1
|
Kaposi K, Wilson D, Jones A, Seymour J. Methods matter: Comparison of techniques used for sea anemone venom extraction. Toxicon X 2025; 26:100219. [PMID: 40162060 PMCID: PMC11954122 DOI: 10.1016/j.toxcx.2025.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
The study of cnidarian (coral, sea anemone, and jellyfish) venom provides important evolutionary and ecological insights and unlocks vast opportunities for biodiscovery of novel compounds. The success of the field is dependent on not only the acquisition of sufficient quantities of venom but also the ability to compare venom between species and studies. To date, no direct comparison of the main techniques used to acquire sea anemone venom has been performed to determine the comparability or validity of these methods to yield venom derived from within cnidarian venom apparatus - cnidae. This study aims to compare the venom extracted from a sea anemone via three common methods: isolated cnidae, electrostimulation, and physical manipulation. Using a range of non-targeted proteomic and mass spectrometric techniques, we showed each method yielded distinct differences in both the composition and abundance of components detected for extraction method. Furthermore, few identified components were shared between each of the extraction methods. These results highlight that different venom collection methods yield vastly different results. While further investigation is required, to validate the source of each of the components from within each sample, we argue that sample collection from isolated cnidae is likely to be the most representative of true venom components.
Collapse
Affiliation(s)
- K.L. Kaposi
- College of Public Health, Medicine and Veterinary Science, James Cook University, Cairns, Queensland, 4878, Australia
- Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4878, Australia
| | - D.T. Wilson
- Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4878, Australia
| | - A. Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - J.E. Seymour
- Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4878, Australia
| |
Collapse
|
2
|
Smith HL, Broszczak DA, van der Burg CA, Surm JM, Liggins L, Norton RS, Prentis PJ. A comparative analysis of toxin gene families across diverse sea anemone species. Toxicon X 2025; 26:100217. [PMID: 40162058 PMCID: PMC11952004 DOI: 10.1016/j.toxcx.2025.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/03/2025] [Accepted: 02/23/2025] [Indexed: 04/02/2025] Open
Abstract
All species from order Actiniaria (sea anemones) are venomous, even though most are of no threat to humans. Currently, we know very little about the toxin gene complement of highly venomous members of this order. To address this gap in knowledge, we sequenced the transcriptome of the highly venomous and medically significant Hell's Fire sea anemone, Actinodendron plumosum, as well as five distantly related species, Cryptodendrum adhaesivum, Epiactis australiensis, Heteractis aurora, Isactinia olivacea and Stichodactyla mertensii. We used bioinformatic approaches to identify their toxin gene complements and performed a comparative evolutionary analysis of seven understudied toxin families. Of the 16 toxin families identified, 12-40 candidate toxins were found in the six new sea anemone transcriptomes, with only 12 candidates in eight toxin families identified in A. plumosum. Across 26 sea anemone species, six neurotoxin families showed evidence of taxonomic restriction, whereas the phospholipase A2 toxin family was ubiquitously distributed. Additionally, we identified two alternative forms for the phospholipase A2 toxin family, a 10- and 14-cysteine framework, which warrant further structural and functional characterisation. Overall, we have identified a comprehensive list of toxins from a wide diversity of sea anemone species that provides the basis for future research to structurally and functionally characterise novel candidates for potential use as therapeutics or for agricultural applications.
