1
|
Novales NA, Feustel KJ, He KL, Chanfreau GF, Clarke CF. Nonfunctional coq10 mutants maintain the ERMES complex and reveal true phenotypes associated with the loss of the coenzyme Q chaperone protein Coq10. J Biol Chem 2024; 300:107820. [PMID: 39343004 PMCID: PMC11541779 DOI: 10.1016/j.jbc.2024.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
Coenzyme Q (CoQ) is a redox-active lipid molecule that acts as an electron carrier in the mitochondrial electron transport chain. In Saccharomyces cerevisiae, CoQ is synthesized in the mitochondrial matrix by a multisubunit protein-lipid complex termed the CoQ synthome, the spatial positioning of which is coordinated by the endoplasmic reticulum-mitochondria encounter structure (ERMES). The MDM12 gene encoding the cytosolic subunit of ERMES is coexpressed with COQ10, which encodes the putative CoQ chaperone Coq10, via a shared bidirectional promoter. Deletion of COQ10 results in respiratory deficiency, impaired CoQ biosynthesis, and reduced spatial coordination between ERMES and the CoQ synthome. While Coq10 protein content is maintained upon deletion of MDM12, we show that deletion of COQ10 by replacement with a HIS3 marker results in diminished Mdm12 protein content. Since deletion of individual ERMES subunits prevents ERMES formation, we asked whether some or all of the phenotypes associated with COQ10 deletion result from ERMES dysfunction. To identify the phenotypes resulting solely due to the loss of Coq10, we constructed strains expressing a functionally impaired (coq10-L96S) or truncated (coq10-R147∗) Coq10 isoform using CRISPR-Cas9. We show that both coq10 mutants preserve Mdm12 protein content and exhibit impaired respiratory capacity like the coq10Δ mutant, indicating that Coq10's function is vital for respiration regardless of ERMES integrity. Moreover, the maintenance of CoQ synthome stability and efficient CoQ biosynthesis observed for the coq10-R147∗ mutant suggests these deleterious phenotypes in the coq10Δ mutant result from ERMES disruption. Overall, this study clarifies the role of Coq10 in modulating CoQ biosynthesis.
Collapse
Affiliation(s)
- Noelle Alexa Novales
- Department of Chemistry & Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Kelsey J Feustel
- Department of Chemistry & Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Kevin L He
- Department of Chemistry & Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Guillaume F Chanfreau
- Department of Chemistry & Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Catherine F Clarke
- Department of Chemistry & Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California, USA.
| |
Collapse
|
2
|
Nishida I, Ohmori Y, Yanai R, Nishihara S, Matsuo Y, Kaino T, Hirata D, Kawamukai M. Identification of novel coenzyme Q 10 biosynthetic proteins Coq11 and Coq12 in Schizosaccharomyces pombe. J Biol Chem 2023; 299:104797. [PMID: 37156397 PMCID: PMC10279924 DOI: 10.1016/j.jbc.2023.104797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023] Open
Abstract
Coenzyme Q (CoQ) is an essential component of the electron transport system in aerobic organisms. CoQ10 has ten isoprene units in its quinone structure and is especially valuable as a food supplement. However, the CoQ biosynthetic pathway has not been fully elucidated, including synthesis of the p-hydroxybenzoic acid (PHB) precursor to form a quinone backbone. To identify the novel components of CoQ10 synthesis, we investigated CoQ10 production in 400 Schizosaccharomyces pombe gene-deleted strains in which individual mitochondrial proteins were lost. We found that deletion of coq11 (an S. cerevisiae COQ11 homolog) and a novel gene designated coq12 lowered CoQ levels to ∼4% of that of the WT strain. Addition of PHB or p-hydroxybenzaldehyde restored the CoQ content and growth and lowered hydrogen sulfide production of the Δcoq12 strain, but these compounds did not affect the Δcoq11 strain. The primary structure of Coq12 has a flavin reductase motif coupled with an NAD+ reductase domain. We determined that purified Coq12 protein from S. pombe displayed NAD+ reductase activity when incubated with ethanol-extracted substrate of S. pombe. Because purified Coq12 from Escherichia coli did not exhibit reductase activity under the same conditions, an extra protein is thought to be necessary for its activity. Analysis of Coq12-interacting proteins by LC-MS/MS revealed interactions with other Coq proteins, suggesting formation of a complex. Thus, our analysis indicates that Coq12 is required for PHB synthesis, and it has diverged among species.
Collapse
Affiliation(s)
- Ikuhisa Nishida
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan; Sakeology Center, Niigata University, Niigata, Japan
| | - Yuki Ohmori
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | - Ryota Yanai
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | - Shogo Nishihara
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | - Yasuhiro Matsuo
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Tomohiro Kaino
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Dai Hirata
- Sakeology Center, Niigata University, Niigata, Japan
| | - Makoto Kawamukai
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan.
| |
Collapse
|
3
|
Deshwal S, Onishi M, Tatsuta T, Bartsch T, Cors E, Ried K, Lemke K, Nolte H, Giavalisco P, Langer T. Mitochondria regulate intracellular coenzyme Q transport and ferroptotic resistance via STARD7. Nat Cell Biol 2023; 25:246-257. [PMID: 36658222 PMCID: PMC9928583 DOI: 10.1038/s41556-022-01071-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/06/2022] [Indexed: 01/21/2023]
Abstract
Coenzyme Q (or ubiquinone) is a redox-active lipid that serves as universal electron carrier in the mitochondrial respiratory chain and antioxidant in the plasma membrane limiting lipid peroxidation and ferroptosis. Mechanisms allowing cellular coenzyme Q distribution after synthesis within mitochondria are not understood. Here we identify the cytosolic lipid transfer protein STARD7 as a critical factor of intracellular coenzyme Q transport and suppressor of ferroptosis. Dual localization of STARD7 to the intermembrane space of mitochondria and the cytosol upon cleavage by the rhomboid protease PARL ensures the synthesis of coenzyme Q in mitochondria and its transport to the plasma membrane. While mitochondrial STARD7 preserves coenzyme Q synthesis, oxidative phosphorylation function and cristae morphogenesis, cytosolic STARD7 is required for the transport of coenzyme Q to the plasma membrane and protects against ferroptosis. A coenzyme Q variant competes with phosphatidylcholine for binding to purified STARD7 in vitro. Overexpression of cytosolic STARD7 increases ferroptotic resistance of the cells, but limits coenzyme Q abundance in mitochondria and respiratory cell growth. Our findings thus demonstrate the need to coordinate coenzyme Q synthesis and cellular distribution by PARL-mediated STARD7 processing and identify PARL and STARD7 as promising targets to interfere with ferroptosis.
