1
|
Cárdenas-Guerra RE, Montes-Flores O, Nava-Pintor EE, Reséndiz-Cardiel G, Flores-Pucheta CI, Rodríguez-Gavaldón YI, Arroyo R, Bottazzi ME, Hotez PJ, Ortega-López J. Chagasin from Trypanosoma cruzi as a molecular scaffold to express epitopes of TSA-1 as soluble recombinant chimeras. Protein Expr Purif 2024; 218:106458. [PMID: 38423156 DOI: 10.1016/j.pep.2024.106458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a global public health problem. New therapeutic drugs and biologics are needed. The TSA-1 recombinant protein of T. cruzi is one such promising antigen for developing a therapeutic vaccine. However, it is overexpressed in E. coli as inclusion bodies, requiring an additional refolding step. As an alternative, in this study, we propose the endogenous cysteine protease inhibitor chagasin as a molecular scaffold to generate chimeric proteins. These proteins will contain combinations of two of the five conserved epitopes (E1 to E5) of TSA-1 in the L4 and L6 chagasin loops. Twenty chimeras (Q1-Q20) were designed, and their solubility was predicted using bioinformatics tools. Nine chimeras with different degrees of solubility were selected and expressed in E. coli BL21 (DE3). Western blot assays with anti-6x-His and anti-chagasin antibodies confirmed the expression of soluble recombinant chimeras. Both theoretically and experimentally, the Q12 (E5-E3) chimera was the most soluble, and the Q20 (E4-E5) the most insoluble protein. Q4 (E5-E1) and Q8 (E5-E2) chimeras were classified as proteins with medium solubility that exhibited the highest yield in the soluble fraction. Notably, Q4 has a yield of 239 mg/L, well above the yield of recombinant chagasin (16.5 mg/L) expressed in a soluble form. The expression of the Q4 chimera was scaled up to a 7 L fermenter obtaining a yield of 490 mg/L. These data show that chagasin can serve as a molecular scaffold for the expression of TSA-1 epitopes in the form of soluble chimeras.
Collapse
Affiliation(s)
- Rosa Elena Cárdenas-Guerra
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Octavio Montes-Flores
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Edgar Ezequiel Nava-Pintor
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Gerardo Reséndiz-Cardiel
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Claudia Ivonne Flores-Pucheta
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Yasmín Irene Rodríguez-Gavaldón
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, CP 07360, Mexico City, Mexico.
| |
Collapse
|
2
|
Roy M, Rawat A, Kaushik S, Jyoti A, Srivastava VK. Endogenous cysteine protease inhibitors in upmost pathogenic parasitic protozoa. Microbiol Res 2022; 261:127061. [DOI: 10.1016/j.micres.2022.127061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
3
|
Tušar L, Usenik A, Turk B, Turk D. Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. Int J Mol Sci 2021; 22:997. [PMID: 33498210 PMCID: PMC7863939 DOI: 10.3390/ijms22030997] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Protein inhibitors of proteases are an important tool of nature to regulate and control proteolysis in living organisms under physiological and pathological conditions. In this review, we analyzed the mechanisms of inhibition of cysteine proteases on the basis of structural information and compiled kinetic data. The gathered structural data indicate that the protein fold is not a major obstacle for the evolution of a protease inhibitor. It appears that nature can convert almost any starting fold into an inhibitor of a protease. In addition, there appears to be no general rule governing the inhibitory mechanism. The structural data make it clear that the "lock and key" mechanism is a historical concept with limited validity. However, the analysis suggests that the shape of the active site cleft of proteases imposes some restraints. When the S1 binding site is shaped as a pocket buried in the structure of protease, inhibitors can apply substrate-like binding mechanisms. In contrast, when the S1 binding site is in part exposed to solvent, the substrate-like inhibition cannot be employed. It appears that all proteases, with the exception of papain-like proteases, belong to the first group of proteases. Finally, we show a number of examples and provide hints on how to engineer protein inhibitors.
Collapse
Affiliation(s)
- Livija Tušar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Aleksandra Usenik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Faculty of Chemistry, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
- Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya Ulitsa, 19c1, 119146 Moscow, Russia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Denessiouk K, Uversky VN, Permyakov SE, Permyakov EA, Johnson MS, Denesyuk AI. Papain-like cysteine proteinase zone (PCP-zone) and PCP structural catalytic core (PCP-SCC) of enzymes with cysteine proteinase fold. Int J Biol Macromol 2020; 165:1438-1446. [PMID: 33058970 PMCID: PMC7548629 DOI: 10.1016/j.ijbiomac.2020.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 10/03/2020] [Indexed: 12/01/2022]
Abstract
There are several families of cysteine proteinases with different folds – for example the (chymo)trypsin fold family and papain-like fold family – but in both families the hydrolase activity of cysteine proteinases requires a cysteine residue as the catalytic nucleophile. In this work, we have analyzed the topology of the active site regions in 146 three-dimensional structures of proteins belonging to the Papain-like Cysteine Proteinase (PCP) superfamily, which includes papain as a typical representative of this protein superfamily. All analyzed enzymes contain a unique structurally closed conformation – a “PCP-Zone” – which can be divided into two groups, Class A and Class B. Eight structurally conserved amino acids of the PCP-Zone form a common Structural Core. The Structural Core, catalytic nucleophile, catalytic base and residue Xaa – which stabilizes the side-chain conformation of the catalytic base – make up a PCP Structural Catalytic Core (PCP-SCC). The PCP-SCC of Class A and Class B are divided into 5 and 2 types, respectively. Seven variants of the mutual arrangement of the amino-acid side chains of the catalytic triad – nucleophile, base and residue Xaa – within the same fold clearly demonstrate how enzymes with the papain-like fold adapt to the need to perform diverse functions in spite of their limited structural diversity. The roles of both the PCP-Zone of SARS-CoV-2-PLpro described in this study and the NBCZone of SARS-CoV-2-3CLpro presented in our earlier article (Denesyuk AI, Johnson MS, Salo-Ahen OMH, Uversky VN, Denessiouk K. Int J Biol Macromol. 2020;153:399-411) that are in contacts with inhibitors are discussed.
