1
|
Oh Y, Oh JI. The RsfSR two-component system regulates SigF function by monitoring the state of the respiratory electron transport chain in Mycobacterium smegmatis. J Biol Chem 2024; 300:105764. [PMID: 38367670 PMCID: PMC10950880 DOI: 10.1016/j.jbc.2024.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
In Mycobacterium smegmatis, the transcriptional activity of the alternative sigma factor SigF is posttranslationally regulated by the partner switching system consisting of SigF, the anti-SigF RsbW1, and three anti-SigF antagonists (RsfA, RsfB, and RsbW3). We previously demonstrated that expression of the SigF regulon is strongly induced in the Δaa3 mutant of M. smegmatis lacking the aa3 cytochrome c oxidase, the major terminal oxidase in the respiratory electron transport chain. Here, we identified and characterized the RsfSR two-component system involved in regulating the phosphorylation state of the major anti-SigF antagonist RsfB. RsfS (MSMEG_6130) is a histidine kinase with the cyclase/histidine kinase-associated sensing extracellular 3 domain at its N terminus, and RsfR (MSMEG_6131) is a receiver domain-containing protein phosphatase 2C-type phosphatase that can dephosphorylate phosphorylated RsfB. We demonstrated that phosphorylation of RsfR on Asp74 by RsfS reduces the phosphatase activity of RsfR toward phosphorylated RsfB and that the cellular abundance of the active unphosphorylated RsfB is increased in the Δaa3 mutant relative to the WT strain. We also demonstrated that the RsfSR two-component system is required for induction of the SigF regulon under respiration-inhibitory conditions such as inactivation of the cytochrome bcc1 complex and aa3 cytochrome c oxidase, as well as hypoxia, electron donor-limiting, high ionic strength, and low pH conditions. Collectively, our results reveal a key regulatory element involved in regulating the SigF signaling system by monitoring the state of the respiratory electron transport chain.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Korea; Microbiological Resource Research Institute, Pusan National University, Busan, Korea.
| |
Collapse
|
2
|
Oh Y, Lee HN, Ko EM, Jeong JA, Park SW, Oh JI. Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration-Inhibitory Conditions. J Microbiol 2023; 61:297-315. [PMID: 36847970 DOI: 10.1007/s12275-023-00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
3
|
Rangwala AM, Mingione VR, Georghiou G, Seeliger MA. Kinases on Double Duty: A Review of UniProtKB Annotated Bifunctionality within the Kinome. Biomolecules 2022; 12:biom12050685. [PMID: 35625613 PMCID: PMC9138534 DOI: 10.3390/biom12050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation facilitates the regulation of all fundamental biological processes, which has triggered extensive research of protein kinases and their roles in human health and disease. In addition to their phosphotransferase activity, certain kinases have evolved to adopt additional catalytic functions, while others have completely lost all catalytic activity. We searched the Universal Protein Resource Knowledgebase (UniProtKB) database for bifunctional protein kinases and focused on kinases that are critical for bacterial and human cellular homeostasis. These kinases engage in diverse functional roles, ranging from environmental sensing and metabolic regulation to immune-host defense and cell cycle control. Herein, we describe their dual catalytic activities and how they contribute to disease pathogenesis.