Collapse
Affiliation(s)
- Soni Deshwal
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Mashun Onishi
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Takashi Tatsuta
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Tim Bartsch
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Eileen Cors
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Katharina Ried
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Kathrin Lemke
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Hendrik Nolte
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Patrick Giavalisco
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Ji P, Li H, Jin Y, Peng Y, Zhao L, Wang X. C. elegans as an in vivo model system for the phenotypic drug discovery for treating paraquat poisoning. PeerJ 2022; 10:e12866. [PMID: 35178301 PMCID: PMC8815376 DOI: 10.7717/peerj.12866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Paraquat (PQ) is an effective and widely used herbicide and causes numerous fatalities by accidental or voluntary ingestion. However, neither the final cytotoxic mechanism nor effective treatments for PQ poisoning have been discovered. Phenotypic drug discovery (PDD), which does not rely on the molecular mechanism of the diseases, is having a renaissance in recent years owing to its potential to address the incompletely understood complexity of diseases. Herein, the C. elegans PDD model was established to pave the way for the future phenotypic discovery of potential agents for treating PQ poisoning. METHODS C. elegans were treated with PQ-containing solid medium followed by statistical analysis of worm survival, pharyngeal pumping, and movement ability. Furthermore, coenzyme Q10 (CoQ10) was used to test the C. elegans model of PQ poisoning by measuring the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), mitochondrial morphology, and worm survival rate. Additionally, we used the classic mice model of PQ intoxication to evaluate the validity of the C. elegans model of PQ poisoning by measuring the effect of CoQ10 as a potential antidote for PQ poisoning. RESULTS In the C. elegans model of PQ poisoning, 5 mg/mL PQ increased the levels of ROS, MDA content, mitochondrial fragments, which significantly shortened the lifespan, while CoQ10 alleviated these phenotypes. In the mice model of PQ poisoning, CoQ10 increased the chance of survival in PQ poisoned mice while reducing ROS, MDA content in lung tissue and inhibiting PQ-induced lung edema. Moreover, CoQ10 alleviated the lung morphopathological changes induced by PQ. CONCLUSION Here we established a C. elegans model of PQ poisoning, whose validity was confirmed by the classic mice model of PQ intoxication.
Collapse
Affiliation(s)
- Peng Ji
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, China
| | - Yushan Jin
- Department of Immunology and Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Yinghua Peng
- Key Laboratory of Special Animal Molecular Biology of Jilin Province, Specialty Research Institute of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lihui Zhao
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, China,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China,Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
5
|
Coenzyme Q at the Hinge of Health and Metabolic Diseases. Antioxidants (Basel) 2021; 10:antiox10111785. [PMID: 34829656 PMCID: PMC8615162 DOI: 10.3390/antiox10111785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q is a unique lipidic molecule highly conserved in evolution and essential to maintaining aerobic metabolism. It is endogenously synthesized in all cells by a very complex pathway involving a group of nuclear genes that share high homology among species. This pathway is tightly regulated at transcription and translation, but also by environment and energy requirements. Here, we review how coenzyme Q reacts within mitochondria to promote ATP synthesis and also integrates a plethora of metabolic pathways and regulates mitochondrial oxidative stress. Coenzyme Q is also located in all cellular membranes and plasma lipoproteins in which it exerts antioxidant function, and its reaction with different extramitochondrial oxidoreductases contributes to regulate the cellular redox homeostasis and cytosolic oxidative stress, providing a key factor in controlling various apoptosis mechanisms. Coenzyme Q levels can be decreased in humans by defects in the biosynthesis pathway or by mitochondrial or cytosolic dysfunctions, leading to a highly heterogeneous group of mitochondrial diseases included in the coenzyme Q deficiency syndrome. We also review the importance of coenzyme Q levels and its reactions involved in aging and age-associated metabolic disorders, and how the strategy of its supplementation has had benefits for combating these diseases and for physical performance in aging.
Collapse
|
6
|
A Long-Day Photoperiod and 6-Benzyladenine Promote Runner Formation through Upregulation of Soluble Sugar Content in Strawberry. Int J Mol Sci 2020; 21:ijms21144917. [PMID: 32664642 PMCID: PMC7403970 DOI: 10.3390/ijms21144917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023] Open
Abstract
Commercial strawberries are mainly propagated using daughter plants produced on aerial runners because asexual propagation is faster than seed propagation, and daughter plants retain the characteristics of the mother plant. This study was conducted to investigate the effective factors for runner induction, as well as the molecular mechanisms behind the runner induction. An orthogonal test with 4 factors (photoperiod, temperature, gibberellin, and 6-benzyladenine), each with 3 levels was performed. Proteins were also extracted from the crowns with or without runners and separated by two-dimensional electrophoresis. The results of the orthogonal test showed that a long-day (LD) environment was the most influential factor for the runner formation, and 50 mg·L−1 of 6-BA significantly increased the number of runners. A proteomic analysis revealed that 32 proteins were differentially expressed (2-fold, p < 0.05) in the strawberry crowns with and without runners. A total of 16 spots were up-regulated in the crowns with runners induced by LD treatment. Identified proteins were classified into seven groups according to their biological roles. The most prominent groups were carbohydrate metabolism and photosynthesis, which indicated that the carbohydrate content may increase during runner formation. A further analysis demonstrated that the soluble sugar content was positively correlated with the number of runners. Thus, it is suggested that the photoperiod and 6-BA break the dormancy of the axillary buds and produce runners by increasing the soluble sugar content in strawberry.
Collapse
|
7
|
Fino C, Vestergaard M, Ingmer H, Pierrel F, Gerdes K, Harms A. PasT of Escherichia coli sustains antibiotic tolerance and aerobic respiration as a bacterial homolog of mitochondrial Coq10. Microbiologyopen 2020; 9:e1064. [PMID: 32558363 PMCID: PMC7424257 DOI: 10.1002/mbo3.1064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Antibiotic‐tolerant persisters are often implicated in treatment failure of chronic and relapsing bacterial infections, but the underlying molecular mechanisms have remained elusive. Controversies revolve around the relative contribution of specific genetic switches called toxin–antitoxin (TA) modules and global modulation of cellular core functions such as slow growth. Previous studies on uropathogenic Escherichia coli observed impaired persister formation for mutants lacking the pasTI locus that had been proposed to encode a TA module. Here, we show that pasTI is not a TA module and that the supposed toxin PasT is instead the bacterial homolog of mitochondrial protein Coq10 that enables the functionality of the respiratory electron carrier ubiquinone as a “lipid chaperone.” Consistently, pasTI mutants show pleiotropic phenotypes linked to defective electron transport such as decreased membrane potential and increased sensitivity to oxidative stress. We link impaired persister formation of pasTI mutants to a global distortion of cellular stress responses due to defective respiration. Remarkably, the ectopic expression of human coq10 largely complements the respiratory defects and decreased persister levels of pasTI mutants. Our work suggests that PasT/Coq10 has a central role in respiratory electron transport that is conserved from bacteria to humans and sustains bacterial tolerance to antibiotics.