Collapse
Affiliation(s)
- Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku 20520, Finland
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russia
| | - Eugene A Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russia
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku 20520, Finland
| | - Alexander I Denesyuk
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku 20520, Finland; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russia
| |
Collapse
|
5
|
Flores-Solis D, Mendoza A, Rentería-González I, Casados-Vazquez LE, Trasviña-Arenas CH, Jiménez-Sandoval P, Benítez-Cardoza CG, Del Río-Portilla F, Brieba LG. Solution structure of the inhibitor of cysteine proteases 1 from Entamoeba histolytica reveals a possible auto regulatory mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140512. [PMID: 32731033 DOI: 10.1016/j.bbapap.2020.140512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Abstract
The genome of Entamoeba histolytica encodes approximately 50 Cysteine Proteases (CPs) whose activity is regulated by two Inhibitors of Cysteine Proteases (ICPs), EhICP1 and EhICP2. The main difference between both EhICPs is the acquisition of a 17 N-terminal targeting signal in EhICP2 and three exposed cysteine residues in EhICP1. The three exposed cysteines in EhICP1 potentiate the formation of cross-linking species that drive heterogeneity. Here we solved the NMR structure of EhICP1 using a mutant protein without accessible cysteines. Our structural data shows that EhICP1 adopts an immunoglobulin fold composed of seven β-strands, and three solvent exposed loops that resemble the structures of EhICP2 and chagasin. EhICP1 and EhICP2 are able to inhibit the archetypical cysteine protease papain by intercalating their BC loops into the protease active site independently of the character of the residue (serine or threonine) responsible to interact with the active site of papain. EhICP1 and EhICP2 present signals of functional divergence as they clustered in different clades. Two of the three exposed cysteines in EhICP1 are located at the DE loop that intercalates into the CP substrate-binding cleft. We propose that the solvent exposed cysteines of EhICP1 play a role in regulating its inhibitory activity and that in oxidative conditions, the cysteines of EhICP1 react to form intra and intermolecular disulfide bonds that render an inactive inhibitor. EhICP2 is not subject to redox regulation, as this inhibitor does not contain a single cysteine residue. This proposed redox regulation may be related to the differential cellular localization between EhICP1 and EhICP2.
Collapse
Affiliation(s)
- David Flores-Solis
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Angeles Mendoza
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Itzel Rentería-González
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico
| | - Luz E Casados-Vazquez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico
| | - Carlos H Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico
| | - Pedro Jiménez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico
| | - Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239, La Escalera Ticoman, 07320, D.F, Mexico
| | - Federico Del Río-Portilla
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Coyoacán, Ciudad de Mexico 04510, Mexico.
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
6
|
Toman NP, Kamenik AS, Santos LH, Hofer F, Liedl KR, Ferreira RS. Profiling selectivity of chagasin mutants towards cysteine proteases cruzain or cathepsin L through molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:5940-5952. [PMID: 32715978 DOI: 10.1080/07391102.2020.1796797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chagasin, an endogenous cysteine protease inhibitor from Trypanosoma cruzi, can control the activity of the parasitic cruzain and its homologous human cathepsin L. While chagasin inhibits both enzymes with similar potency, mutations have different effects on binding to these enzymes. Mutants T31A and T31A/T32A bind well to cathepsin L, but their affinity for cruzain drops ∼40 to 140-fold. On the other hand, the mutant W93A binds well to cruzain, but it loses potency against cathepsin L. Here, we employed molecular dynamics simulations to understand the selectivity in inhibition of cruzain or cathepsin L by chagasin mutants W93A, T31A, and T31A/T32A. Our results allowed profiling the nonbonded interactions in the interfaces of each mutant with these cysteine proteases. Additionally, we observed differences in the binding conformation of the chagasin loops L2 and L6 of the W93A mutant, favoring interactions with cruzain and reducing interactions with cathepsin L. These differences are associated with a partial dissociation of the W93A-cathepsin L complex, providing a likely cause for the selectivity of the mutant W93A towards cruzain.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Núbia Prates Toman
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anna Sophia Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Lucianna Helene Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Florian Hofer
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Rafaela Salgado Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Reyes-Espinosa F, Juárez-Saldivar A, Palos I, Herrera-Mayorga V, García-Pérez C, Rivera G. In Silico Analysis of Homologous Heterodimers of Cruzipain-Chagasin from Structural Models Built by Homology. Int J Mol Sci 2019; 20:ijms20061320. [PMID: 30875920 PMCID: PMC6470822 DOI: 10.3390/ijms20061320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/04/2022] Open
Abstract
The present study gives an overview of the binding energetics of the homologous heterodimers of cruzipain−chagasin based on the binding energy (ΔGb) prediction obtained with FoldX. This analysis involves a total of 70 homologous models of the cruzipain−chagasin complex which were constructed by homology from the combinatory variation of nine papain-like cysteine peptidase structures and seven cysteine protease inhibitor structures (as chagasin-like and cystatin-like inhibitors). Only 32 systems have been evaluated experimentally, ΔGbexperimental values previously reported. Therefore, the result of the multiple analysis in terms of the thermodynamic parameters, are shown as relative energy |ΔΔG| = |ΔGbfromFoldX − ΔGbexperimental|. Nine models were identified that recorded |ΔΔG| < 1.3, five models to 2.8 > |ΔΔG| > 1.3 and the other 18 models, values of |ΔΔG| > 2.8. The energetic analysis of the contribution of ΔH and ΔS to ΔGb to the 14-molecular model presents a ΔGb mostly ΔH-driven at neutral pH and at an ionic strength (I) of 0.15 M. The dependence of ΔGb(I,pH) at 298 K to the cruzipain−chagasin complex predicts a linear dependence of ΔGb(I). The computational protocol allowed the identification and prediction of thermodynamics binding energy parameters for cruzipain−chagasin-like heterodimers.