Collapse
Affiliation(s)
- Hayden L. Smith
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Daniel A. Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4000, Australia
| | - Chloé A. van der Burg
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Joachim M. Surm
- Faculty of Biology, Ludwig-Maximilians-Universität Munich, Munich, D-80539, Germany
| | - Libby Liggins
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, 3052, Australia
| | - Peter J. Prentis
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
3
|
Hérnández-Elizárraga VH, Vega-Tamayo JE, Olguín-López N, Ibarra-Alvarado C, Rojas-Molina A. Transcriptomic and proteomic analyses reveal the first occurrence of diverse toxin groups in Millepora alcicornis. J Proteomics 2023; 288:104984. [PMID: 37536522 DOI: 10.1016/j.jprot.2023.104984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Millepora alcicornis is a reef-forming cnidarian widely distributed in the Mexican Caribbean. Millepora species or "fire corals" inflict a painful stinging reaction in humans when touched. Even though hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, there are few reports regarding the diversity of toxins synthesized by fire corals. Here, based on transcriptomic analysis of M. alcicornis, several predicted proteins that show amino acid sequence similarity to toxins were identified, including neurotoxins, metalloproteases, hemostasis-impairing toxins, serin proteases, cysteine-rich venom proteins, phospholipases, complement system-impairing toxins, phosphodiesterases, pore-forming toxins, and L-aminoacid oxidases. The soluble nematocyst proteome of this organism was shown to induce hemolytic, proteolytic, and phospholipase A2 effects by gel zymography. Protein bands or spots on 1D- and 2D-PAGE gels corresponding to zones of hemolytic and enzymatic activities were excised, subjected to in-gel digestion with trypsin, and analyzed by mass spectrometry. These proteins exhibited sequence homology to PLA2s, metalloproteinases, pore-forming toxins, and neurotoxins, such as actitoxins and CrTX-A. The complex array of venom-related transcripts that were identified in M. alcicornis, some of which are first reported in "fire corals", provide novel insight into the structural richness of Cnidarian toxins and their distribution among species. SIGNIFICANCE: Marine organisms are a promising source of bioactive compounds with valuable contributions in diverse fields such as human health, pharmaceuticals, and industrial application. Currently, not much attention has been paid to the study of fire corals, which possess a variety of molecules that exhibit diverse toxic effects and therefore have great pharmaceutical and biotechnological potential. The isolation and identification of novel marine-derived toxins by classical approaches are time-consuming and have low yields. Thus, next-generation strategies, like base-'omics technologies, are essential for the high-throughput characterization of venom compounds such as those synthesized by fire corals. This study moves the field forward because it provides new insights regarding the first occurrence of diverse toxin groups in Millepora alcicornis. The findings presented here will contribute to the current understanding of the mechanisms of action of Millepora toxins. This research also reveals important information related to the potential role of toxins in the defense and capture of prey mechanisms and for designing appropriate treatments for fire coral envenomation. Moreover, due to the lack of information on the taxonomic identification of Millepora, the insights presented here can advise the taxonomic classification of the species of this genus.
Collapse
Affiliation(s)
- Víctor Hugo Hérnández-Elizárraga
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; University of Minnesota Genomics Center, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | - Norma Olguín-López
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; División Química y Energías Renovables, Universidad Tecnológica de San Juan del Río. Av La Palma No 125 Vista Hermosa, 76800 San Juan del Río, Qro, Mexico.
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico.
| |
Collapse
|
4
|
Mazzi Esquinca ME, Correa CN, Marques de Barros G, Montenegro H, Mantovani de Castro L. Multiomic Approach for Bioprospection: Investigation of Toxins and Peptides of Brazilian Sea Anemone Bunodosoma caissarum. Mar Drugs 2023; 21:md21030197. [PMID: 36976246 PMCID: PMC10058367 DOI: 10.3390/md21030197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Sea anemones are sessile invertebrates of the phylum Cnidaria and their survival and evolutive success are highly related to the ability to produce and quickly inoculate venom, with the presence of potent toxins. In this study, a multi-omics approach was applied to characterize the protein composition of the tentacles and mucus of Bunodosoma caissarum, a species of sea anemone from the Brazilian coast. The tentacles transcriptome resulted in 23,444 annotated genes, of which 1% showed similarity with toxins or proteins related to toxin activity. In the proteome analysis, 430 polypeptides were consistently identified: 316 of them were more abundant in the tentacles while 114 were enriched in the mucus. Tentacle proteins were mostly enzymes, followed by DNA- and RNA-associated proteins, while in the mucus most proteins were toxins. In addition, peptidomics allowed the identification of large and small fragments of mature toxins, neuropeptides, and intracellular peptides. In conclusion, integrated omics identified previously unknown or uncharacterized genes in addition to 23 toxin-like proteins of therapeutic potential, improving the understanding of tentacle and mucus composition of sea anemones.