Collapse
|
4
|
Oh Y, Song SY, Kim HJ, Han G, Hwang J, Kang HY, Oh JI. The Partner Switching System of the SigF Sigma Factor in Mycobacterium smegmatis and Induction of the SigF Regulon Under Respiration-Inhibitory Conditions. Front Microbiol 2020; 11:588487. [PMID: 33304334 PMCID: PMC7693655 DOI: 10.3389/fmicb.2020.588487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
The partner switching system (PSS) of the SigF regulatory pathway in Mycobacterium smegmatis has been previously demonstrated to include the anti-sigma factor RsbW (MSMEG_1803) and two anti-sigma factor antagonists RsfA and RsfB. In this study, we further characterized two additional RsbW homologs and revealed the distinct roles of three RsbW homologs [RsbW1 (MSMEG_1803), RsbW2 (MSMEG_6129), and RsbW3 (MSMEG_1787)] in the SigF PSS. RsbW1 and RsbW2 serve as the anti-sigma factor of SigF and the protein kinase phosphorylating RsfB, respectively, while RsbW3 functions as an anti-SigF antagonist through its protein interaction with RsbW1. Using relevant mutant strains, RsfB was demonstrated to be the major anti-SigF antagonist in M. smegmatis. The phosphorylation state of Ser-63 was shown to determine the functionality of RsfB as an anti-SigF antagonist. RsbW2 was demonstrated to be the only protein kinase that phosphorylates RsfB in M. smegmatis. Phosphorylation of Ser-63 inactivates RsfB to render it unable to interact with RsbW1. Our comparative RNA sequencing analysis of the wild-type strain of M. smegmatis and its isogenic Δaa3 mutant strain lacking the aa3 cytochrome c oxidase of the respiratory electron transport chain revealed that expression of the SigF regulon is strongly induced under respiration-inhibitory conditions in an RsfB-dependent way.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Su-Yeon Song
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hye-Jun Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jihwan Hwang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Ho-Young Kang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| |
Collapse
|
5
|
Tuning the Mycobacterium tuberculosis Alternative Sigma Factor SigF through the Multidomain Regulator Rv1364c and Osmosensory Kinase Protein Kinase D. J Bacteriol 2019; 201:JB.00725-18. [PMID: 30642988 DOI: 10.1128/jb.00725-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022] Open
Abstract
Bacterial alternative sigma factors are mostly regulated by a partner-switching mechanism. Regulation of the virulence-associated alternative sigma factor SigF of Mycobacterium tuberculosis has been an area of intrigue, with SigF having more predicted regulators than other sigma factors in this organism. Rv1364c is one such predicted regulator, the mechanism of which is confounded by the presence of both anti-sigma factor and anti-sigma factor antagonist functions in a single polypeptide. Using protein binding and phosphorylation assays, we demonstrate that the anti-sigma factor domain of Rv1364c mediates autophosphorylation of its antagonist domain and binds efficiently to SigF. Furthermore, we identified a direct role for the osmosensor serine/threonine kinase PknD in regulating the SigF-Rv1364c interaction, adding to the current understanding about the intersection of these discrete signaling networks. Phosphorylation of SigF also showed functional implications in its DNA binding ability, which may help in activation of the regulon. In M. tuberculosis, osmotic stress-dependent induction of espA, a SigF target involved in maintaining cell wall integrity, is curtailed upon overexpression of Rv1364c, showing its role as an anti-SigF factor. Overexpression of Rv1364c led to induction of another target, pks6, involved in lipid metabolism. This induction was, however, curtailed in the presence of osmotic stress conditions, suggesting modulation of SigF target gene expression via Rv1364c. These data provide evidence that Rv1364c acts an independent SigF regulator that is sensitive to the osmosensory signal, mediating the cross talk of PknD with the SigF regulon.IMPORTANCE Mycobacterium tuberculosis, capable of latently infecting the host and causing aggressive tissue damage during active tuberculosis, is endowed with a complex regulatory capacity built of several sigma factors, protein kinases, and phosphatases. These proteins regulate expression of genes that allow the bacteria to adapt to various host-derived stresses, like nutrient starvation, acidic pH, and hypoxia. The cross talk between these systems is not well understood. SigF is one such regulator of gene expression that helps M. tuberculosis to adapt to stresses and imparts virulence. This work provides evidence for its inhibition by the multidomain regulator Rv1364c and activation by the kinase PknD. The coexistence of negative and positive regulators of SigF in pathogenic bacteria reveals an underlying requirement for tight control of virulence factor expression.
