpG island methylation of the folate transporters however, an increase in their mRNA half-life was observed that seems to be a homeostatic mechanism. Chromatin immunoprecipitation assay revealed a decrease in binding of SP1 transcription factor to the promoter regions of folate transporters. CONCLUSION Reduced binding of SP1 to the promoter region of folate transporters may be a part of the regulatory mechanism resulting in decreased expression of folate transporters on ethanol exposure.
Collapse
Affiliation(s)
- Shilpa Thakur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti More
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
15
|
Araújo JR, Martel F, Borges N, Araújo JM, Keating E. Folates and aging: Role in mild cognitive impairment, dementia and depression. Ageing Res Rev 2015; 22:9-19. [PMID: 25939915 DOI: 10.1016/j.arr.2015.04.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/18/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
In almost all tissues, including the brain, folates are required for one-carbon transfer reactions, which are essential for the synthesis of DNA and RNA nucleotides, the metabolism of amino acids and the occurrence of methylation reactions. The aim of this paper is to review the impact of folate status on the risk of development of neuropsychiatric disorders in older individuals. The prevalence of folate deficiency is high among individuals aged ≥ 65 years mainly due to reduced dietary intake and intestinal malabsorption. Population-based studies have demonstrated that a low folate status is associated with mild cognitive impairment, dementia (particularly Alzheimer's disease) and depression in healthy and neuropsychiatric diseased older individuals. The proposed mechanisms underlying that association include hyperhomocysteinemia, lower methylation reactions and tetrahydrobiopterin levels, and excessive misincorporation of uracil into DNA. However, currently, there is no consistent evidence demonstrating that folic acid supplementation improves cognitive function or slows cognitive decline in healthy or cognitively impaired older individuals. In conclusion, folate deficiency seems to be an important contributor for the onset and progression of neuropsychiatric diseases in the geriatric population but additional studies are needed in order to increase the knowledge of this promising, but still largely unexplored, area of research.
Collapse
|
16
|
Qu Y, Zhang HL, Yu LM, Sun Y, Wu HL, Chen YG. Aldehyde dehydrogenase 2 polymorphism as a protective factor for intracranial vascular stenosis in ischemic stroke in Han Chinese. Int J Neurosci 2015; 126:342-7. [PMID: 26000808 DOI: 10.3109/00207454.2015.1017760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme that metabolizes acetaldehyde to acetic acid. ALDH2 gene polymorphism modifies its activity and the mutation of ALDH2 gene has been reported to be associated with the protection against ischemic stroke. However, the potential association of allelic variation of ALDH2 with intracranial vascular stenosis and the clinical characteristics of ischemic stroke without coronary artery disease remains unclear. METHODS In this study, ischemic stroke patients were recruited, National Institutes of Health Stroke Scale scores were analyzed, intracranial arterial stenosis were evaluated by magnetic resonance angiography and gene typing of ALDH2 was determined by polymerase chain reaction and sequencing. RESULTS We found that the rate of heavy drinking was significantly lower in the ALDH2 mutation group ((*)1/(*)2 and (*)2/(*)2) than in wild-type group ((*)1/(*)1) (18.6% vs. 38.0%, p = 0.01). Plasma homocysteine (Hcy) levels were significantly different in the two groups (15.45 ± 6.39 vs. 13.14 ± 4.45, p = 0.015). The ALDH2 mutation genotype was negatively correlated with severe intracranial vascular stenosis (OR, 0.34; p = 0.002), even after adjustment for high-density lipoprotein cholesterol, Hcy, and heavy drinking (adjusted OR, 0.44; p = 0.03). CONCLUSION ALDH2(*)2 could be a protective factor and negative predictor for severe intracranial vascular stenosis in ischemic stroke in Han Chinese.
Collapse
Affiliation(s)
- Yun Qu
- a Yuhuangding Hospital affiliated to Qingdao University , Yantai , China.,b Department of Emergency , Qilu Hospital , Shandong University , Jinan , China
| | - Hui-long Zhang
- a Yuhuangding Hospital affiliated to Qingdao University , Yantai , China
| | - Li-mei Yu
- a Yuhuangding Hospital affiliated to Qingdao University , Yantai , China
| | - Ying Sun
- a Yuhuangding Hospital affiliated to Qingdao University , Yantai , China
| | - Hong-liang Wu
- a Yuhuangding Hospital affiliated to Qingdao University , Yantai , China
| | - Yu-guo Chen
- b Department of Emergency , Qilu Hospital , Shandong University , Jinan , China
| |
Collapse
|
17
|
Thakur S, Rahat B, Hamid A, Najar RA, Kaur J. Identification of regulatory mechanisms of intestinal folate transport in condition of folate deficiency. J Nutr Biochem 2015; 26:1084-94. [PMID: 26168702 DOI: 10.1016/j.jnutbio.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 04/03/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Folic acid is an essential micronutrient, deficiency of which can lead to disturbance in various metabolic processes of cell. Folate transport across intestine occurs via the involvement of specialized folate transporters viz. proton coupled folate transporter (PCFT) and reduced folate carrier (RFC), which express at the membrane surfaces. The current study was designed to identify the regulatory mechanisms underlying the effects of folate deficiency (FD) on folate transport in human intestinal cell line as well as in rats and to check the reversibility of such effects. Caco-2 cells were grown for five generations in control and FD medium. Following treatment, one subgroup of cells was shifted on folate sufficient medium and grown for three more generations. Similarly, rats were fed an FD diet for 3 and 5 months, and after 3 months of FD treatment, one group of rats were shifted on normal folate-containing diet. Increase in folate transport and expression of folate transporters were observed on FD treatment. However, when cells and rats were shifted to control conditions after treatment, transport and expression of these genes restored to the control level. FD was found to have no impact on promoter methylation of PCFT and RFC; however, messenger RNA stability of transporters was found to be decreased, suggesting some adaptive response. Overall, increased expression of transporters under FD conditions can be attributed to enhanced rate of transcription of folate transporters and also to the increased binding of specificity protein 1 transcription factor to the RFC promoter only.