Collapse
Affiliation(s)
- Maria Eduarda Mazzi Esquinca
- Department of Biological and Environmental Sciences, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente 11330-900, SP, Brazil
| | - Claudia Neves Correa
- Department of Biological and Environmental Sciences, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente 11330-900, SP, Brazil
- Biodiversity of Coastal Environments Postgraduate Program, Department of Biological and Environmental Sciences, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente 11330-900, SP, Brazil
| | - Gabriel Marques de Barros
- Department of Biological and Environmental Sciences, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente 11330-900, SP, Brazil
- Biodiversity of Coastal Environments Postgraduate Program, Department of Biological and Environmental Sciences, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente 11330-900, SP, Brazil
| | | | - Leandro Mantovani de Castro
- Department of Biological and Environmental Sciences, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente 11330-900, SP, Brazil
- Biodiversity of Coastal Environments Postgraduate Program, Department of Biological and Environmental Sciences, Bioscience Institute, Sao Paulo State University (UNESP), Sao Vicente 11330-900, SP, Brazil
| |
Collapse
|
5
|
New Insights into the Toxin Diversity and Antimicrobial Activity of the “Fire Coral” Millepora complanata. Toxins (Basel) 2022; 14:toxins14030206. [PMID: 35324703 PMCID: PMC8954376 DOI: 10.3390/toxins14030206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
To date, few studies have been carried out aimed at characterizing the toxins synthesized by hydrocorals of the genus Millepora. The purpose of this study was to explore the toxin diversity and antibacterial activity of the “fire coral” M. complanata using a transcriptomic data mining approach. In addition, the cytolytic and antibacterial activities of the M. complanata nematocyst proteome were experimentally confirmed. Cytolysins were predicted from the transcriptome by comparing against the Animal Toxin Annotation Project database, resulting in 190 putative toxins, including metalloproteases, hemostasis-impairing toxins, phospholipases, among others. The M. complanata nematocyst proteome was analyzed by 1D and 2D electrophoresis and zymography. The zymograms showed different zones of cytolytic activity: two zones of hemolysis at ~25 and ~205 kDa, two regions corresponding to phospholipase A2 (PLA2) activity around 6 and 25 kDa, and a proteolytic zone was observed between 50 and 205 kDa. The hemolytic activity of the proteome was inhibited in the presence of PLA2 and proteases inhibitors, suggesting that PLA2s, trypsin, chymotrypsin, serine-proteases, and matrix metalloproteases are responsible for the hemolysis. On the other hand, antimicrobial peptide sequences were retrieved from their transcripts with the amPEPpy software. This analysis revealed the presence of homologs to SK84, cgUbiquitin, Ubiquicidin, TroTbeta4, SPINK9-v1, and Histone-related antimicrobials in the transcriptome of this cnidarian. Finally, by employing disk diffusion and microdilution assays, we found that the nematocyst peptidome of M. complanata showed inhibitory activity against both Gram-positive and Gram-negative bacteria including S. enteritidis, P. perfectomarina, E. coli, and C. xerosis, among others. This is the first transcriptomic data mining analysis to explore the diversity of the toxins synthesized by an organism of the genus Millepora. Undoubtedly, this work provides information that will broaden our general understanding of the structural richness of cnidarian toxins.
Collapse
|
6
|
Pinheiro-Junior EL, Kalina R, Gladkikh I, Leychenko E, Tytgat J, Peigneur S. A Tale of Toxin Promiscuity: The Versatile Pharmacological Effects of Hcr 1b-2 Sea Anemone Peptide on Voltage-Gated Ion Channels. Mar Drugs 2022; 20:md20020147. [PMID: 35200676 PMCID: PMC8878452 DOI: 10.3390/md20020147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
Sea anemones are a rich source of biologically active compounds. Among approximately 1100 species described so far, Heteractis crispa species, also known as sebae anemone, is native to the Indo-Pacific area. As part of its venom components, the Hcr 1b-2 peptide was first described as an ASIC1a and ASIC3 inhibitor. Using Xenopus laevis oocytes and the two-electrode voltage-clamp technique, in the present work we describe the remarkable lack of selectivity of this toxin. Besides the acid-sensing ion channels previously described, we identified 26 new targets of this peptide, comprising 14 voltage-gated potassium channels, 9 voltage-gated sodium channels, and 3 voltage-gated calcium channels. Among them, Hcr 1b-2 is the first sea anemone peptide described to interact with isoforms from the Kv7 family and T-type Cav channels. Taken together, the diversity of Hcr 1b-2 targets turns this toxin into an interesting tool to study different types of ion channels, as well as a prototype to develop new and more specific ion channel ligands.