Collapse
Affiliation(s)
- Francisco Reyes-Espinosa
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico.
| | - Alfredo Juárez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico.
| | - Isidro Palos
- Unidad Académica Multidisciplinaria Reynosa-Rodhe, Universidad Autónoma Tamaulipas, Carr. Reynosa-San Fernando, Reynosa 88779, Mexico.
| | - Verónica Herrera-Mayorga
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico.
- Departamento de Ingeniería Bioquímica, Unidad Académica Multidisciplinaria Mante, Universidad Autónoma Tamaulipas, Blvd. Enrique Cárdenas González 1201, Mante 89840, Mexico.
| | - Carlos García-Pérez
- Scientific Computing Research Unit, Helmholtz Zentrum München, 85764 Munich, Germany.
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico.
| |
Collapse
|
8
|
Jimenez-Sandoval P, Madrigal-Carrillo EA, Santamaría-Suárez HA, Maturana D, Rentería-González I, Benitez-Cardoza CG, Torres-Larios A, Brieba LG. Mimicking a p53-MDM2 interaction based on a stable immunoglobulin-like domain scaffold. Proteins 2018; 86:802-812. [PMID: 29696695 DOI: 10.1002/prot.25519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/21/2018] [Accepted: 04/14/2018] [Indexed: 11/11/2022]
Abstract
Antibodies recognize protein targets with great affinity and specificity. However, posttranslational modifications and the presence of intrinsic disulfide-bonds pose difficulties for their industrial use. The immunoglobulin fold is one of the most ubiquitous folds in nature and it is found in many proteins besides antibodies. An example of a protein family with an immunoglobulin-like fold is the Cysteine Protease Inhibitors (ICP) family I42 of the MEROPs database for protease and protease inhibitors. Members of this protein family are thermostable and do not present internal disulfide bonds. Crystal structures of several ICPs indicate that they resemble the Ig-like domain of the human T cell co-receptor CD8α As ICPs present 2 flexible recognition loops that vary accordingly to their targeted protease, we hypothesize that members of this protein family would be ideal to design peptide aptamers that mimic protein-protein interactions. Herein, we use an ICP variant from Entamoeba histolytica (EhICP1) to mimic the interaction between p53 and MDM2. We found that a 13 amino-acid peptide derived from p53 can be introduced in 2 variable loops (DE, FG) but not the third (BC). Chimeric EhICP1-p53 form a stable complex with MDM2 at a micromolar range. Crystal structure of the EhICP1-p53(FG)-loop variant in complex with MDM2 reveals a swapping subdomain between 2 chimeric molecules, however, the p53 peptide interacts with MDM2 as in previous crystal structures. The structural details of the EhICP1-p53(FG) interaction with MDM2 resemble the interaction between an antibody and MDM2.
Collapse
Affiliation(s)
- Pedro Jimenez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Ezequiel A Madrigal-Carrillo
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-243, Mexico City, 04510, México
| | - Hugo A Santamaría-Suárez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-243, Mexico City, 04510, México
| | - Daniel Maturana
- NanoTemper Technologies GmbH, Floessergasse 4, Munich, 81369, Germany
| | - Itzel Rentería-González
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Claudia G Benitez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239, La Escalera Ticoman, D.F, Mexico City, 07320, Mexico
| | - Alfredo Torres-Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-243, Mexico City, 04510, México
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| |
Collapse
|
9
|
Synthetic microbial consortia enable rapid assembly of pure translation machinery. Nat Chem Biol 2017; 14:29-35. [DOI: 10.1038/nchembio.2514] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 10/04/2017] [Indexed: 12/23/2022]
|
10
|
Khan S, Ahmad S, Siddiqi MI, Bano B. Physico-chemical and in-silico analysis of a phytocystatin purified from Brassica juncea cultivar RoAgro 5444. Biochem Cell Biol 2016; 94:584-596. [PMID: 27845561 DOI: 10.1139/bcb-2016-0029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study describes the isolation and purification of a phytocystatin from seeds of Brassica juncea (Indian mustard; cultivar RoAgro 5444), which is an important oilseed crop both agriculturally and economically. The protein was purified by gel filtration chromatography with 24.3% yield and 204-fold purification, and visualised by 2D gel electrophoresis. The 18.1 kDa mustard cystatin was highly specific for cysteine proteinases. The plant cystatin inhibited cathepsin B, confirming its role in conferring pest resistance. The inhibitor was highly stable over a pH range of 3-10 and retained significant inhibitory potential up to 70 °C. The stoichiometry of its interaction with papain, determined by isothermal calorimetry, suggests a 1:1 complex. Secondary structural elements calculated by far-UV circular dichroism (CD) spectroscopy show an 18.8% α-helical and 21% β-sheet structure. The protein was a non-competitive inhibitor of thiol proteinases. The Stokes radius and frictional co-efficient were used to describe the shape and size of the protein. Homology modelling and docking studies proposed a prototype illustrating the Brassica phytocystatin mediated papain inhibition. Molecular dynamics (MD) study revealed the excellent stability of the papain-phytocystatin complex during a simulation for 100 ns. Detailed results identify the mustard cystatin as an important member of the phytocystatin family.