Collapse
Affiliation(s)
- Shilpa Thakur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Abid Hamid
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rauf Ahmad Najar
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
18
|
Furumiya M, Yamashiro T, Inoue K, Nishijima C, Ohta K, Hayashi Y, Yuasa H. Sustained inhibition of proton-coupled folate transporter by myricetin. Drug Metab Pharmacokinet 2015; 30:154-9. [PMID: 25801697 DOI: 10.1016/j.dmpk.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/14/2014] [Accepted: 11/18/2014] [Indexed: 11/27/2022]
Abstract
Myricetin is a flavonoid that has recently been suggested to interfere with the intestinal folate transport system. To examine that possibility, focusing on its sustained inhibitory effect on proton-coupled folate transporter (PCFT), the uptake of folate was examined in Caco-2 cells, in which PCFT is known to be in operation, in the absence of myricetin in the medium during uptake period after preincubation of the cells with the flavonoid (100 μM) for 1 h. This pretreatment induced an extensive and sustained reduction in the carrier-mediated component of folate uptake, which was attributable to a reduction in the maximum transport rate (Vmax). Although the affinity of the transporter for folate was increased at the same time as indicated by a reduction in the Michaelis constant (Km), the change in Km was overwhelmed in extent by that in Vmax. Consistent with the finding, folate transport by human PCFT stably expressed in Madin-Darby canine kidney II cells was reduced in a similar manner with simultaneous reductions in Vmax and Km by myricetin pretreatment. Attention may need to be given for a possibility that such a sustained inhibition of PCFT could potentially be a cause of the malabsorption of folate and also antifolate drugs.
Collapse
Affiliation(s)
- Mai Furumiya
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan; Department of Biopharmaceutics, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Takahiro Yamashiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Chihiro Nishijima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kinya Ohta
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yayoi Hayashi
- Department of Biopharmaceutics, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
19
|
Abstract
The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described.
Collapse
Affiliation(s)
- Michele Visentin
- Departments of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, Bronx, New York 10461; , , ,
| | | | | | | |
Collapse
|
20
|
FUKUDA N, HAMAJIMA N, WAKAI K, SUZUKI K. A Cross-Sectional Study to Find Out the Relationship of Methylenetetrahydrofolate Reductase (MTHFR) C677T Genotype with Plasma Levels of Folate and Total Homocysteine by Daily Folate Intake in Japanese. J Nutr Sci Vitaminol (Tokyo) 2014; 60:231-8. [DOI: 10.3177/jnsv.60.231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Furumiya M, Inoue K, Nishijima C, Yamashiro T, Inaoka E, Ohta K, Hayashi Y, Yuasa H. Noncompetitive Inhibition of Proton-coupled Folate Transporter by Myricetin. Drug Metab Pharmacokinet 2014; 29:312-6. [DOI: 10.2133/dmpk.dmpk-13-rg-107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Wani NA, Thakur S, Najar RA, Nada R, Khanduja KL, Kaur J. Mechanistic insights of intestinal absorption and renal conservation of folate in chronic alcoholism. Alcohol 2013; 47:121-30. [PMID: 23267781 DOI: 10.1016/j.alcohol.2012.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 10/18/2012] [Accepted: 11/27/2012] [Indexed: 01/01/2023]
Abstract
Folate mediated one-carbon metabolism is of fundamental importance for various cellular processes, including DNA synthesis and methylation of biological molecules. Due to the exogenous requirement of folate in mammals, there exists a well developed epithelial folate transport system for regulation of normal folate homeostasis. The intestinal and renal folate uptake is tightly and diversely regulated and disturbances in folate homeostasis like in alcoholism have pathological consequences. The study was sought to delineate the regulatory mechanism of folate uptake in intestine and reabsorption in renal tubular cells that could evaluate insights of malabsorption during alcoholism. The folate transporters PCFT and RFC were found to be associated with lipid rafts of membrane surfaces in intestine and kidney. Importantly, the observed lower intestinal and renal folate uptake was associated with decreased levels of folate transporter viz. PCFT and RFC in lipid rafts of intestinal and renal membrane surfaces. The decreased association of folate transporters in lipid rafts was associated with decreased protein and mRNA levels. In addition, immunohistochemical studies showed that alcoholic conditions deranged that localization of PCFT and RFC. These findings could explain the possible mechanistic insights that may result in folate malabsorption during alcoholism.