Collapse
Affiliation(s)
- Ernesto Lopes Pinheiro-Junior
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
- Correspondence: (E.L.P.-J.); (J.T.); (S.P.); Tel.: +32-16-32-34-04 (E.L.P.-J. & J.T. & S.P.)
| | - Rimma Kalina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (R.K.); (I.G.); (E.L.)
| | - Irina Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (R.K.); (I.G.); (E.L.)
| | - Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (R.K.); (I.G.); (E.L.)
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
- Correspondence: (E.L.P.-J.); (J.T.); (S.P.); Tel.: +32-16-32-34-04 (E.L.P.-J. & J.T. & S.P.)
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
- Correspondence: (E.L.P.-J.); (J.T.); (S.P.); Tel.: +32-16-32-34-04 (E.L.P.-J. & J.T. & S.P.)
| |
Collapse
|
7
|
Deep-Sea Anemones Are Prospective Source of New Antimicrobial and Cytotoxic Compounds. Mar Drugs 2021; 19:md19120654. [PMID: 34940653 PMCID: PMC8704684 DOI: 10.3390/md19120654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
The peculiarities of the survival and adaptation of deep-sea organisms raise interest in the study of their metabolites as promising drugs. In this work, the hemolytic, cytotoxic, antimicrobial, and enzyme-inhibitory activities of tentacle extracts from five species of sea anemones (Cnidaria, orders Actiniaria and Corallimorpharia) collected near the Kuril and Commander Islands of the Far East of Russia were evaluated for the first time. The extracts of Liponema brevicorne and Actinostola callosa demonstrated maximal hemolytic activity, while high cytotoxic activity against murine splenocytes and Ehrlich carcinoma cells was found in the extract of Actinostola faeculenta. The extracts of Corallimorphus cf. pilatus demonstrated the greatest activity against Ehrlich carcinoma cells but were not toxic to mouse spleen cells. Sea anemones C. cf. pilatus and Stomphia coccinea are promising sources of antimicrobial and antifungal compounds, being active against Gram-positive bacteria Bacillus subtilis, Staphylococcus aureus, and yeast Candida albicans. Moreover, all sea anemones contain α-galactosidase inhibitors. Peptide mass fingerprinting of L. brevicorne and C. cf. pilatus extracts provided a wide range of peptides, predominantly with molecular masses of 4000–5900 Da, which may belong to a known or new structural class of toxins. The obtained data allow concluding that deep-sea anemones are a promising source of compounds for drug discovery.
Collapse
|
8
|
Martínez-Pérez RB, Rodríguez JA, Leyva Soto LA, Gortáres-Moroyoqui P, Diaz-Tenorio LM. Cannonball jellyfish digestion: an insight into the lipolytic enzymes of the digestive system. PeerJ 2020; 8:e9794. [PMID: 33194347 PMCID: PMC7485504 DOI: 10.7717/peerj.9794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/01/2020] [Indexed: 11/20/2022] Open
Abstract
The digestive system and metabolism of the cannonball jellyfish Stomolophus sp. 2 are not well-known. The digestion study was critical to explain its ecology and bloom success. Different enzymes are involved in food digestion, which hydrolyze carbohydrates, proteins, and lipids. This study detected lipolytic activity in enzymatic extracts from gastric pouches of Stomolophus sp. 2 collected in the summer of 2013 at Bahía de Kino, Sonora, México (28°47′47″N 111°57′25″W). Lipase/esterase activity showed optimal pH at 11.0 and 50–60 °C with a half-life (t1/2) of 33 min at 55 °C, whereas halotolerance of this activity was recorded from 0-4 M NaCl. Metal ions Ca2+ and Mn2+ did not affect the activity, but Mg2+ decreased it 14.2% ± 3.15, while chelating agents as ethylenediaminetetraacetic acid reduced the activity 8.55% ± 2.13. Inhibition of lipase/esterase activity with tetrahydrolipstatin and paraoxon-ethyl decreased the activity 18.2% ± 2.3, and 62.80% ± 0.74, respectively, whereas phenylmethanesulfonyl fluoride (a protease inhibitor) did not affect it. The enzyme displayed a higher specificity for short-chain triglycerides, but triolein, coconut oil, olive oil, and fish oil were hydrolyzed. For the first time, phospholipase activity from the gastric pouch of Stomolophus sp. 2 was detected using L-α-phosphatidylethanolamine from chicken egg yolk as a substrate. These results suggest that Stomolophus sp. 2 hydrolyze several kinds of lipids, and lipolytic enzymes are active at alkaline pH under different saline conditions, which may be essential to digest different preys.