Collapse
Affiliation(s)
- Cinzia Fino
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Ingmer
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Fabien Pierrel
- CNRS, Grenoble INP, TIMC-IMAG, Université Grenoble Alpes, Grenoble, France
| | - Kenn Gerdes
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Harms
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark.,Focal Area of Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Bradley MC, Yang K, Fernández-Del-Río L, Ngo J, Ayer A, Tsui HS, Novales NA, Stocker R, Shirihai OS, Barros MH, Clarke CF. COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10. J Biol Chem 2020; 295:6023-6042. [PMID: 32205446 DOI: 10.1074/jbc.ra119.012420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Coenzyme Q (Q n ) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1-coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6 The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because "fused" proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.
Collapse
Affiliation(s)
- Michelle C Bradley
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569
| | - Krista Yang
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569
| | - Lucía Fernández-Del-Río
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569
| | - Jennifer Ngo
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569; Department of Molecular and Medical Pharmacology and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales 2050, Australia
| | - Hui S Tsui
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569
| | - Noelle Alexa Novales
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales 2050, Australia
| | - Orian S Shirihai
- Department of Molecular and Medical Pharmacology and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Mario H Barros
- Departamento Microbiologia, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569.
| |
Collapse
|
9
|
Wang Y, Hekimi S. The Complexity of Making Ubiquinone. Trends Endocrinol Metab 2019; 30:929-943. [PMID: 31601461 DOI: 10.1016/j.tem.2019.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Ubiquinone (UQ, coenzyme Q) is an essential electron transfer lipid in the mitochondrial respiratory chain. It is a main source of mitochondrial reactive oxygen species (ROS) but also has antioxidant properties. This mix of characteristics is why ubiquinone supplementation is considered a potential therapy for many diseases involving mitochondrial dysfunction. Mutations in the ubiquinone biosynthetic pathway are increasingly being identified in patients. Furthermore, secondary ubiquinone deficiency is a common finding associated with mitochondrial disorders and might exacerbate these conditions. Recent developments have suggested that ubiquinone biosynthesis occurs in discrete domains of the mitochondrial inner membrane close to ER-mitochondria contact sites. This spatial requirement for ubiquinone biosynthesis could be the link between secondary ubiquinone deficiency and mitochondrial dysfunction, which commonly results in loss of mitochondrial structural integrity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
10
|
Díaz-Casado ME, Quiles JL, Barriocanal-Casado E, González-García P, Battino M, López LC, Varela-López A. The Paradox of Coenzyme Q 10 in Aging. Nutrients 2019; 11:nu11092221. [PMID: 31540029 PMCID: PMC6770889 DOI: 10.3390/nu11092221] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q (CoQ) is an essential endogenously synthesized molecule that links different metabolic pathways to mitochondrial energy production thanks to its location in the mitochondrial inner membrane and its redox capacity, which also provide it with the capability to work as an antioxidant. Although defects in CoQ biosynthesis in human and mouse models cause CoQ deficiency syndrome, some animals models with particular defects in the CoQ biosynthetic pathway have shown an increase in life span, a fact that has been attributed to the concept of mitohormesis. Paradoxically, CoQ levels decline in some tissues in human and rodents during aging and coenzyme Q10 (CoQ10) supplementation has shown benefits as an anti-aging agent, especially under certain conditions associated with increased oxidative stress. Also, CoQ10 has shown therapeutic benefits in aging-related disorders, particularly in cardiovascular and metabolic diseases. Thus, we discuss the paradox of health benefits due to a defect in the CoQ biosynthetic pathway or exogenous supplementation of CoQ10.
Collapse
Affiliation(s)
- M Elena Díaz-Casado
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
| | - Eliana Barriocanal-Casado
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Pilar González-García
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Luis C López
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Alfonso Varela-López
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
| |
Collapse
|
11
|
Tsui HS, Pham NVB, Amer BR, Bradley MC, Gosschalk JE, Gallagher-Jones M, Ibarra H, Clubb RT, Blaby-Haas CE, Clarke CF. Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. J Lipid Res 2019; 60:1293-1310. [PMID: 31048406 DOI: 10.1194/jlr.m093534] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
Coenzyme Q (CoQ or ubiquinone) serves as an essential redox-active lipid in respiratory electron and proton transport during cellular energy metabolism. CoQ also functions as a membrane-localized antioxidant protecting cells against lipid peroxidation. CoQ deficiency is associated with multiple human diseases; CoQ10 supplementation in particular has noted cardioprotective benefits. In Saccharomyces cerevisiae, Coq10, a putative START domain protein, is believed to chaperone CoQ to sites where it functions. Yeast coq10 deletion mutants (coq10Δ) synthesize CoQ inefficiently during log phase growth and are respiratory defective and sensitive to oxidative stress. Humans have two orthologs of yeast COQ10, COQ10A and COQ10B Here, we tested the human co-orthologs for their ability to rescue the yeast mutant. We showed that expression of either human ortholog, COQ10A or COQ10B, rescues yeast coq10Δ mutant phenotypes, restoring the function of respiratory-dependent growth on a nonfermentable carbon source and sensitivity to oxidative stress induced by treatment with PUFAs. These effects indicate a strong functional conservation of Coq10 across different organisms. However, neither COQ10A nor COQ10B restored CoQ biosynthesis when expressed in the yeast coq10Δ mutant. The involvement of yeast Coq10 in CoQ biosynthesis may rely on its interactions with another protein, possibly Coq11, which is not found in humans. Coexpression analyses of yeast COQ10 and human COQ10A and COQ10B provide additional insights to functions of these START domain proteins and their potential roles in other biologic pathways.