Collapse
|
23
|
Wani NA, Kaur J. Adaptive transport of folic acid across renal epithelia in folate-deficient rats. J Physiol Sci 2012; 62:461-8. [PMID: 22865158 PMCID: PMC10717754 DOI: 10.1007/s12576-012-0223-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 07/16/2012] [Indexed: 01/01/2023]
Abstract
Folate (vitamin B(9)) is an essential vitamin for a wide spectrum of biochemical reactions; however, unlike bacteria and plants, mammals are devoid of folate biosynthesis and thus must obtain this cofactor from exogenous sources. The activities of folate transporters on the kidneys play an important role in conserving folate excretion and reabsorption across the apical membrane of the renal proximal tubules. The different transport system activities may become identifiable in response to external stimuli, such as folate availability and exposure to chemotherapeutic agents. We have explored the effect of folate deficiency on the activity and expression of folate transporters in rat kidneys. Wistar rats were fed a folate-containing diet (2 mg folic acid kg(-1) diet) or a folic acid-free diet over a 3-month period, and mechanisms of folate transport were studied in renal brush border membrane vesicles and basolateral membrane vesicles. The renal folate uptake process is saturable and pH dependent, and it involves the folate receptor and reduced folate carrier (RFC) systems and possibly the proton coupled folate transporter (PCFT) system. We found that folate deficiency increased the renal brush border membrane and basolateral folate uptake by increasing the number of transporter molecules. The observed up-regulation of mRNA expression was also associated with a significant increase in RFC and PCFT expression at the protein level.
Collapse
Affiliation(s)
- Nissar Ahmad Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012 India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012 India
| |
Collapse
|
24
|
Wani NA, Nada R, Khanduja KL, Kaur J. Decreased activity of folate transporters in lipid rafts resulted in reduced hepatic folate uptake in chronic alcoholism in rats. GENES AND NUTRITION 2012; 8:209-19. [PMID: 22956120 DOI: 10.1007/s12263-012-0318-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 08/17/2012] [Indexed: 11/29/2022]
Abstract
Folic acid is an essential nutrient that is required for one-carbon biosynthetic processes and for methylation of biomolecules. Deficiency of this micronutrient leads to disturbances in normal physiology of cell. Chronic alcoholism is well known to be associated with folate deficiency, which is due in part to folate malabsorption. The present study deals with the regulatory mechanisms of folate uptake in liver during chronic alcoholism. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20 % solution) orally for 3 months, and the molecular mechanisms of folate uptake were studied in liver. The characterization of the folate transport system in liver basolateral membrane (BLM) suggested it to be a carrier mediated and acidic pH dependent, with the major involvement of proton coupled folate transporter and folate binding protein in the uptake. The folate transporters were found to be associated with lipid raft microdomain of liver BLM. Moreover, ethanol ingestion decreased the folate transport by altering the Vmax of folate transport process and downregulated the expression of folate transporters in lipid rafts. The decreased transporter levels were associated with reduced protein and mRNA levels of these transporters in liver. The deranged folate uptake together with reduced folate transporter levels in lipid rafts resulted in reduced folate levels in liver and thereby to its reduced levels in serum of ethanol-fed rats. The chronic ethanol ingestion led to decreased folate uptake in liver, which was associated with the decreased number of transporter molecules in the lipid rafts that can be ascribed to the reduced synthesis of these transporters.
Collapse
Affiliation(s)
- Nissar Ahmad Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | | | | | | |
Collapse
|
25
|
Hamid A. Folate malabsorption and its influence on DNA methylation during cancer development. DNA Cell Biol 2012. [PMID: 22468673 DOI: 10.1089/dna.2011.1576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The folate transport across the epithelial of the intestine, colon, kidney, and liver is essential for folate homeostasis. The relative localization of transporters in membranes is an important determinant for the vectorial flow of substrates across the epithelia. Folate deficiency is a highly prevalent vitamin deficiency in the world, and alcohol ingestion has been the major contributor. It can develop because of folate malabsorption in tissues, increased renal excretion dietary inadequacy, and altered hepatobiliary metabolism. Additionally, folate-mediated one-carbon metabolism is important for various cellular processes, including DNA synthesis and methylation. In this regard, the contribution of alcohol-associated and dietary folate deficiency to methylation patterns is under intense investigation, especially in cancer. The epigenetic events have increasing relevance in the development of strategies for early diagnosis, prevention, and treatment of cancer.