Collapse
Affiliation(s)
- Shumaila Khan
- a Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, India
| | - Sabahuddin Ahmad
- b Molecular and Structural Biology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, Uttar Pradesh, India
| | - Mohammad Imran Siddiqi
- b Molecular and Structural Biology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, Uttar Pradesh, India
| | - Bilqees Bano
- a Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
11
|
Costa TF, Lima APC. Natural cysteine protease inhibitors in protozoa: Fifteen years of the chagasin family. Biochimie 2016; 122:197-207. [DOI: 10.1016/j.biochi.2015.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022]
|
12
|
Identification of novel class of falcipain-2 inhibitors as potential antimalarial agents. Bioorg Med Chem 2015; 23:2221-40. [DOI: 10.1016/j.bmc.2015.02.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/16/2015] [Accepted: 02/26/2015] [Indexed: 11/18/2022]
|
13
|
Pretsch K, Kemen A, Kemen E, Geiger M, Mendgen K, Voegele R. The rust transferred proteins-a new family of effector proteins exhibiting protease inhibitor function. MOLECULAR PLANT PATHOLOGY 2013; 14:96-107. [PMID: 22998218 PMCID: PMC6638633 DOI: 10.1111/j.1364-3703.2012.00832.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Only few fungal effectors have been described to be delivered into the host cell during obligate biotrophic interactions. RTP1p, from the rust fungi Uromyces fabae and U. striatus, was the first fungal protein for which localization within the host cytoplasm could be demonstrated directly. We investigated the occurrence of RTP1 homologues in rust fungi and examined the structural and biochemical characteristics of the corresponding gene products. The analysis of 28 homologues showed that members of the RTP family are most likely to occur ubiquitously in rust fungi and to be specific to the order Pucciniales. Sequence analyses indicated that the structure of the RTPp effectors is bipartite, consisting of a variable N-terminus and a conserved and structured C-terminus. The characterization of Uf-RTP1p mutants showed that four conserved cysteine residues sustain structural stability. Furthermore, the C-terminal domain exhibits similarities to that of cysteine protease inhibitors, and it was shown that Uf-RTP1p and Us-RTP1p are able to inhibit proteolytic activity in Pichia pastoris culture supernatants. We conclude that the RTP1p homologues constitute a rust fungi-specific family of modular effector proteins comprising an unstructured N-terminal domain and a structured C-terminal domain, which exhibit protease inhibitory activity possibly associated with effector function during biotrophic interactions.
Collapse
Affiliation(s)
- Klara Pretsch
- Phytopathologie, Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Roy S, Choudhury D, Aich P, Dattagupta JK, Biswas S. The structure of a thermostable mutant of pro-papain reveals its activation mechanism. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1591-603. [PMID: 23151624 DOI: 10.1107/s0907444912038607] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/08/2012] [Indexed: 11/10/2022]
Abstract
Papain is the archetype of a broad class of cysteine proteases (clan C1A) that contain a pro-peptide in the zymogen form which is required for correct folding and spatio-temporal regulation of proteolytic activity in the initial stages after expression. This study reports the X-ray structure of the zymogen of a thermostable mutant of papain at 2.6 Å resolution. The overall structure, in particular that of the mature part of the protease, is similar to those of other members of the family. The structure provides an explanation for the molecular basis of the maintenance of latency of the proteolytic activity of the zymogen by its pro-segment at neutral pH. The structural analysis, together with biochemical and biophysical studies, demonstrated that the pro-segment of the zymogen undergoes a rearrangement in the form of a structural loosening at acidic pH which triggers the proteolytic activation cascade. This study further explains the bimolecular stepwise autocatalytic activation mechanism by limited proteolysis of the zymogen of papain at the molecular level. The possible factors responsible for the higher thermal stability of the papain mutant have also been analyzed.