Collapse
|
6
|
Bouillet S, Arabet D, Jourlin-Castelli C, Méjean V, Iobbi-Nivol C. Regulation of σ factors by conserved partner switches controlled by divergent signalling systems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:127-139. [PMID: 29393573 DOI: 10.1111/1758-2229.12620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
Partner-Switching Systems (PSS) are widespread regulatory systems, each comprising a kinase-anti-σ, a phosphorylatable anti-σ antagonist and a phosphatase module. The anti-σ domain quickly sequesters or delivers the target σ factor according to the phosphorylation state of the anti-σ antagonist induced by environmental signals. The PSS components are proteins alone or merged to other domains probably to adapt to the input signals. PSS are involved in major cellular processes including stress response, sporulation, biofilm formation and pathogenesis. Surprisingly, the target σ factors are often unknown and the sensing modules acting upstream from the PSS diverge according to the bacterial species. Indeed, they belong to either two-component systems or complex pathways as the stressosome or Chemosensory Systems (CS). Based on a phylogenetic analysis, we propose that the sensing module in Gram-negative bacteria is often a CS.
Collapse
Affiliation(s)
- Sophie Bouillet
- Aix-Marseille University, CNRS, BIP UMR7281, 13402 Marseille, France
| | - Dallel Arabet
- Université des Frères Mentouri Constantine 1, Constantine, Algeria
| | | | - Vincent Méjean
- Aix-Marseille University, CNRS, BIP UMR7281, 13402 Marseille, France
| | | |
Collapse
|
7
|
Sigma Factors: Key Molecules in Mycobacterium tuberculosis Physiology and Virulence. Microbiol Spectr 2015; 2:MGM2-0007-2013. [PMID: 26082107 DOI: 10.1128/microbiolspec.mgm2-0007-2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid adaptation to changing environments is one of the keys to the success of microorganisms. Since infection is a dynamic process, it is possible to predict that Mycobacterium tuberculosis adaptation involves continuous modulation of its global transcriptional profile in response to the changing environment found in the human body. In the last 18 years several studies have stressed the role of sigma (σ) factors in this process. These are small interchangeable subunits of the RNA polymerase holoenzyme that are required for transcriptional initiation and that determine promoter specificity. The M. tuberculosis genome encodes 13 of these proteins, one of which--the principal σ factor σA--is essential. Of the other 12 σ factors, at least 6 are required for virulence. In this article we review our current knowledge of mycobacterial σ factors, their regulons, the complex mechanisms determining their regulation, and their roles in M. tuberculosis physiology and virulence.
Collapse
|
8
|
Mustyala KK, Malkhed V, Potlapally SR, Chittireddy VR, Vuruputuri U. Macromolecular structure and interaction studies of SigF and Usfx inMycobacterium tuberculosis. J Recept Signal Transduct Res 2014; 34:162-73. [DOI: 10.3109/10799893.2013.868903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Pettersson BMF, Nitharwal RG, Das S, Behra KPR, Benedik E, Arasu UT, Islam NM, Dasgupta S, Bhattacharya A, Kirsebom LA. Identification and expression of stressosomal proteins in Mycobacterium marinum under various growth and stress conditions. FEMS Microbiol Lett 2013; 342:98-105. [PMID: 23480639 DOI: 10.1111/1574-6968.12118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 11/27/2022] Open
Abstract
Like other bacteria, Mycobacterium spp. have developed different strategies in response to environmental changes such as nutrient limitations and other different stress situations. We have identified candidate genes (rsb genes) from Mycobacterium marinum involved in the regulation of the activity of the alternative sigma factor, σ(F) . This is a homolog of the master regulator of general stress response, σ(B) , and the sporulation-specific sigma factor, σ(F) , in Bacillus subtilis. The organization of these genes in M. marinum and B. subtilis is similar. Transcriptome and qRT-PCR data show that these genes are indeed expressed in M. marinum and that the levels of expression vary with growth phase and exposure to stress. In particular, cold stress caused a significant rise in the expression of all identified rsb and sigF genes. We discuss these data in relation to what is currently known for other Mycobacterium spp.