Collapse
Affiliation(s)
- Abid Hamid
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, CSIR, Jammu, India
| |
Collapse
|
26
|
Effects of ethanol consumption on the B-group vitamin contents of liver, blood and urine in rats. Br J Nutr 2011; 108:1034-41. [DOI: 10.1017/s0007114511006192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several studies have shown that blood vitamin levels are lower in alcoholic patients than in control subjects. Acute ethanol exposure enhances the release of vitamins from liver cells in vitro. The aim of the present study is to confirm the effects of ethanol consumption on vitamin contents in vivo. We compared the contents of B-group vitamins in the liver, blood and urine between ethanol-fed and control rats fed a diet containing a sufficient- and low-vitamin mixture. The experimental rats were fed a 15 % ethanol solution freely for 28 d, and then 24 h urine samples were collected, after which the animals were killed. The B-group vitamin contents in the liver, blood and urine were measured. No differences in liver, blood and urine contents were observed between the control and ethanol-fed rats fed a diet containing a sufficient-vitamin mixture. On the contrary, in rats fed a diet containing a low-vitamin mixture, consumption of ethanol caused a decrease in the contents of vitamins B1, B2 and pantothenic acid in the liver; however, the contents of the other vitamins did not decrease. In the blood, the contents of vitamins B1, B2, B6 and pantothenic acid were lower in the ethanol-fed rats than in the controls. Urinary excretion of the B-group vitamins, except for niacin, was lower in the ethanol-fed rats. These results show that ethanol consumption affects the absorption, distribution and excretion of each of the vitamins in rats fed a diet containing a low-vitamin mixture.
Collapse
|
27
|
Wani NA, Hamid A, Kaur J. Alcohol-associated folate disturbances result in altered methylation of folate-regulating genes. Mol Cell Biochem 2011; 363:157-66. [PMID: 22147198 DOI: 10.1007/s11010-011-1168-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 11/23/2011] [Indexed: 12/17/2022]
Abstract
Folate plays a critical role in maintaining normal metabolic, energy, differentiation and growth status of all mammalian cells. The steady-state accumulation of folate seems to depend on the activity of two enzymes: folylpolyglutamate synthetase (FPGS), which adds glutamate residues, and gamma-glutamyl hydrolase (GGH), which removes them, enabling it to be transported across the biological membranes. Overexpression of GGH and downregulation of FPGS would be expected to decrease intracellular folate in its polyglutamylated form, thereby increasing efflux of folate and its related molecules, which might lead to resistance to drugs or folate deficiency. The study was sought to delineate the activity of GGH and expression FPGS in tissues involved in folate homeostasis during alcoholism and the epigenetic regulation of these enzymes and transporters regulating intracellular folate levels. We determined the activity of GGH and expression of FPGS in tissues after 3 months of ethanol feeding to rats at 1 g/kg body weight/day. The results showed that there was not any significant change in the activity of folate hydrolyzing enzyme GGH in ethanol-fed rats while there was significant down regulation in the expression of FPGS. Ethanol feeding decreased the total as well as polyglutamated folate levels. There was tissue-specific hyper/hypo methylation of folate transporter genes viz. PCFT and RFC by chronic ethanol feeding. Moreover, hypermethylation of FPGS gene was observed in intestine and kidney without any change in methylation levels of GGH in the ethanol-fed rats. In conclusion, the initial deconjugation of polyglutamylated folate by GGH was not impaired in ethanol-fed rats while the conversion of monoglutamylated folate to polyglutamylated form might be impaired. There was tissue-specific altered methylation of folate transporter genes by chronic ethanol feeding.
Collapse
Affiliation(s)
- Nissar Ahmad Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, India
| | | | | |
Collapse
|
28
|
Wani NA, Nada R, Kaur J. Biochemical and molecular mechanisms of folate transport in rat pancreas; interference with ethanol ingestion. PLoS One 2011; 6:e28599. [PMID: 22163044 PMCID: PMC3232245 DOI: 10.1371/journal.pone.0028599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 11/11/2011] [Indexed: 02/07/2023] Open
Abstract
Folic acid is an essential nutrient that is required for one-carbon biosynthetic processes and for methylation of biomolecules. Deficiency of this micronutrient leads to disturbances in normal physiology of cell. Chronic alcoholism is well known to be associated with folate deficiency which is due, in part to folate malabsorption. The present study deals with the mechanistic insights of reduced folate absorption in pancreas during chronic alcoholism. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20% solution) orally for 3 months and the mechanisms of alcohol associated reduced folate uptake was studied in pancreas. The folate transport system in the pancreatic plasma membrane (PPM) was found to be acidic pH dependent one. The transporters proton coupled folate transporter (PCFT) and reduced folate carrier (RFC) are involved in folate uptake across PPM. The folate transporters were found to be associated with lipid raft microdomain of the PPM. Ethanol ingestion decreased the folate transport by reducing the levels of folate transporter molecules in lipid rafts at the PPM. The decreased transport efficiency of the PPM was reflected as reduced folate levels in pancreas. The chronic ethanol ingestion led to decreased pancreatic folate uptake. The decreased levels of PCFT and RFC expression in rat PPM were due to decreased association of these proteins with lipid rafts (LR) at the PPM.