Collapse
Affiliation(s)
- Sumana Roy
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, India
| | | | | | | | | |
Collapse
|
15
|
Solution structure of a phytocystatin from Ananas comosus and its molecular interaction with papain. PLoS One 2012; 7:e47865. [PMID: 23139757 PMCID: PMC3490968 DOI: 10.1371/journal.pone.0047865] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 09/24/2012] [Indexed: 11/19/2022] Open
Abstract
The structure of a recombinant pineapple cystatin (AcCYS) was determined by NMR with the RMSD of backbone and heavy atoms of twenty lowest energy structures of 0.56 and 1.11 Å, respectively. It reveals an unstructured N-terminal extension and a compact inhibitory domain comprising a four-stranded antiparallel β-sheet wrapped around a central α-helix. The three structural motifs (G(45), Q(89)XVXG, and W(120)) putatively responsible for the interaction with papain-like proteases are located in one side of AcCYS. Significant chemical shift perturbations in two loop regions, residues 45 to 48 (GIYD) and residues 89 to 91 (QVV), of AcCYS strongly suggest their involvement in the binding to papain, consistent with studies on other members of the cystatin family. However, the highly conserved W120 appears not to be involved in the binding with papain as no chemical shift perturbation was observed. Chemical shift index analysis further indicates that the length of the α-helix is shortened upon association with papain. Collectively, our data suggest that AcCYS undergoes local secondary structural rearrangements when papain is brought into close contact. A molecular model of AcCYS/papain complex is proposed to illustrate the interaction between AcCYS and papain, indicating a complete blockade of the catalytic triad by AcCYS.
Collapse
|
16
|
Cryptostatin, a chagasin-family cysteine protease inhibitor of Cryptosporidium parvum. Parasitology 2012; 139:1029-37. [PMID: 22444160 DOI: 10.1017/s0031182012000297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cysteine proteases of pathogenic protozoan parasites play pivotal roles in the life cycle of parasites, but strict regulation of their activities is also essential for maintenance of parasite physiology and interaction with hosts. In this study, we identified and characterized cryptostatin, a novel inhibitor of cysteine protease (ICP) of Cryptosporidium parvum. Cryptostatin showed low sequence identity to other chagasin-family ICPs, but 3 motifs (NPTTG, GXGG, and RPW/F motifs), which are evolutionarily conserved in chagasin-family ICPs, were found in the sequence. The overall structure of cryptostatin consisted of 8 β-strands that progressed in parallel and closely resembled the immunoglobulin fold. Recombinant cryptostatin inhibited various cysteine proteases, including papain, human cathepsin B, human cathepsin L, and cryptopain-1, with K i's in the picomolar range. Cryptostatin was active over a wide pH range and was highly stable under physiological conditions. The protein was thermostable and retained its inhibitory activity even after incubation at 95°C. Cryptostatin formed tight complexes with cysteine proteases, so the complexes remained intact in the presence of sodium dodecyl sulfate and β-mercaptoethanol, but they were disassembled by boiling. An immunogold electron microscopy analysis demonstrated diffused localization of cryptostatin within oocystes and meronts, but not within trophozoites, which suggests a possible role for cryptostatin in host cell invasion by C. parvum.
Collapse
|
17
|
Hansen G, Heitmann A, Witt T, Li H, Jiang H, Shen X, Heussler VT, Rennenberg A, Hilgenfeld R. Structural basis for the regulation of cysteine-protease activity by a new class of protease inhibitors in Plasmodium. Structure 2011; 19:919-29. [PMID: 21742259 DOI: 10.1016/j.str.2011.03.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 11/17/2022]
Abstract
Plasmodium cysteine proteases are essential for host-cell invasion and egress, hemoglobin degradation, and intracellular development of the parasite. The temporal, site-specific regulation of cysteine-protease activity is a prerequisite for survival and propagation of Plasmodium. Recently, a new family of inhibitors of cysteine proteases (ICPs) with homologs in at least eight Plasmodium species has been identified. Here, we report the 2.6 Å X-ray crystal structure of the C-terminal, inhibitory domain of ICP from P. berghei (PbICP-C) in a 1:1 complex with falcipain-2, an important hemoglobinase of Plasmodium. The structure establishes Plasmodium ICP as a member of the I42 class of chagasin-like protease inhibitors but with large insertions and differences in the binding mode relative to other family members. Furthermore, the PbICP-C structure explains why host-cell cathepsin B-like proteases and, most likely, also the protease-like domain of Plasmodium SERA5 (serine-repeat antigen 5) are no targets for ICP.
Collapse
Affiliation(s)
- Guido Hansen
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, 23538 Lübeck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hansen G, Schwarzloh B, Rennenberg A, Heussler VT, Hilgenfeld R. The macromolecular complex of ICP and falcipain-2 from Plasmodium: preparation, crystallization and preliminary X-ray diffraction analysis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1406-10. [PMID: 22102243 DOI: 10.1107/s1744309111034592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 08/22/2011] [Indexed: 11/10/2022]
Abstract
The malaria parasite Plasmodium depends on the tight control of cysteine-protease activity throughout its life cycle. Recently, the characterization of a new class of potent inhibitors of cysteine proteases (ICPs) secreted by Plasmodium has been reported. Here, the recombinant production, purification and crystallization of the inhibitory C-terminal domain of ICP from P. berghei in complex with the P. falciparum haemoglobinase falcipain-2 is described. The 1:1 complex was crystallized in space group P4(3), with unit-cell parameters a = b = 71.15, c = 120.09 Å. A complete diffraction data set was collected to a resolution of 2.6 Å.