Collapse
Affiliation(s)
- Raul B. Martínez-Pérez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, Mexico
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Zapopan, Jalisco, Mexico
| | - Jorge A. Rodríguez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Zapopan, Jalisco, Mexico
| | - Luis Alonso Leyva Soto
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, Mexico
- Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, Mexico
| | - Pablo Gortáres-Moroyoqui
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, Mexico
| | - Lourdes M. Diaz-Tenorio
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, Mexico
| |
Collapse
|
9
|
Ramírez-Carreto S, Vera-Estrella R, Portillo-Bobadilla T, Licea-Navarro A, Bernaldez-Sarabia J, Rudiño-Piñera E, Verleyen JJ, Rodríguez E, Rodríguez-Almazán C. Transcriptomic and Proteomic Analysis of the Tentacles and Mucus of Anthopleura dowii Verrill, 1869. Mar Drugs 2019; 17:md17080436. [PMID: 31349621 PMCID: PMC6722582 DOI: 10.3390/md17080436] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Sea anemone venom contains a complex and diverse arsenal of peptides and proteins of pharmacological and biotechnological interest, however, only venom from a few species has been explored from a global perspective to date. In the present study, we identified the polypeptides present in the venom of the sea anemone Anthopleura dowii Verrill, 1869 through a transcriptomic and proteomic analysis of the tentacles and the proteomic profile of the secreted mucus. In our transcriptomic results, we identified 261 polypeptides related to or predicted to be secreted in the venom, including proteases, neurotoxins that could act as either potassium (K+) or sodium (Na+) channels inhibitors, protease inhibitors, phospholipases A2, and other polypeptides. Our proteomic data allowed the identification of 156 polypeptides—48 exclusively identified in the mucus, 20 in the tentacles, and 88 in both protein samples. Only 23 polypeptides identified by tandem mass spectrometry (MS/MS) were related to the venom and 21 exclusively identified in the mucus, most corresponding to neurotoxins and hydrolases. Our data contribute to the knowledge of evolutionary and venomic analyses of cnidarians, particularly of sea anemones.
Collapse
Affiliation(s)
- Santos Ramírez-Carreto
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Rosario Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Tobías Portillo-Bobadilla
- Unidad de Bioinformática, Bioestadística y Biología Computacional. Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México-Instituto Nacional De Ciencias Médicas y Nutrición Salvador Zubirán, Calle Vasco de Quiroga 15, Tlalpan, C.P. 14080, Ciudad de México, México
| | - Alexei Licea-Navarro
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada, BC C.P. 22860, México
| | - Johanna Bernaldez-Sarabia
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada, BC C.P. 22860, México
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Jerome J Verleyen
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Estefanía Rodríguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Claudia Rodríguez-Almazán
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
10
|
Hernández-Elizárraga VH, Olguín-López N, Hernández-Matehuala R, Ocharán-Mercado A, Cruz-Hernández A, Guevara-González RG, Caballero-Pérez J, Ibarra-Alvarado C, Sánchez-Rodríguez J, Rojas-Molina A. Comparative Analysis of the Soluble Proteome and the Cytolytic Activity of Unbleached and Bleached Millepora complanata ("Fire Coral") from the Mexican Caribbean. Mar Drugs 2019; 17:E393. [PMID: 31277227 PMCID: PMC6669453 DOI: 10.3390/md17070393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/24/2023] Open
Abstract
Coral bleaching caused by global warming has resulted in massive damage to coral reefs worldwide. Studies addressing the consequences of elevated temperature have focused on organisms of the class Anthozoa, and up to now, there is little information regarding the mechanisms by which reef forming Hydrozoans face thermal stress. In this study, we carried out a comparative analysis of the soluble proteome and the cytolytic activity of unbleached and bleached Millepora complanata ("fire coral") that inhabited reef colonies exposed to the 2015-2016 El Niño-Southern Oscillation in the Mexican Caribbean. A differential proteomic response involving proteins implicated in key cellular processes, such as glycolysis, DNA repair, stress response, calcium homeostasis, exocytosis, and cytoskeleton organization was found in bleached hydrocorals. Four of the proteins, whose levels increased in bleached specimens, displayed sequence similarity to a phospholipase A2, an astacin-like metalloprotease, and two pore forming toxins. However, a protein, which displayed sequence similarity to a calcium-independent phospholipase A2, showed lower levels in bleached cnidarians. Accordingly, the hemolytic effect of the soluble proteome of bleached hydrocorals was significantly higher, whereas the phospholipase A2 activity was significantly reduced. Our results suggest that bleached M. complanata is capable of increasing its toxins production in order to balance the lack of nutrients supplied by its symbionts.