Collapse
Affiliation(s)
- Nissar Ahmad Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, India
| | - Ritambhara Nada
- Department of Histopathology, Postgraduate Institute of Medical Education and Research Chandigarh, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, India
- * E-mail:
| |
Collapse
|
29
|
Folate malabsorption is associated with down-regulation of folate transporter expression and function at colon basolateral membrane in rats. Br J Nutr 2011; 107:800-8. [PMID: 21861943 DOI: 10.1017/s0007114511003710] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Folates, an essential component (important B vitamin) in the human diet, are involved in many metabolic pathways, mainly in carbon transfer reactions such as purine and pyrimidine biosynthesis and amino acid interconversions. Deficiency of this micronutrient leads to the disruption of folate-dependent metabolic pathways that lead to the development of clinical abnormalities ranging from anaemia to growth retardation. Folate deficiency due to alcohol ingestion is quite common, primarily due to malabsorption. The present study dealt with the mechanistic insights of folate malabsorption in colonic basolateral membrane (BLM). Wistar rats (n 12) were fed 1 g/kg body weight per d ethanol (20 %) solution orally for 3 months and folate transport was studied in the isolated colonic BLM. The folate exit across colon BLM shows characteristics of carrier-mediated process with the major involvement of reduced folate carrier (RFC). The chronic ethanol ingestion decreased the uptake by decreasing the affinity by 46 % (P < 0·01) and the number of transport molecules by 43 % (P < 0·001) at the colon BLM. The decreased uptake was associated with down-regulation of proton-coupled folate transporter (PCFT) and RFC expression at mRNA and protein levels. The extent of decrease was 44 % (P < 0·01) and 24 % (P < 0·05) for PCFT and 23 % (P < 0·01) and 57 % (P < 0·01) for RFC at mRNA and protein levels, respectively. Moreover, folate transporters were associated with lipid rafts (LR) of colon BLM, and chronic alcoholism decreased the association of these transporters with LR.
Collapse
|
30
|
Abstract
Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events.
Collapse
Affiliation(s)
- Hamid M Said
- School of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
31
|
Wani NA, Kaur J. Reduced levels of folate transporters (PCFT and RFC) in membrane lipid rafts result in colonic folate malabsorption in chronic alcoholism. J Cell Physiol 2011; 226:579-87. [PMID: 21069807 DOI: 10.1002/jcp.22525] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied the effect of chronic ethanol ingestion on folate transport across the colonic apical membranes (CAM) in rats. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20%) solution orally for 3 months and folate transport was studied in the isolated colon apical membrane vesicles. The folate transport was found to be carrier mediated, saturable, with pH optima at 5.0. Chronic ethanol ingestion reduced the folate transport across the CAM by decreasing the affinity of transporters (high Km) for the substrate and by decreasing the number of transporter molecules (low Vmax) on the colon luminal surface. The decreased transport activity at the CAM was associated with down-regulation of the proton-coupled folate transporter (PCFT) and the reduced folate carrier (RFC) which resulted in decreased PCFT and RFC protein levels in the colon of rats fed alcohol chronically. Moreover, the PCFT and the RFC were found to be distributed in detergent insoluble fraction of the CAM in rats. Floatation experiments on Optiprep density gradients demonstrated the association of the PCFT and the RFC protein with lipid rafts (LR). Chronic alcoholism decreased the PCFT and the RFC protein levels in the CAM LR in accordance with the decreased synthesis. Hence, we propose that downregulation in the expression of the PCFT and the RFC in colon results in reduced levels of these transporters in colon apical membrane LR as a mechanism of folate malabsorption during chronic alcoholism.
Collapse
Affiliation(s)
- Nissar Ahmad Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
32
|
Regulatory mechanisms of intestinal folate uptake in a rat model of folate oversupplementation. Br J Nutr 2010; 105:827-35. [PMID: 21092376 DOI: 10.1017/s0007114510004538] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Folic acid is essential for numerous biological functions, ranging from nucleotide biosynthesis to the remethylation of homocysteine. Folic acid is unable to cross the biological membranes by simple diffusion, so there exists a well-developed epithelial folate transport system for the regulation of normal folate homeostasis in the intestine. Any perturbances in the folate uptake system might lead to a state of folate deficiency, which in turn is strongly associated with the risk of various cancers, birth defects and CVD. Countries with obligatory folate fortification of food (USA and Canada) have documented a significant decrease in neural tube defects in newborns. However, the effect of folate oversupplementation on the intestinal absorption of folic acid has not been studied. We studied the process of folate transport and the expression of folate transporters in the rat intestine after folate oversupplementation. Rats were oversupplemented with tenfold the normal requirement of folic acid for periods of 10 and 60 d. Folate uptake in intestinal brush-border membrane vesicles followed saturable kinetics with pH optimum at 5·5. Acute, but not chronic, folate oversupplementation led to a significant down-regulation in intestinal folate uptake at acidic pH optima and was associated with a decrease in Vmax without any significant change in the Km of the folate uptake process. The decrease in folate uptake was also associated with the down-regulation in the protein levels of major folate transporters, proton-coupled folate transporter (PCFT) and reduced folate carrier (RFC), without altering their mRNA levels. Hence, it was concluded that acute folate oversupplementation results in a significant decrease in intestinal folate uptake by down-regulating the expressions of RFC and PCFT, via some post-transcriptional or translational mechanisms.