Collapse
Affiliation(s)
- Guido Hansen
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | | | | | |
Collapse
|
19
|
Azarkan M, Matagne A, Wattiez R, Bolle L, Vandenameele J, Baeyens-Volant D. Selective and reversible thiol-pegylation, an effective approach for purification and characterization of five fully active ficin (iso)forms from Ficus carica latex. PHYTOCHEMISTRY 2011; 72:1718-1731. [PMID: 21665232 DOI: 10.1016/j.phytochem.2011.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 05/28/2023]
Abstract
The latex of Ficus carica constitutes an important source of many proteolytic components known under the general term of ficin (EC 3.4.22.3) which belongs to the cysteine proteases of the papain family. So far, no data on the purification and characterization of individual forms of these proteases are available. An effective strategy was used to fractionate and purify to homogeneity five ficin forms, designated A, B, C, D1 and D2 according to their sequence of elution from a cation-exchange chromatographic support. Following rapid fractionation on a SP-Sepharose Fast Flow column, the different ficin forms were chemically modified by a specific and reversible monomethoxypolyethylene glycol (mPEG) reagent. In comparison with their un-derivatized counterparts, the mPEG-protein derivatives behaved differently on the ion-exchanger, allowing us for the first time to obtain five highly purified ficin molecular species titrating 1mol of thiol group per mole of enzyme. The purified ficins were characterized by de novo peptide sequencing and peptide mass fingerprinting analyzes, using mass spectrometry. Circular dichroism measurements indicated that all five ficins were highly structured, both in term of secondary and tertiary structure. Furthermore, analysis of far-UV CD spectra allowed calculation of their secondary structural content. Both these data and the molecular masses determined by MS reinforce the view that the enzymes belong to the family of papain-like proteases. The five ficin forms also displayed different specific amidase activities against small synthetic substrates like dl-BAPNA and Boc-Ala-Ala-Gly-pNA, suggesting some differences in their active site organization. Enzymatic activity of the five ficin forms was completely inhibited by specific cysteine and cysteine/serine proteases inhibitors but was unaffected by specific serine, aspartic and metallo proteases inhibitors.
Collapse
Affiliation(s)
- Mohamed Azarkan
- Free University of Brussels, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
20
|
Biyani M, Futakami M, Kitamura K, Kawakubo T, Suzuki M, Yamamoto K, Nishigaki K. In Vitro Selection of Cathepsin E-Activity-Enhancing Peptide Aptamers at Neutral pH. INTERNATIONAL JOURNAL OF PEPTIDES 2011; 2011:834525. [PMID: 21527983 PMCID: PMC3064998 DOI: 10.1155/2011/834525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/17/2011] [Indexed: 12/14/2022]
Abstract
The aspartic protease cathepsin E has been shown to induce apoptosis in cancer cells under physiological conditions. Therefore, cathepsin E-activity-enhancing peptides functioning in the physiological pH range are valuable potential cancer therapeutic candidates. Here, we have used a general in vitro selection method (evolutionary rapid panning analysis system (eRAPANSY)), based on inverse substrate-function link (SF-link) selection to successfully identify cathepsin E-activity-enhancing peptide aptamers at neutral pH. A successive enrichment of peptide activators was attained in the course of selection. One such peptide activated cathepsin E up to 260%, had a high affinity (K(D); ∼300 nM), and had physiological activity as demonstrated by its apoptosis-inducing reaction in cancerous cells. This method is expected to be widely applicable for the identification of protease-activity-enhancing peptide aptamers.
Collapse
Affiliation(s)
- Madhu Biyani
- Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
- City Area Program Saitama Metropolitan Area, Saitama Small and Medium Enterprises Development Corporation, 2-3-2 Kamiochiai, Chuo-Ku, Saitama 338-0001, Japan
| | - Masae Futakami
- Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
- City Area Program Saitama Metropolitan Area, Saitama Small and Medium Enterprises Development Corporation, 2-3-2 Kamiochiai, Chuo-Ku, Saitama 338-0001, Japan
| | - Koichiro Kitamura
- City Area Program Saitama Metropolitan Area, Saitama Small and Medium Enterprises Development Corporation, 2-3-2 Kamiochiai, Chuo-Ku, Saitama 338-0001, Japan
- Rational Evolutionary Design of Advanced Biomolecules, Saitama (REDS) Group, Saitama Small Enterprise Promotion Corporation, no. 552 Saitama Industrial Technology Center, 3-12-18 Kami-Aoki, Kawaguchi, Saitama 333-0844, Japan
- Janusys Corporation, no. 508 Saitama Industrial Technology Center, 3-12-18 Kami-Aoki, Kawaguchi, Saitama 333-0844, Japan
| | - Tomoyo Kawakubo
- Proteolysis Research Laboratory, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Miho Suzuki
- Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
| | - Kenji Yamamoto
- Rational Evolutionary Design of Advanced Biomolecules, Saitama (REDS) Group, Saitama Small Enterprise Promotion Corporation, no. 552 Saitama Industrial Technology Center, 3-12-18 Kami-Aoki, Kawaguchi, Saitama 333-0844, Japan
- Proteolysis Research Laboratory, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Koichi Nishigaki
- Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
- City Area Program Saitama Metropolitan Area, Saitama Small and Medium Enterprises Development Corporation, 2-3-2 Kamiochiai, Chuo-Ku, Saitama 338-0001, Japan
- Rational Evolutionary Design of Advanced Biomolecules, Saitama (REDS) Group, Saitama Small Enterprise Promotion Corporation, no. 552 Saitama Industrial Technology Center, 3-12-18 Kami-Aoki, Kawaguchi, Saitama 333-0844, Japan
| |
Collapse
|
21
|
Structural basis for the recognition and cleavage of histone H3 by cathepsin L. Nat Commun 2011; 2:197. [PMID: 21326229 PMCID: PMC3105313 DOI: 10.1038/ncomms1204] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/20/2011] [Indexed: 11/23/2022] Open
Abstract
Proteolysis of eukaryotic histone tails has emerged as an important factor in the modulation of cell-cycle progression and cellular differentiation. The recruitment of lysosomal cathepsin L to the nucleus where it mediates proteolysis of the mouse histone H3 tail has been described recently. Here, we report the three-dimensional crystal structures of a mature, inactive mutant of human cathepsin L alone and in complex with a peptide derived from histone H3. Canonical substrate–cathepsin L interactions are observed in the complex between the protease and the histone H3 peptide. Systematic analysis of the impact of posttranslational modifications at histone H3 on substrate selectivity suggests cathepsin L to be highly accommodating of all modified peptides. This is the first report of cathepsin L–histone H3 interaction and the first structural description of cathepsin L in complex with a substrate. Cathepsin L mediates proteolysis of the histone H3 tail and is a factor in cell-cycle progression and cellular differentiation. Adams-Cioaba et al. report crystal structures of an inactive mutant of the protease complexed with substrate peptides, and find that it is highly accommodating of modified substrates.