Collapse
Affiliation(s)
- Hui S Tsui
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Nguyen V B Pham
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Brendan R Amer
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Jason E Gosschalk
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095.,UCLA-Department of Energy Institute of Genomics and Proteomics University of California, Los Angeles, Los Angeles, CA 90095
| | - Marcus Gallagher-Jones
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Hope Ibarra
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Robert T Clubb
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | | | - Catherine F Clarke
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
12
|
A Rahaman SN, Mat Yusop J, Mohamed-Hussein ZA, Aizat WM, Ho KL, Teh AH, Waterman J, Tan BK, Tan HL, Li AY, Chen ES, Ng CL. Crystal structure and functional analysis of human C1ORF123. PeerJ 2018; 6:e5377. [PMID: 30280012 PMCID: PMC6166629 DOI: 10.7717/peerj.5377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/14/2018] [Indexed: 12/12/2022] Open
Abstract
Proteins of the DUF866 superfamily are exclusively found in eukaryotic cells. A member of the DUF866 superfamily, C1ORF123, is a human protein found in the open reading frame 123 of chromosome 1. The physiological role of C1ORF123 is yet to be determined. The only available protein structure of the DUF866 family shares just 26% sequence similarity and does not contain a zinc binding motif. Here, we present the crystal structure of the recombinant human C1ORF123 protein (rC1ORF123). The structure has a 2-fold internal symmetry dividing the monomeric protein into two mirrored halves that comprise of distinct electrostatic potential. The N-terminal half of rC1ORF123 includes a zinc-binding domain interacting with a zinc ion near to a potential ligand binding cavity. Functional studies of human C1ORF123 and its homologue in the fission yeast Schizosaccharomyces pombe (SpEss1) point to a role of DUF866 protein in mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
| | - Jastina Mat Yusop
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.,Center for Frontier Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Jitka Waterman
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, England, United Kingdom
| | - Boon Keat Tan
- Division of Human Biology, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Hwei Ling Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Adelicia Yongling Li
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
13
|
Jeremias G, Barbosa J, Marques SM, De Schamphelaere KAC, Van Nieuwerburgh F, Deforce D, Gonçalves FJM, Pereira JL, Asselman J. Transgenerational Inheritance of DNA Hypomethylation in Daphnia magna in Response to Salinity Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10114-10123. [PMID: 30113818 DOI: 10.1021/acs.est.8b03225] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Epigenetic mechanisms have been found to play important roles in environmental stress response and regulation. These can, theoretically, be transmitted to future unexposed generations, yet few studies have shown persisting stress-induced transgenerational effects, particularly in invertebrates. Here, we focus on the aquatic microcrustacean Daphnia, a parthenogenetic model species, and its response to salinity stress. Salinity is a serious threat to freshwater ecosystems and a relevant form of environmental perturbation affecting freshwater ecosystems. We exposed one generation of D. magna to high levels of salinity (F0) and found that the exposure provoked specific methylation patterns that were transferred to the three consequent nonexposed generations (F1, F2, and F3). This was the case for the hypomethylation of six protein-coding genes with important roles in the organisms' response to environmental change: DNA damage repair, cytoskeleton organization, and protein synthesis. This suggests that epigenetic changes in Daphnia are particularly targeted to genes involved in coping with general cellular stress responses. Our results highlight that epigenetic marks are affected by environmental stressors and can be transferred to subsequent unexposed generations. Epigenetic marks could therefore prove to be useful indicators of past or historic pollution in this parthenogenetic model system. Furthermore, no life history costs seem to be associated with the maintenance of hypomethylation across unexposed generations in Daphnia following a single stress exposure.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology , University of Aveiro , 3810-193 , Aveiro , Portugal
| | - João Barbosa
- Department of Biology , University of Aveiro , 3810-193 , Aveiro , Portugal
| | - Sérgio M Marques
- Department of Biology , University of Aveiro , 3810-193 , Aveiro , Portugal
- CESAM (Centre for Environmental and Marine Studies) , University of Aveiro , 3810-193 , Aveiro , Portugal
| | - Karel A C De Schamphelaere
- Laboratory for Environmental Toxicology and Aquatic Ecology (GhEnToxLab) , Ghent University , 9000 , Ghent , Belgium
| | | | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology , Ghent University , 9000 , Ghent , Belgium
| | - Fernando J M Gonçalves
- Department of Biology , University of Aveiro , 3810-193 , Aveiro , Portugal
- CESAM (Centre for Environmental and Marine Studies) , University of Aveiro , 3810-193 , Aveiro , Portugal
| | - Joana Luísa Pereira
- Department of Biology , University of Aveiro , 3810-193 , Aveiro , Portugal
- CESAM (Centre for Environmental and Marine Studies) , University of Aveiro , 3810-193 , Aveiro , Portugal
| | - Jana Asselman
- Laboratory for Environmental Toxicology and Aquatic Ecology (GhEnToxLab) , Ghent University , 9000 , Ghent , Belgium
| |
Collapse
|
14
|
Tiefenbach J, Magomedova L, Liu J, Reunov AA, Tsai R, Eappen NS, Jockusch RA, Nislow C, Cummins CL, Krause HM. Idebenone and coenzyme Q 10 are novel PPARα/γ ligands, with potential for treatment of fatty liver diseases. Dis Model Mech 2018; 11:11/9/dmm034801. [PMID: 30171034 PMCID: PMC6177011 DOI: 10.1242/dmm.034801] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Current peroxisome proliferator-activated receptor (PPAR)-targeted drugs, such as the PPARγ-directed diabetes drug rosiglitazone, are associated with undesirable side effects due to robust agonist activity in non-target tissues. To find new PPAR ligands with fewer toxic effects, we generated transgenic zebrafish that can be screened in high throughput for new tissue-selective PPAR partial agonists. A structural analog of coenzyme Q10 (idebenone) that elicits spatially restricted partial agonist activity for both PPARα and PPARγ was identified. Coenzyme Q10 was also found to bind and activate both PPARs in a similar fashion, suggesting an endogenous role in relaying the states of mitochondria, peroxisomes and cellular redox to the two receptors. Testing idebenone in a mouse model of type 2 diabetes revealed the ability to reverse fatty liver development. These findings indicate new mechanisms of action for both PPARα and PPARγ, and new potential treatment options for nonalcoholic fatty liver disease (NAFLD) and steatosis. This article has an associated First Person interview with the first author of the paper. Summary: A zebrafish screen identifies a novel PPARα/γ ligand, idebenone, with potential for treatment of fatty liver diseases, as seen by testing it in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Jens Tiefenbach
- University of Toronto, Donnelly Ctr., 160 College St, Toronto, ON M5S 3E1, Canada .,InDanio Bioscience Inc., 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, 144 College St, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jiabao Liu
- University of Toronto, Donnelly Ctr., 160 College St, Toronto, ON M5S 3E1, Canada
| | - Arkadiy A Reunov
- InDanio Bioscience Inc., 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ricky Tsai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, 144 College St, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Neena S Eappen
- Department of Chemistry, 80 St George St, University of Toronto, Toronto, ON M5S 3H4, Canada
| | - Rebecca A Jockusch
- Department of Chemistry, 80 St George St, University of Toronto, Toronto, ON M5S 3H4, Canada
| | - Corey Nislow
- The University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, 144 College St, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Henry M Krause
- University of Toronto, Donnelly Ctr., 160 College St, Toronto, ON M5S 3E1, Canada .,InDanio Bioscience Inc., 160 College Street, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
15
|
Clinical syndromes associated with Coenzyme Q10 deficiency. Essays Biochem 2018; 62:377-398. [DOI: 10.1042/ebc20170107] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022]
Abstract
Primary Coenzyme Q deficiencies represent a group of rare conditions caused by mutations in one of the genes required in its biosynthetic pathway at the enzymatic or regulatory level. The associated clinical manifestations are highly heterogeneous and mainly affect central and peripheral nervous system, kidney, skeletal muscle and heart. Genotype–phenotype correlations are difficult to establish, mainly because of the reduced number of patients and the large variety of symptoms. In addition, mutations in the same COQ gene can cause different clinical pictures. Here, we present an updated and comprehensive review of the clinical manifestations associated with each of the pathogenic variants causing primary CoQ deficiencies.