Collapse
|
33
|
Subramanya SB, Subramanian VS, Said HM. Chronic alcohol consumption and intestinal thiamin absorption: effects on physiological and molecular parameters of the uptake process. Am J Physiol Gastrointest Liver Physiol 2010; 299:G23-31. [PMID: 20448146 PMCID: PMC2904112 DOI: 10.1152/ajpgi.00132.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Thiamin is essential for normal cellular functions, and its deficiency leads to a variety of clinical abnormalities. Humans and other mammals obtain the vitamin via intestinal absorption. The intestine is exposed to two sources of thiamin, a dietary and a bacterial (i.e., normal microflora of the large intestine) source. Chronic alcohol consumption is associated with thiamin deficiency, which is caused (in part) by inhibition in intestinal thiamin absorption. However, little is known about the physiological and molecular aspects of the intestinal thiamin uptake process that are affected by chronic alcohol use. To address these issues, we used rats fed an alcohol-liquid diet and human intestinal epithelial HuTu-80 cells chronically exposed to ethanol as model systems. The results showed that chronic alcohol feeding to rats led to a significant inhibition in carrier-mediated thiamin transport across both the jejunal brush-border membrane and basolateral membrane domains. This was associated with a significant reduction in level of expression of thiamin transporter-1 (THTR-1), but not THTR-2, at the protein and mRNA levels. Level of expression of the heterogenous nuclear RNA of THTR-1 in the intestine of alcohol-fed rats was also decreased compared with their pair-fed controls. Chronic alcohol feeding also caused a significant inhibition in carrier-mediated thiamin uptake in rat colon. Studies with HuTu-80 cells chronically exposed to ethanol also showed a significant inhibition in carrier-mediated thiamin uptake. This inhibition was associated with a reduction in level of expression of human THTR-1 and THTR-2 at the protein, mRNA, and transcriptional (promoter activity) levels. These studies demonstrate that chronic alcohol feeding inhibits intestinal thiamin absorption via inhibition of the individual membrane transport event across the polarized absorptive epithelial cells. Furthermore, the inhibition is, at least in part, mediated via transcriptional mechanism(s).
Collapse
Affiliation(s)
- Sandeep B. Subramanya
- Department of Medical Research, VA Medical Center, Long Beach, and Departments of Medicine and Physiology/Biophysics, University of California College of Medicine, Irvine, California
| | - Veedamali S. Subramanian
- Department of Medical Research, VA Medical Center, Long Beach, and Departments of Medicine and Physiology/Biophysics, University of California College of Medicine, Irvine, California
| | - Hamid M. Said
- Department of Medical Research, VA Medical Center, Long Beach, and Departments of Medicine and Physiology/Biophysics, University of California College of Medicine, Irvine, California
| |
Collapse
|
34
|
Kim HJ, Kim MK, Kim JU, Ha HY, Choi BY. Major determinants of serum homocysteine concentrations in a Korean population. J Korean Med Sci 2010; 25:509-16. [PMID: 20357989 PMCID: PMC2844589 DOI: 10.3346/jkms.2010.25.4.509] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 09/09/2009] [Indexed: 12/31/2022] Open
Abstract
The objective of this study was to identify the factors that determine serum homocysteine concentrations in Korean population. In a community-based study, 871 participants completed detailed questionnaires and physical examination. We found that increased age, male sex, family history of stroke, deficiencies of serum folate and vitamin B12, and elevated serum creatinine significantly increased the risk of hyperhomocysteinemia. However, hormonal and behavioral factors (smoking, alcohol drinking, coffee consumption, and sedentary time) were not associated with the risk of hyperhomocysteinemia. The risk of hyperhomocysteinemia was steeply increased in subjects with two or more risk factors among four selected risk factors (deficiencies of serum folate and vitamin B12, elevated creatinine, and family history of stroke) compared to subjects who did not have any risk factors, especially subjects over the age of 65 yr (odds ratio [OR], 33.5; 95% confidence interval [CI], 3.71-302.0 in men; OR, 39.2; 95% CI, 7.95-193.2 in women). In conclusion, increased age, male sex, family history of stroke, deficiencies of serum folate and vitamin B12, and elevated serum creatinine are important determinants of serum homocysteine concentrations with interaction effects between these factors.