Collapse
|
22
|
Cloning and characterisation of novel cystatins from elapid snake venom glands. Biochimie 2010; 93:659-68. [PMID: 21172403 DOI: 10.1016/j.biochi.2010.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/09/2010] [Indexed: 11/20/2022]
Abstract
Snake venoms contain a complex mixture of polypeptides that modulate prey homeostatic mechanisms through highly specific and targeted interactions. In this study we have identified and characterised cystatin-like cysteine-protease inhibitors from elapid snake venoms for the first time. Novel cystatin sequences were cloned from 12 of 13 elapid snake venom glands and the protein was detected, albeit at very low levels, in a total of 22 venoms. One highly conserved isoform, which displayed close sequence identity with family 2 cystatins, was detected in each elapid snake. Crude Austrelaps superbus (Australian lowland copperhead) snake venom inhibited papain, and a recombinant form of A. superbus cystatin inhibited cathepsin L ≅ papain > cathepsin B, with no inhibition observed for calpain or legumain. While snake venom cystatins have truncated N-termini, sequence alignment and structural modelling suggested that the evolutionarily conserved Gly-11 of family 2 cystatins, essential for cysteine protease inhibition, is conserved in snake venom cystatins as Gly-3. This was confirmed by mutagenesis at the Gly-3 site, which increased the dissociation constant for papain by 10(4)-fold. These data demonstrate that elapid snake venom cystatins are novel members of the type 2 family. The widespread, low level expression of type 2 cystatins in snake venom, as well as the presence of only one highly conserved isoform in each species, imply essential housekeeping or regulatory roles for these proteins.
Collapse
|
23
|
Crystal structure of the cysteine protease inhibitor 2 from Entamoeba histolytica: functional convergence of a common protein fold. Gene 2010; 471:45-52. [PMID: 20951777 DOI: 10.1016/j.gene.2010.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 11/22/2022]
Abstract
Cysteine proteases (CP) are key pathogenesis and virulence determinants of protozoan parasites. Entamoeba histolytica contains at least 50 cysteine proteases; however, only three (EhCP1, EhCP2 and EhCP5) are responsible for approximately 90% of the cysteine protease activity in this parasite. CPs are expressed as inactive zymogens. Because the processed proteases are potentially cytotoxic, protozoan parasites have developed mechanisms to regulate their activity. Inhibitors of cysteine proteases (ICP) of the chagasin-like inhibitor family (MEROPS family I42) were recently identified in bacteria and protozoan parasites. E. histolytica contains two ICP-encoding genes of the chagasin-like inhibitor family. EhICP1 localizes to the cytosol, whereas EhICP2 is targeted to phagosomes. Herein, we report two crystal structures of EhICP2. The overall structure of EhICP2 consists of eight β-strands and closely resembles the immunoglobulin fold. A comparison between the two crystal forms of EhICP2 indicates that the conserved BC, DE and FG loops form a flexible wedge that may block the active site of CPs. The positively charged surface of the wedge-forming loops in EhICP2 contrasts with the neutral surface of the wedge-forming loops in chagasin. We postulate that the flexibility and positive charge observed in the DE and FG loops of EhICP2 may be important to facilitate the initial binding of this inhibitor to the battery of CPs present in E. histolytica.
Collapse
|
24
|
Renko M, Požgan U, Majera D, Turk D. Stefin A displaces the occluding loop of cathepsin B only by as much as required to bind to the active site cleft. FEBS J 2010; 277:4338-45. [PMID: 20860624 DOI: 10.1111/j.1742-4658.2010.07824.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cathepsin B (EC 3.4.22.1) is one of the most versatile human cysteine cathepsins. It is important for intracellular protein degradation under normal conditions and is involved in a number of pathological processes. The occluding loop makes cathepsin B unique among cysteine cathepsins. This ∼ 20 residue long insertion imbedded into the papain-like protease scaffold restricts access to the active site cleft and endows cathepsin B with its carboxydipeptidase activity. Nevertheless, the enzyme also exhibits endopeptidase activity and is inhibited by stefins and cystatins. To clarify the structural properties of the occluding loop upon the binding of stefins, we determined the crystal structure of the complex between wild-type human stefin A and wild-type human cathepsin B at 2.6 Å resolution. The papain-like part of cathepsin B structure remains unmodified, whereas the occluding loop residues are displaced. The part enclosed by the disulfide bridge containing histidines 110 and 111 (i.e. the 'lasso' part) is rotated by ∼ 45° away from its original position. A comparison of the structure of the unliganded cathepsin B with the structure of the proenzyme, its complexes with chagasin and stefin A shows that the magnitude of the shift of the occluding loop is related to the size of the binding region. It is smallest in the procathepsin structures and increases in the series of complexes with stefin A and chagasin, although it has no impact on the binding constant. Hence, cathepsin B can dock inhibitors and certain substrates regardless of the size of the binding region.