Collapse
Affiliation(s)
- Víctor Hugo Hernández-Elizárraga
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Norma Olguín-López
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Rosalina Hernández-Matehuala
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Andrea Ocharán-Mercado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Andrés Cruz-Hernández
- Laboratorio de Biología Molecular. Escuela de Agronomía, Universidad de La Salle Bajío, Av. Universidad 15 602, Colonia Lomas del Campestre, C.P. 37150 León, Guanajuato, México
| | - Ramón Gerardo Guevara-González
- C.A Ingeniería de Biosistemas, Facultad de Ingeniería-Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Amazcala Km. 1, S/N, C.P. 76265 Amazcala, El Marqués, Querétaro, México
| | - Juan Caballero-Pérez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Judith Sánchez-Rodríguez
- Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prolongación Niños Héroes S/N, Puerto Morelos, C.P. 77580 Quintana Roo, México
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México.
| |
Collapse
|
11
|
Madio B, King GF, Undheim EAB. Sea Anemone Toxins: A Structural Overview. Mar Drugs 2019; 17:E325. [PMID: 31159357 PMCID: PMC6627431 DOI: 10.3390/md17060325] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 02/06/2023] Open
Abstract
Sea anemones produce venoms of exceptional molecular diversity, with at least 17 different molecular scaffolds reported to date. These venom components have traditionally been classified according to pharmacological activity and amino acid sequence. However, this classification system suffers from vulnerabilities due to functional convergence and functional promiscuity. Furthermore, for most known sea anemone toxins, the exact receptors they target are either unknown, or at best incomplete. In this review, we first provide an overview of the sea anemone venom system and then focus on the venom components. We have organised the venom components by distinguishing firstly between proteins and non-proteinaceous compounds, secondly between enzymes and other proteins without enzymatic activity, then according to the structural scaffold, and finally according to molecular target.
Collapse
Affiliation(s)
- Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia.
- Centre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
12
|
Möller C, Davis WC, Clark E, DeCaprio A, Marí F. Conodipine-P1-3, the First Phospholipases A 2 Characterized from Injected Cone Snail Venom. Mol Cell Proteomics 2019; 18:876-891. [PMID: 30765458 DOI: 10.1074/mcp.ra118.000972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/06/2019] [Indexed: 12/30/2022] Open
Abstract
The phospholipase A2 (PLA2s) superfamily are ubiquitous small enzymes that catalyze the hydrolysis of phospholipids at the sn-2 ester bond. PLA2s in the venom of cone snails (conodipines, Cdpi) are composed of two chains termed as alpha and beta subunits. Conodipines are categorized within the group IX of PLA2s. Here we describe the purification and biochemical characterization of three conodipines (Cdpi-P1, -P2 and -P3) isolated from the injected venom of Conus purpurascens Using proteomics methods, we determined the full sequences of all three conodipines. Conodipine-P1-3 have conserved consensus catalytic domain residues, including the Asp/His dyad. Additionally, these enzymes are expressed as a mixture of proline hydroxylated isoforms. The activities of the native Conodipine-Ps were evaluated by conventional colorimetric and by MS-based methods, which provide the first detailed cone snail venom conodipine activity monitored by mass spectrometry. Conodipines can have medicinal applications such inhibition of cancer proliferation, bacterial and viral infections among others.