Collapse
Affiliation(s)
- Hyun Ja Kim
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Mi Kyung Kim
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jeong Uk Kim
- Department of Laboratory Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Hun Young Ha
- Department of Preventive Medicine, Naeun Hospital, Incheon, Korea
| | - Bo Youl Choi
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Hamid A, Kiran M, Rana S, Kaur J. Low folate transport across intestinal basolateral surface is associated with down-regulation of reduced folate carrier in in vivo model of folate malabsorption. IUBMB Life 2009; 61:236-43. [PMID: 19243012 DOI: 10.1002/iub.153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The process of folate transport regulation across biological membranes is of considerable interest because of its ultimate role in providing one-carbon moieties for key cellular metabolic reactions and exogenous requirement of the vitamin in mammals. Although, intestinal folate malabsorption is established phenomena in alcoholism; however, there is no knowledge regarding the mechanism of folate exit across intestinal basolateral membrane (BLM) to circulation during alcohol associated malabsorption. In the present study, male Wistar rats were fed 1 g/kg body weight/day ethanol (20% solution) orally for 3 months and regulatory characteristics of folate transport at BLM surface were evaluated. The folate transport was found to be carrier mediated, saturable, with pH optima at 7.0, besides exhibiting Na(+) independence. The chronic alcohol ingestion resulted in alteration of transport kinetics, shifting the process to K(+) dependent one besides affecting the status of S--S linkage of the transport system. Importantly, chronic ethanol ingestion reduced the folate exit across the BLM by decreasing the affinity of transporter (high K(m)) for substrate and by decreasing the number of transporter molecules (low V(max)) on the surface. The decreased basolateral transport activity was associated with down-regulation of the reduced folate carrier (RFC) which resulted in decreased RFC protein levels in BLM in rat model of alcoholism. The study suggests that during alcohol ingestion, RFC mediated deregulated folate transport across BLM also attributes to folate malabsorption.
Collapse
Affiliation(s)
- Abid Hamid
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
36
|
Abstract
Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases.
Collapse
|
37
|
Hamid A, Wani NA, Kaur J. New perspectives on folate transport in relation to alcoholism-induced folate malabsorption--association with epigenome stability and cancer development. FEBS J 2009; 276:2175-91. [PMID: 19292860 DOI: 10.1111/j.1742-4658.2009.06959.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Folates are members of the B-class of vitamins, which are required for the synthesis of purines and pyrimidines, and for the methylation of essential biological substances, including phospholipids, DNA, and neurotransmitters. Folates cannot be synthesized de novo by mammals; hence, an efficient intestinal absorption process is required. Intestinal folate transport is carrier-mediated, pH-dependent and electroneutral, with similar affinity for oxidized and reduced folic acid derivatives. The various transporters, i.e. reduced folate carrier, proton-coupled folate transporter, folate-binding protein, and organic anion transporters, are involved in the folate transport process in various tissues. Any impairment in uptake of folate can lead to a state of folate deficiency, the most prevalent vitamin deficiency in world, affecting 10% of the population in the USA. Such impairments in folate transport occur in a variety of conditions, including chronic use of ethanol, some inborn hereditary disorders, and certain diseases. Among these, ethanol ingestion has been the major contributor to folate deficiency. Ethanol-associated folate deficiency can develop because of dietary inadequacy, intestinal malabsorption, altered hepatobiliary metabolism, enhanced colonic metabolism, and increased renal excretion. Ethanol reduces the intestinal and renal uptake of folate by altering the binding and transport kinetics of folate transport systems. Also, ethanol reduces the expression of folate transporters in both intestine and kidney, and this might be a contributing factor for folate malabsorption, leading to folate deficiency. The maintenance of intracellular folate homeostasis is essential for the one-carbon transfer reactions necessary for DNA synthesis and biological methylation reactions. DNA methylation is an important epigenetic determinant in gene expression, in the maintenance of DNA integrity and stability, in chromosomal modifications, and in the development of mutations. Ethanol, a toxin that is consumed regularly, has been found to affect the methylation of DNA. In addition to its effect on DNA methylation due to folate deficiency, ethanol could directly exert its effect through its interaction with one-carbon metabolism, impairment of methyl group synthesis, and affecting the enzymes regulating the synthesis of S-adenosylmethionine, the primary methyl group donor for most biological methylation reactions. Thus, ethanol plays an important role in the pathogenesis of several diseases through its potential ability to modulate the methylation of biological molecules. This review discusses the underlying mechanism of folate malabsorption in alcoholism, the mechanism of methylation-associated silencing of genes, and how the interaction between ethanol and folate deficiency affects the methylation of genes, thereby modulating epigenome stability and the risk of cancer.