Collapse
Affiliation(s)
- Miha Renko
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
25
|
Heussler V, Rennenberg A, Stanway R. Host cell death induced by the egress of intracellular Plasmodium parasites. Apoptosis 2010; 15:376-85. [PMID: 20012364 DOI: 10.1007/s10495-009-0435-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Intracellular pathogens are known to inhibit host cell apoptosis efficiently to ensure their own survival. However, following replication within a cell, they typically need to egress in order to infect new cells. For a long time it was assumed that this happens by simply disrupting the host cell and in some cases, such as for Plasmodium-infected erythrocytes, this seems indeed to be true. However, recently it has been shown that in Plasmodium-infected hepatocytes, an ordered form of cell death is initiated. This cell death is parasite-dependent and can clearly be distinguished from apoptosis and necrosis. The key event, and point of no return, appears to be the rupture of the parasitophorous vacuole membrane (PVM). PVM disruption and host cell death depend on the activation of cysteine proteases. Whether these are of parasite or host cell origin seems to rely on the life cycle stage of the Plasmodium parasite and the corresponding host cell.
Collapse
Affiliation(s)
- Volker Heussler
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | |
Collapse
|
26
|
Bourgeas R, Basse MJ, Morelli X, Roche P. Atomic analysis of protein-protein interfaces with known inhibitors: the 2P2I database. PLoS One 2010; 5:e9598. [PMID: 20231898 PMCID: PMC2834754 DOI: 10.1371/journal.pone.0009598] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Accepted: 02/15/2010] [Indexed: 11/19/2022] Open
Abstract
Background In the last decade, the inhibition of protein-protein interactions (PPIs) has emerged from both academic and private research as a new way to modulate the activity of proteins. Inhibitors of these original interactions are certainly the next generation of highly innovative drugs that will reach the market in the next decade. However, in silico design of such compounds still remains challenging. Methodology/Principal Findings Here we describe this particular PPI chemical space through the presentation of 2P2IDB, a hand-curated database dedicated to the structure of PPIs with known inhibitors. We have analyzed protein/protein and protein/inhibitor interfaces in terms of geometrical parameters, atom and residue properties, buried accessible surface area and other biophysical parameters. The interfaces found in 2P2IDB were then compared to those of representative datasets of heterodimeric complexes. We propose a new classification of PPIs with known inhibitors into two classes depending on the number of segments present at the interface and corresponding to either a single secondary structure element or to a more globular interacting domain. 2P2IDB complexes share global shape properties with standard transient heterodimer complexes, but their accessible surface areas are significantly smaller. No major conformational changes are seen between the different states of the proteins. The interfaces are more hydrophobic than general PPI's interfaces, with less charged residues and more non-polar atoms. Finally, fifty percent of the complexes in the 2P2IDB dataset possess more hydrogen bonds than typical protein-protein complexes. Potential areas of study for the future are proposed, which include a new classification system consisting of specific families and the identification of PPI targets with high druggability potential based on key descriptors of the interaction. Conclusions 2P2I database stores structural information about PPIs with known inhibitors and provides a useful tool for biologists to assess the potential druggability of their interfaces. The database can be accessed at http://2p2idb.cnrs-mrs.fr.
Collapse
Affiliation(s)
- Raphaël Bourgeas
- Laboratoire Interactions et Modulateurs de Réponses (UPR3243), Centre National de la Recherche Scientifique (CNRS) & Aix-Marseille Universités, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Marie-Jeanne Basse
- Laboratoire Interactions et Modulateurs de Réponses (UPR3243), Centre National de la Recherche Scientifique (CNRS) & Aix-Marseille Universités, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Xavier Morelli
- Laboratoire Interactions et Modulateurs de Réponses (UPR3243), Centre National de la Recherche Scientifique (CNRS) & Aix-Marseille Universités, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
- * E-mail: (XM); (PR)
| | - Philippe Roche
- Laboratoire Interactions et Modulateurs de Réponses (UPR3243), Centre National de la Recherche Scientifique (CNRS) & Aix-Marseille Universités, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
- * E-mail: (XM); (PR)
| |
Collapse
|
27
|
Kolodziejczyk R, Michalska K, Hernandez-Santoyo A, Wahlbom M, Grubb A, Jaskolski M. Crystal structure of human cystatin C stabilized against amyloid formation. FEBS J 2010; 277:1726-37. [PMID: 20175878 DOI: 10.1111/j.1742-4658.2010.07596.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert Kolodziejczyk
- Faculty of Chemistry, Department of Crystallography, A. Mickiewicz University, Poznan, Poland
| | | | | | | | | | | |
Collapse
|