Collapse
|
16
|
Coenzyme Q 10 deficiencies: pathways in yeast and humans. Essays Biochem 2018; 62:361-376. [PMID: 29980630 PMCID: PMC6056717 DOI: 10.1042/ebc20170106] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/08/2018] [Accepted: 05/14/2018] [Indexed: 12/23/2022]
Abstract
Coenzyme Q (ubiquinone or CoQ) is an essential lipid that plays a role in mitochondrial respiratory electron transport and serves as an important antioxidant. In human and yeast cells, CoQ synthesis derives from aromatic ring precursors and the isoprene biosynthetic pathway. Saccharomyces cerevisiae coq mutants provide a powerful model for our understanding of CoQ biosynthesis. This review focusses on the biosynthesis of CoQ in yeast and the relevance of this model to CoQ biosynthesis in human cells. The COQ1–COQ11 yeast genes are required for efficient biosynthesis of yeast CoQ. Expression of human homologs of yeast COQ1–COQ10 genes restore CoQ biosynthesis in the corresponding yeast coq mutants, indicating profound functional conservation. Thus, yeast provides a simple yet effective model to investigate and define the function and possible pathology of human COQ (yeast or human gene involved in CoQ biosynthesis) gene polymorphisms and mutations. Biosynthesis of CoQ in yeast and human cells depends on high molecular mass multisubunit complexes consisting of several of the COQ gene products, as well as CoQ itself and CoQ intermediates. The CoQ synthome in yeast or Complex Q in human cells, is essential for de novo biosynthesis of CoQ. Although some human CoQ deficiencies respond to dietary supplementation with CoQ, in general the uptake and assimilation of this very hydrophobic lipid is inefficient. Simple natural products may serve as alternate ring precursors in CoQ biosynthesis in both yeast and human cells, and these compounds may act to enhance biosynthesis of CoQ or may bypass certain deficient steps in the CoQ biosynthetic pathway.
Collapse
|
17
|
Abstract
Prenylquinones are isoprenoid compounds with a characteristic quinone structure and isoprenyl tail that are ubiquitous in almost all living organisms. There are four major prenylquinone classes: ubiquinone (UQ), menaquinone (MK), plastoquinone (PQ), and rhodoquinone (RQ). The quinone structure and isoprenyl tail length differ among organisms. UQ, PQ, and RQ contain benzoquinone, while MK contains naphthoquinone. UQ, MK, and RQ are involved in oxidative phosphorylation, while PQ functions in photosynthetic electron transfer. Some organisms possess two types of prenylquinones; Escherichia coli has UQ8 and MK8, and Caenorhabditis elegans has UQ9 and RQ9. Crystal structures of most of the enzymes involved in MK synthesis have been solved. Studies on the biosynthesis and functions of quinones have advanced recently, including for phylloquinone (PhQ), which has a phytyl moiety instead of an isoprenyl tail. Herein, the synthesis and applications of prenylquinones are reviewed.
Collapse
Affiliation(s)
- Makoto Kawamukai
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| |
Collapse
|
18
|
Silva-Marrero JI, Sáez A, Caballero-Solares A, Viegas I, Almajano MP, Fernández F, Baanante IV, Metón I. A transcriptomic approach to study the effect of long-term starvation and diet composition on the expression of mitochondrial oxidative phosphorylation genes in gilthead sea bream (Sparus aurata). BMC Genomics 2017; 18:768. [PMID: 29020939 PMCID: PMC5637328 DOI: 10.1186/s12864-017-4148-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022] Open
Abstract
Background The impact of nutritional status and diet composition on mitochondrial oxidative phosphorylation (OXPHOS) in fish remains largely unknown. To identify biomarkers of interest in nutritional studies, herein we obtained a deep-coverage transcriptome by 454 pyrosequencing of liver and skeletal muscle cDNA normalised libraries from long-term starved gilthead sea bream (Sparus aurata) and fish fed different diets. Results After clean-up of high-throughput deep sequencing reads, 699,991 and 555,031 high-quality reads allowed de novo assembly of liver and skeletal muscle sequences, respectively (average length: 374 and 441 bp; total megabases: 262 and 245 Mbp). An additional incremental assembly was completed by integrating data from both tissues (hybrid assembly). Assembly of hybrid, liver and skeletal muscle transcriptomes yielded, respectively, 19,530, 11,545 and 10,599 isotigs (average length: 1330, 1208 and 1390 bp, respectively) that were grouped into 15,954, 10,033 and 9189 isogroups. Following annotation, hybrid transcriptomic data were used to construct an oligonucleotide microarray to analyse nutritional regulation of the expression of 129 genes involved in OXPHOS in S. aurata. Starvation upregulated cytochrome c oxidase components and other key OXPHOS genes in the liver, which exhibited higher sensitive to food deprivation than the skeletal muscle. However, diet composition affected OXPHOS in the skeletal muscle to a greater extent than in the liver: most of genes upregulated under starvation presented higher expression among fish fed a high carbohydrate/low protein diet. Conclusions Our findings indicate that the expression of coenzyme Q-binding protein (COQ10), cytochrome c oxidase subunit 6A2 (COX6A2) and ADP/ATP translocase 3 (SLC25A6) in the liver, and cytochrome c oxidase subunit 5B isoform 1 (COX5B1) in the liver and the skeletal muscle, are sensitive markers of the nutritional condition that may be relevant to assess the effect of changes in the feeding regime and diet composition on fish farming. Electronic supplementary material The online version of this article (10.1186/s12864-017-4148-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonás I Silva-Marrero
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Alberto Sáez
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Albert Caballero-Solares
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Ivan Viegas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Center for Functional Ecology (CFE), Department Life Sciences, University of Coimbra, Calçada Martins de Freitas, 3000-456, Coimbra, Portugal
| | - María Pilar Almajano
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
| | - Felipe Fernández
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Isabel V Baanante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
19
|
Korošec T, Tomažin U, Horvat S, Keber R, Salobir J. The diverse effects of α- and γ-tocopherol on chicken liver transcriptome. Poult Sci 2017; 96:667-680. [PMID: 27587731 DOI: 10.3382/ps/pew296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/11/2016] [Indexed: 01/11/2023] Open
Abstract
α-Tocopherol is the form of vitamin E with the highest biological value and is almost exclusively considered as vitamin E in feed and feed supplements. Because γ-tocopherol, the predominant form of vitamin E naturally present in chicken feed, is not considered as a source of vitamin E, its re-evaluation with newer methods might be important.Despite γ-tocopherol's lower estimated biological value, it has been shown to be effective in reducing reactive nitrogen species, regulating immune and inflammatory processes, and diminishing the risk of metabolic perturbations and associated diseases. A 30-day nutritional trial in broiler chickens (Ross 308) was conducted to investigate how specific forms of vitamin E (α- and γ-tocopherol) and their combination impact liver gene expression when oxidative susceptibility of the organism is induced by high n-3 polyunsaturated fatty acids (PUFA) intake (linseed oil). Thirty-six one-day-old male broilers were fed a diet enriched with 5% linseed oil. A control group (Cont; N = 10) was used as a reference group, Tα (N = 10) was supplemented with 67 mg/kg RRR-α-tocopherol, Tγ (N = 8) with 67 mg/kg RRR-γ-tocopherol, and Tαγ (N = 8) with a combination of 33.5 mg/kg of each tocopherol. Beside oxidative stress indicators, whole chicken genome microarray analysis was performed on liver RNA and selected differentially expressed genes were confirmed by real time quantitative PCR. α-Tocopherol alone and in combination with γ-tocopherol was able to prevent lipid oxidation, which was also supported by transcriptome analysis. The effect of γ-tocopherol was evident in the expression of genes involved in inflammatory processes and immune response, while α-tocopherol affected genes involved in lipid and cholesterol metabolism. Both isomers of vitamin E influenced the transcription of genes, which are related to improved fat oxidation and enhanced glucose sparing.