Collapse
Affiliation(s)
- Abid Hamid
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research Chandigarh, India
| | | | | |
Collapse
|
38
|
Wani NA, Hamid A, Kaur J. Folate status in various pathophysiological conditions. IUBMB Life 2009; 60:834-42. [PMID: 18942083 DOI: 10.1002/iub.133] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Folate is the generic term for compounds that have vitamin activity similar to that of pteroylglutamic acid. Folate acts as a coenzyme in several single carbon transfers involved in biosynthesis of purine nucleotides and deoxythymidylic acid essential for DNA and RNA synthesis. In addition, folate provides one-carbon unit for methylation of a wide variety of biological substances including DNA, proteins, phospholipids, and neurotransmitters, thereby regulating their function. Recent epidemiological-clinical and experimental studies suggest the association of folate deficiency with the risk of various cancers, birth defects, and cardiovascular diseases. Thus, it is important to consider the conditions that are associated with altered folate status and their consequences. The impairment in folate status has been found in number of pathophysiological conditions like inflammatory bowel disease, cancer, alcoholism, pregnancy, neonatal growth, and during administration of some drugs. The recent advances dealing with mechanistic aspects of impaired folate status in these conditions have been discussed in this review.
Collapse
Affiliation(s)
- Nissar Ahmad Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, India
| | | | | |
Collapse
|
39
|
Haem and folate transport by proton-coupled folate transporter/haem carrier protein 1 (SLC46A1). Br J Nutr 2008; 101:1150-6. [PMID: 18782461 DOI: 10.1017/s0007114508066762] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Haem carrier protein 1 (HCP1) was originally identified and characterised as a mammalian haem transporter. However, recent evidence has shown that it is also a proton-coupled folate transporter (PCFT) and mutations in the gene cause hereditary folate deficiency in humans. We therefore investigated haem and folate transport characteristics of PCFT/HCP1 both in vivo and in vitro in CD-1 mice and in the presence or absence of a blocking antibody for PCFT/HCP1, and also in cultured cells (which express PCFT/HCP1 endogenously) to elucidate the specificity and selectivity of PCFT/HCP1. The in vivo study showed that the addition of folic acid inhibited 59Fe-labelled haem transport in hypoxic mice but had no effect in normal mice. Using in vitro methods, the results showed increased [3H]folate uptake into everted duodenum from hypoxic mice but uptake was reduced by the addition of haem or PCFT/HCP1 antibodies to the medium. Caco-2 cells transiently transfected with small interfering RNA (siRNA) PCFT/HCP1 duplex oligos resulted in a 69 % reduction in PCFT/HCP1 mRNA when compared with the control siRNA. Both haem and folate uptake were significantly (P < 0.05) reduced in cells transfected with PCFT/HCP1 siRNA; however, the magnitude of reduction with folic acid uptake was greater (48 %) than that of haem (22.5 %). Overall the data support PCFT/HCP1 as a primary folate transporter with a lower affinity for haem. PCFT/HCP1 could therefore play a physiological role in Fe nutrition and the data highlight the potential for the interaction of folate and haem at the level of intestinal absorption.
Collapse
|
40
|
Role of signaling pathways in the regulation of folate transport in ethanol-fed rats. J Nutr Biochem 2008; 20:291-7. [PMID: 18602815 DOI: 10.1016/j.jnutbio.2008.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 02/06/2008] [Accepted: 03/06/2008] [Indexed: 11/20/2022]
Abstract
Folate is an essential cofactor for normal cellular proliferation and tissue regeneration. Alcohol-associated folate deficiency is common, primarily due to intestinal malabsorption, the mechanism of which needs attention. The aim of the present study was to evaluate the regulatory events of folate transport in experimental alcohol ingestion. For this, male Wistar rats were fed 1 g/kg body weight/day ethanol (20% solution) orally for 3 months and folate transport was studied in isolated intestinal epithelial cells across the crypt-villus axis. The role of different signaling pathways in folate transport regulation was evaluated independently to that of reduced folate carrier (RFC) expression. The results showed that differentiated cells of villus possess high folate uptake activity as compared to mid villus and crypt base cells. During chronic ethanol ingestion, decrease in transport was observed all along the crypt-villus axis but was more pronounced at proliferating crypt base stem cells. Studying the effect of modulators of signaling pathways revealed the folate transport system to be under the regulation of cAMP-dependent protein kinase A (PKA), the activity of which was observed to decrease upon alcohol ingestion. In addition, protein kinase C might have a role in folate transport regulation during alcoholic conditions. The deregulation in the folate transport system was associated with a decrease in RFC expression, which may result in lower transport efficiency observed at absorptive surface in alcohol-fed rats. The study highlights the role that perturbed regulatory pathways and RFC expression play in the decreased folate transport at brush border surface during alcohol ingestion.
Collapse
|
41
|
Ojeda ML, Delgado-Villa MJ, Llopis R, Murillo ML, Carreras O. Lipid Metabolism in Ethanol-Treated Rat Pups and Adults: Effects of Folic Acid. Alcohol Alcohol 2008; 43:544-50. [DOI: 10.1093/alcalc/agn044] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|