Collapse
Affiliation(s)
- B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
King-Scott J, Konarev PV, Panjikar S, Jordanova R, Svergun DI, Tucker PA. Structural characterization of the multidomain regulatory protein Rv1364c from Mycobacterium tuberculosis. Structure 2011; 19:56-69. [PMID: 21220116 DOI: 10.1016/j.str.2010.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 01/29/2023]
Abstract
The open reading frame rv1364c of Mycobacterium tuberculosis, which regulates the stress-dependent σ factor, σ(F), has been analyzed structurally and functionally. Rv1364c contains domains with sequence similarity to the RsbP/RsbW/RsbV regulatory system of the stress-response σ factor of Bacillus subtilis. Rv1364c contains, sequentially, a PAS domain (which shows sequence similarity to the PAS domain of the B. subtilis RsbP protein), an active phosphatase domain, a kinase (anti-σ(F) like) domain and a C-terminal anti-σ(F) antagonist like domain. The crystal structures of two PAS domain constructs (at 2.3 and 1.6 Å) and a phosphatase/kinase dual domain construct (at 2.6 Å) are described. The PAS domain is shown to bind palmitic acid but to have 100 times greater affinity for palmitoleic acid. The full-length protein can exist in solution as both monomer and dimer. We speculate that a switch between monomer and dimer, possibly resulting from fatty acid binding, affects the accessibility of the serine of the C-terminal, anti-σ(F) antagonist domain for dephosphorylation by the phosphatase domain thus indirectly altering the availability of σ(F).
Collapse
Affiliation(s)
- Jack King-Scott
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D22603, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Jaiswal RK, Manjeera G, Gopal B. Role of a PAS sensor domain in the Mycobacterium tuberculosis transcription regulator Rv1364c. Biochem Biophys Res Commun 2010; 398:342-9. [PMID: 20541534 DOI: 10.1016/j.bbrc.2010.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 06/06/2010] [Indexed: 02/01/2023]
Abstract
The Mycobacterium tuberculosis transcriptional regulator Rv1364c regulates the activity of the stress response sigma factor sigma(F). This multi-domain protein has several components: a signaling PAS domain and an effector segment comprising of a phosphatase, a kinase and an anti-anti-sigma factor domain. Based on Small Angle X-ray Scattering (SAXS) data, Rv1364c was recently shown to be a homo-dimer and adopt an elongated conformation in solution. The PAS domain could not be modeled into the structural envelope due to poor sequence similarity with known PAS proteins. The crystal structure of the PAS domain described here provides a structural basis for the dimerization of Rv1364c. It thus appears likely that the PAS domain regulates the anti-sigma activity of Rv1364c by oligomerization. A structural comparison with other characterized PAS domains reveal several sequence and conformational features that could facilitate ligand binding - a feature which suggests that the function of Rv1364c could potentially be governed by specific cellular signals or metabolic cues.
Collapse
Affiliation(s)
- Ravi Kumar Jaiswal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
12
|
Sachdeva P, Misra R, Tyagi AK, Singh Y. The sigma factors of Mycobacterium tuberculosis: regulation of the regulators. FEBS J 2009; 277:605-26. [DOI: 10.1111/j.1742-4658.2009.07479.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Greenstein AE, Hammel M, Cavazos A, Alber T. Interdomain communication in the Mycobacterium tuberculosis environmental phosphatase Rv1364c. J Biol Chem 2009; 284:29828-35. [PMID: 19700407 DOI: 10.1074/jbc.m109.056168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An "environmental phosphatase" controls bacterial transcriptional responses through alternative sigma factor subunits of RNA polymerase and a partner switching mechanism has been proposed to mediate phosphatase regulation. In many bacteria, the environmental phosphatase and multiple regulators are encoded in separate genes whose products form transient complexes. In contrast, in the Mycobacterium tuberculosis homolog, Rv1364c, the phosphatase is fused to two characteristic regulatory modules with sequence similarities to anti-sigma factor kinases and anti-anti-sigma factor proteins. Here we exploit this fusion to explore interactions between the phosphatase and the regulatory domains. We show quantitatively that the anti-sigma factor kinase domain activates the phosphatase domain, the kinase-phosphatase fusion protein autophosphorylates in Escherichia coli, and phosphorylation is antagonized by the phosphatase activity. Small angle x-ray scattering defines solution structures consistent with the interdomain communication observed biochemically. Taken together, these data indicate that Rv1364c provides a single chain framework to understand the structure, function, and regulation of environmental phosphatases throughout the bacterial kingdom.
Collapse
Affiliation(s)
- Andrew E Greenstein
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3220, USA
| | | | | | | |
Collapse
|