Collapse
Affiliation(s)
- Tamara Korošec
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Groblje 3, 1230 Domžale, Slovenia
| | - Urška Tomažin
- Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia
| | - Simon Horvat
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Groblje 3, 1230 Domžale, Slovenia.,National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Rok Keber
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Janez Salobir
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Groblje 3, 1230 Domžale, Slovenia
| |
Collapse
|
20
|
Herebian D, Seibt A, Smits SHJ, Bünning G, Freyer C, Prokisch H, Karall D, Wredenberg A, Wedell A, López LC, Mayatepek E, Distelmaier F. Detection of 6-demethoxyubiquinone in CoQ 10 deficiency disorders: Insights into enzyme interactions and identification of potential therapeutics. Mol Genet Metab 2017; 121:216-223. [PMID: 28552678 DOI: 10.1016/j.ymgme.2017.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/18/2022]
Abstract
Coenzyme Q10 (CoQ10) is an essential cofactor of the mitochondrial oxidative phosphorylation (OXPHOS) system and its deficiency has important implications for several inherited metabolic disorders of childhood. The biosynthesis of CoQ10 is a complicated process, which involves at least 12 different enzymes. One of the metabolic intermediates that are formed during CoQ10 biosynthesis is the molecule 6-demethoxyubiquinone (6-DMQ). This CoQ precursor is processed at the level of COQ7 and COQ9. We selected this metabolite as a marker substance for metabolic analysis of cell lines with inherited genetic defects (COQ2, COQ4, COQ7 and COQ9) or siRNA knockdown in CoQ biosynthesis enzymes using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). In COQ4, COQ7 and COQ9 deficient cell lines, we detected significantly elevated levels of 6-DMQ. This suggests a functional interplay of these proteins. However, additional siRNA studies demonstrated that elevated 6-DMQ levels are not an exclusive marker of the COQ7/COQ9 enzymatic step of CoQ10 biosynthesis but constitute a more general phenomenon that occurs in disorders impairing the function or stability of the CoQ-synthome. To further investigate the interdependence of CoQ10 biosynthesis enzyme expression, we performed immunoblotting in various cell lines with CoQ10 deficiency, indicating that COQ4, COQ7 and COQ9 protein expression levels are highly regulated depending on the underlying defect. Supplementation of cell lines with synthetic CoQ precursor compounds demonstrated beneficial effects of 2,4-dihydroxybenzoic acid in COQ7 and COQ9 deficiency. Moreover, vanillic acid selectively stimulated CoQ10 biosynthesis and improved cell viability in COQ9 deficiency. However, compounds tested in this study failed to rescue COQ4 deficiency.
Collapse
Affiliation(s)
- Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Annette Seibt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University, Universitätsstr.1, 40225 Düsseldorf, Germany
| | - Gisela Bünning
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christoph Freyer
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, Trogerstr. 32, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna Wredenberg
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Luis C López
- Departmento de Fisiología, Facultad de Medicina and Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Spain
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
21
|
Romero-Moya D, Santos-Ocaña C, Castaño J, Garrabou G, Rodríguez-Gómez JA, Ruiz-Bonilla V, Bueno C, González-Rodríguez P, Giorgetti A, Perdiguero E, Prieto C, Moren-Nuñez C, Fernández-Ayala DJ, Victoria Cascajo M, Velasco I, Canals JM, Montero R, Yubero D, Jou C, López-Barneo J, Cardellach F, Muñoz-Cánoves P, Artuch R, Navas P, Menendez P. Genetic Rescue of Mitochondrial and Skeletal Muscle Impairment in an Induced Pluripotent Stem Cells Model of Coenzyme Q 10 Deficiency. Stem Cells 2017; 35:1687-1703. [PMID: 28472853 DOI: 10.1002/stem.2634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023]
Abstract
Coenzyme Q10 (CoQ10 ) plays a crucial role in mitochondria as an electron carrier within the mitochondrial respiratory chain (MRC) and is an essential antioxidant. Mutations in genes responsible for CoQ10 biosynthesis (COQ genes) cause primary CoQ10 deficiency, a rare and heterogeneous mitochondrial disorder with no clear genotype-phenotype association, mainly affecting tissues with high-energy demand including brain and skeletal muscle (SkM). Here, we report a four-year-old girl diagnosed with minor mental retardation and lethal rhabdomyolysis harboring a heterozygous mutation (c.483G > C (E161D)) in COQ4. The patient's fibroblasts showed a decrease in [CoQ10 ], CoQ10 biosynthesis, MRC activity affecting complexes I/II + III, and respiration defects. Bona fide induced pluripotent stem cell (iPSCs) lines carrying the COQ4 mutation (CQ4-iPSCs) were generated, characterized and genetically edited using the CRISPR-Cas9 system (CQ4ed -iPSCs). Extensive differentiation and metabolic assays of control-iPSCs, CQ4-iPSCs and CQ4ed -iPSCs demonstrated a genotype association, reproducing the disease phenotype. The COQ4 mutation in iPSC was associated with CoQ10 deficiency, metabolic dysfunction, and respiration defects. iPSC differentiation into SkM was compromised, and the resulting SkM also displayed respiration defects. Remarkably, iPSC differentiation in dopaminergic or motor neurons was unaffected. This study offers an unprecedented iPSC model recapitulating CoQ10 deficiency-associated functional and metabolic phenotypes caused by COQ4 mutation. Stem Cells 2017;35:1687-1703.
Collapse
Affiliation(s)
- Damià Romero-Moya
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide-CSIC, Sevilla, Spain.,CIBER de Enfermedades Raras (CIBERER), Spain
| | - Julio Castaño
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Gloria Garrabou
- CIBER de Enfermedades Raras (CIBERER), Spain.,Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS-Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - José A Rodríguez-Gómez
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas (CSIC)-University of Seville, Seville, Spain
| | - Vanesa Ruiz-Bonilla
- CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Patricia González-Rodríguez
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas (CSIC)-University of Seville, Seville, Spain.,CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Alessandra Giorgetti
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Eusebio Perdiguero
- CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain
| | - Cristina Prieto
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Constanza Moren-Nuñez
- CIBER de Enfermedades Raras (CIBERER), Spain.,Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS-Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Daniel J Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide-CSIC, Sevilla, Spain.,CIBER de Enfermedades Raras (CIBERER), Spain
| | - Maria Victoria Cascajo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide-CSIC, Sevilla, Spain.,CIBER de Enfermedades Raras (CIBERER), Spain
| | - Iván Velasco
- Insituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México.,Laboratorio de Reprogramación Celular del IFC en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", México DF, México
| | - Josep Maria Canals
- CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Stem Cells and Regenerative Medicine Laboratory, Production and validation center of advanced therapies (Creatio) Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Neuroscience Institute, University of Barcelona, Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Raquel Montero
- CIBER de Enfermedades Raras (CIBERER), Spain.,Clinical Biochemistry Department, Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain
| | - Delia Yubero
- Clinical Biochemistry Department, Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain
| | - Cristina Jou
- CIBER de Enfermedades Raras (CIBERER), Spain.,Clinical Biochemistry Department, Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain
| | - José López-Barneo
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas (CSIC)-University of Seville, Seville, Spain.,CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Francesc Cardellach
- CIBER de Enfermedades Raras (CIBERER), Spain.,Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS-Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Pura Muñoz-Cánoves
- CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain.,Institució Catalana Recerca Estudis Avančats (ICREA), Lluís Companys 23, Barcelona, Spain.,Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain
| | - Rafael Artuch
- CIBER de Enfermedades Raras (CIBERER), Spain.,Clinical Biochemistry Department, Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide-CSIC, Sevilla, Spain.,CIBER de Enfermedades Raras (CIBERER), Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institució Catalana Recerca Estudis Avančats (ICREA), Lluís Companys 23, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Spain
| |
Collapse
|
22
|
Abstract
Coenzyme Q (CoQ) is a component of the electron transport chain that participates in aerobic cellular respiration to produce ATP. In addition, CoQ acts as an electron acceptor in several enzymatic reactions involving oxidation-reduction. Biosynthesis of CoQ has been investigated mainly in Escherichia coli and Saccharomyces cerevisiae, and the findings have been extended to various higher organisms, including plants and humans. Analyses in yeast have contributed greatly to current understanding of human diseases related to CoQ biosynthesis. To date, human genetic disorders related to mutations in eight COQ biosynthetic genes have been reported. In addition, the crystal structures of a number of proteins involved in CoQ synthesis have been solved, including those of IspB, UbiA, UbiD, UbiX, UbiI, Alr8543 (Coq4 homolog), Coq5, ADCK3, and COQ9. Over the last decade, knowledge of CoQ biosynthesis has accumulated, and striking advances in related human genetic disorders and the crystal structure of proteins required for CoQ synthesis have been made. This review focuses on the biosynthesis of CoQ in eukaryotes, with some comparisons to the process in prokaryotes.
Collapse
Affiliation(s)
- Makoto Kawamukai
- a Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| |
Collapse
|
23
|
Allan CM, Awad AM, Johnson JS, Shirasaki DI, Wang C, Blaby-Haas CE, Merchant SS, Loo JA, Clarke CF. Identification of Coq11, a new coenzyme Q biosynthetic protein in the CoQ-synthome in Saccharomyces cerevisiae. J Biol Chem 2015; 290:7517-34. [PMID: 25631044 DOI: 10.1074/jbc.m114.633131] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coenzyme Q (Q or ubiquinone) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail and is required for mitochondrial electron transport. In the yeast Saccharomyces cerevisiae, Q is synthesized by the products of 11 known genes, COQ1-COQ9, YAH1, and ARH1. The function of some of the Coq proteins remains unknown, and several steps in the Q biosynthetic pathway are not fully characterized. Several of the Coq proteins are associated in a macromolecular complex on the matrix face of the inner mitochondrial membrane, and this complex is required for efficient Q synthesis. Here, we further characterize this complex via immunoblotting and proteomic analysis of tandem affinity-purified tagged Coq proteins. We show that Coq8, a putative kinase required for the stability of the Q biosynthetic complex, is associated with a Coq6-containing complex. Additionally Q6 and late stage Q biosynthetic intermediates were also found to co-purify with the complex. A mitochondrial protein of unknown function, encoded by the YLR290C open reading frame, is also identified as a constituent of the complex and is shown to be required for efficient de novo Q biosynthesis. Given its effect on Q synthesis and its association with the biosynthetic complex, we propose that the open reading frame YLR290C be designated COQ11.
Collapse
Affiliation(s)
- Christopher M Allan
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Agape M Awad
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Jarrett S Johnson
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Dyna I Shirasaki
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Charles Wang
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Crysten E Blaby-Haas
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Sabeeha S Merchant
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, the UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Joseph A Loo
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, the Department of Biological Chemistry, and the UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Catherine F Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute,
| |
Collapse
|
24
|
Murai M, Matsunobu K, Kudo S, Ifuku K, Kawamukai M, Miyoshi H. Identification of the Binding Site of the Quinone-Head Group in Mitochondrial Coq10 by Photoaffinity Labeling. Biochemistry 2014; 53:3995-4003. [DOI: 10.1021/bi500347s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Makoto Kawamukai
- Faculty of Life and Environmental
Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | | |
Collapse
|
25
|
Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans. PLoS One 2014; 9:e99038. [PMID: 24911838 PMCID: PMC4049637 DOI: 10.1371/journal.pone.0099038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/09/2014] [Indexed: 12/11/2022] Open
Abstract
Coenzyme Q (CoQ) is an essential factor for aerobic growth and oxidative phosphorylation in the electron transport system. The biosynthetic pathway for CoQ has been proposed mainly from biochemical and genetic analyses of Escherichia coli and Saccharomyces cerevisiae; however, the biosynthetic pathway in higher eukaryotes has been explored in only a limited number of studies. We previously reported the roles of several genes involved in CoQ synthesis in the fission yeast Schizosaccharomyces pombe. Here, we expand these findings by identifying ten genes (dps1, dlp1, ppt1, and coq3–9) that are required for CoQ synthesis. CoQ10-deficient S. pombe coq deletion strains were generated and characterized. All mutant fission yeast strains were sensitive to oxidative stress, produced a large amount of sulfide, required an antioxidant to grow on minimal medium, and did not survive at the stationary phase. To compare the biosynthetic pathway of CoQ in fission yeast with that in higher eukaryotes, the ability of CoQ biosynthetic genes from humans and plants (Arabidopsis thaliana) to functionally complement the S. pombe coq deletion strains was determined. With the exception of COQ9, expression of all other human and plant COQ genes recovered CoQ10 production by the fission yeast coq deletion strains, although the addition of a mitochondrial targeting sequence was required for human COQ3 and COQ7, as well as A. thaliana COQ6. In summary, this study describes the functional conservation of CoQ biosynthetic genes between yeasts, humans, and plants.
Collapse
|
26
|
He CH, Xie LX, Allan CM, Tran UC, Clarke CF. Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:630-44. [PMID: 24406904 DOI: 10.1016/j.bbalip.2013.12.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/17/2013] [Accepted: 12/30/2013] [Indexed: 12/17/2022]
Abstract
Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome.
Collapse
Affiliation(s)
- Cuiwen H He
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Letian X Xie
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Christopher M Allan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Uyenphuong C Tran
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
27
|
Allan CM, Hill S, Morvaridi S, Saiki R, Johnson JS, Liau WS, Hirano K, Kawashima T, Ji Z, Loo JA, Shepherd JN, Clarke CF. A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:776-791. [PMID: 23270816 DOI: 10.1016/j.bbalip.2012.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/10/2012] [Accepted: 12/17/2012] [Indexed: 12/25/2022]
Abstract
Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1-coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain.
Collapse
Affiliation(s)
- Christopher M Allan
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Shauna Hill
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Susan Morvaridi
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Ryoichi Saiki
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Jarrett S Johnson
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Wei-Siang Liau
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Kathleen Hirano
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Tadashi Kawashima
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Ziming Ji
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Joseph A Loo
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Jennifer N Shepherd
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| |
Collapse
|
28
|
Abstract
Ubiquinone (UQ), also known as coenzyme Q (CoQ), is a redox-active lipid present in all cellular membranes where it functions in a variety of cellular processes. The best known functions of UQ are to act as a mobile electron carrier in the mitochondrial respiratory chain and to serve as a lipid soluble antioxidant in cellular membranes. All eukaryotic cells synthesize their own UQ. Most of the current knowledge on the UQ biosynthetic pathway was obtained by studying Escherichia coli and Saccharomyces cerevisiae UQ-deficient mutants. The orthologues of all the genes known from yeast studies to be involved in UQ biosynthesis have subsequently been found in higher organisms. Animal mutants with different genetic defects in UQ biosynthesis display very different phenotypes, despite the fact that in all these mutants the same biosynthetic pathway is affected. This review summarizes the present knowledge of the eukaryotic biosynthesis of UQ, with focus on the biosynthetic genes identified in animals, including Caenorhabditis elegans, rodents, and humans. Moreover, we review the phenotypes of mutants in these genes and discuss the functional consequences of UQ deficiency in general.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | | |
Collapse
|
29
|
Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration. Biochem Biophys Res Commun 2010; 402:82-7. [PMID: 20933507 DOI: 10.1016/j.bbrc.2010.09.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 09/28/2010] [Indexed: 11/20/2022]
Abstract
COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q(2). Rescue of respiration by Q(2) is a characteristic of mutants blocked in coenzyme Q(6) synthesis. Unlike Q(6) deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q(6). The physiological significance of earlier observations that purified Coq10p contains bound Q(6) was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q(2). This suggests that in vivo binding of Q(6) by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains over-producing Coq10p.
Collapse
|
30
|
Busso C, Tahara EB, Ogusucu R, Augusto O, Ferreira-Junior JR, Tzagoloff A, Kowaltowski AJ, Barros MH. Saccharomyces cerevisiae coq10 null mutants are responsive to antimycin A. FEBS J 2010; 277:4530-8. [PMID: 20875086 DOI: 10.1111/j.1742-4658.2010.07862.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Deletion of COQ10 in Saccharomyces cerevisiae elicits a respiratory defect characterized by the absence of cytochrome c reduction, which is correctable by the addition of exogenous diffusible coenzyme Q(2). Unlike other coq mutants with hampered coenzyme Q(6) (Q(6) ) synthesis, coq10 mutants have near wild-type concentrations of Q(6). In the present study, we used Q-cycle inhibitors of the coenzyme QH(2)-cytochrome c reductase complex to assess the electron transfer properties of coq10 cells. Our results show that coq10 mutants respond to antimycin A, indicating an active Q-cycle in these mutants, even though they are unable to transport electrons through cytochrome c and are not responsive to myxothiazol. EPR spectroscopic analysis also suggests that wild-type and coq10 mitochondria accumulate similar amounts of Q(6) semiquinone, despite a lower steady-state level of coenzyme QH(2)-cytochrome c reductase complex in the coq10 cells. Confirming the reduced respiratory chain state in coq10 cells, we found that the expression of the Aspergillus fumigatus alternative oxidase in these cells leads to a decrease in antimycin-dependent H(2)O(2) release and improves their respiratory growth.
Collapse
Affiliation(s)
- Cleverson Busso
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nowicka B, Kruk J. Occurrence, biosynthesis and function of isoprenoid quinones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1587-605. [PMID: 20599680 DOI: 10.1016/j.bbabio.2010.06.007] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/09/2010] [Accepted: 06/14/2010] [Indexed: 12/23/2022]
Abstract
Isoprenoid quinones are one of the most important groups of compounds occurring in membranes of living organisms. These compounds are composed of a hydrophilic head group and an apolar isoprenoid side chain, giving the molecules a lipid-soluble character. Isoprenoid quinones function mainly as electron and proton carriers in photosynthetic and respiratory electron transport chains and these compounds show also additional functions, such as antioxidant function. Most of naturally occurring isoprenoid quinones belong to naphthoquinones or evolutionary younger benzoquinones. Among benzoquinones, the most widespread and important are ubiquinones and plastoquinones. Menaquinones, belonging to naphthoquinones, function in respiratory and photosynthetic electron transport chains of bacteria. Phylloquinone K(1), a phytyl naphthoquinone, functions in the photosynthetic electron transport in photosystem I. Ubiquinones participate in respiratory chains of eukaryotic mitochondria and some bacteria. Plastoquinones are components of photosynthetic electron transport chains of cyanobacteria and plant chloroplasts. Biosynthetic pathway of isoprenoid quinones has been described, as well as their additional, recently recognized, diverse functions in bacterial, plant and animal metabolism.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
32
|
Busso C, Bleicher L, Ferreira-Júnior JR, Barros MH. Site-directed mutagenesis and structural modeling of Coq10p indicate the presence of a tunnel for coenzyme Q6 binding. FEBS Lett 2010; 584:1609-14. [DOI: 10.1016/j.febslet.2010.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/08/2010] [Accepted: 03/15/2010] [Indexed: 11/30/2022]
|
33
|
Cui TZ, Kaino T, Kawamukai M. A subunit of decaprenyl diphosphate synthase stabilizes octaprenyl diphosphate synthase inEscherichia coliby forming a high-molecular weight complex. FEBS Lett 2010; 584:652-6. [DOI: 10.1016/j.febslet.2009.12.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/16/2009] [Indexed: 11/16/2022]
|
34
|
Biosynthesis and bioproduction of coenzyme Q10by yeasts and other organisms. Biotechnol Appl Biochem 2009; 53:217-26. [DOI: 10.1042/ba20090035] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|