Collapse
Affiliation(s)
- Carolina Möller
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412
| | - W Clay Davis
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412
| | - Evan Clark
- §Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida, 33431
| | - Anthony DeCaprio
- ¶Department of Chemistry and Biochemistry, Florida International University, SW 8th St, Miami, Florida, 33119
| | - Frank Marí
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412;.
| |
Collapse
|
13
|
A Novel Phospholipase A2 Isolated from Palythoa caribaeorum Possesses Neurotoxic Activity. Toxins (Basel) 2019; 11:toxins11020089. [PMID: 30717279 PMCID: PMC6409743 DOI: 10.3390/toxins11020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 11/16/2022] Open
Abstract
Zoanthids of the genus Palythoa are distributed worldwide in shallow waters around coral reefs. Like all cnidarians, they possess nematocysts that contain a large diversity of toxins that paralyze their prey. This work was aimed at isolating and functionally characterizing a cnidarian neurotoxic phospholipase named A2-PLTX-Pcb1a for the first time. This phospholipase was isolated from the venomous extract of the zoanthid Palythoa caribaeorum. This enzyme, which is Ca2+-dependent, is a 149 amino acid residue protein. The analysis of the A2-PLTX-Pcb1a sequence showed neurotoxic domain similitude with other neurotoxic sPLA2´s, but a different catalytic histidine domain. This is remarkable, since A2-PLTX-Pcb1a displays properties like those of other known PLA2 enzymes.
Collapse
|
14
|
Fingerhut LCHW, Strugnell JM, Faou P, Labiaga ÁR, Zhang J, Cooke IR. Shotgun Proteomics Analysis of Saliva and Salivary Gland Tissue from the Common Octopus Octopus vulgaris. J Proteome Res 2018; 17:3866-3876. [PMID: 30220204 DOI: 10.1021/acs.jproteome.8b00525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The salivary apparatus of the common octopus ( Octopus vulgaris) has been the subject of biochemical study for over a century. A combination of bioassays, behavioral studies and molecular analysis on O. vulgaris and related species suggests that its proteome should contain a mixture of highly potent neurotoxins and degradative proteins. However, a lack of genomic and transcriptomic data has meant that the amino acid sequences of these proteins remain almost entirely unknown. To address this, we assembled the posterior salivary gland transcriptome of O. vulgaris and combined it with high resolution mass spectrometry data from the posterior and anterior salivary glands of two adults, the posterior salivary glands of six paralarvae and the saliva from a single adult. We identified a total of 2810 protein groups from across this range of salivary tissues and age classes, including 84 with homology to known venom protein families. Additionally, we found 21 short secreted cysteine rich protein groups of which 12 were specific to cephalopods. By combining protein expression data with phylogenetic analysis we demonstrate that serine proteases expanded dramatically within the cephalopod lineage and that cephalopod specific proteins are strongly associated with the salivary apparatus.
Collapse
Affiliation(s)
- Legana C H W Fingerhut
- Department of Molecular and Cell Biology , James Cook University , Townsville , Queensland 4811 , Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering , James Cook University , Townsville , Queensland 4811 , Australia.,Department of Ecology, Environment and Evolution, School of Life Sciences , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - Álvaro Roura Labiaga
- Department of Ecology and Marine Biodiversity , Instituto de Investigaciones Marinas de Vigo (IIM-CSIC) , Vigo 36208 , Spain
| | - Jia Zhang
- Department of Molecular and Cell Biology , James Cook University , Townsville , Queensland 4811 , Australia
| | - Ira R Cooke
- Department of Molecular and Cell Biology , James Cook University , Townsville , Queensland 4811 , Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Victoria 3086 , Australia
| |
Collapse
|
15
|
Jaimes-Becerra A, Chung R, Morandini AC, Weston AJ, Padilla G, Gacesa R, Ward M, Long PF, Marques AC. Comparative proteomics reveals recruitment patterns of some protein families in the venoms of Cnidaria. Toxicon 2017; 137:19-26. [PMID: 28711466 DOI: 10.1016/j.toxicon.2017.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/08/2023]
Abstract
Cnidarians are probably the oldest group of animals to be venomous, yet our current picture of cnidarian venom evolution is highly imbalanced due to limited taxon sampling. High-throughput tandem mass spectrometry was used to determine venom composition of the scyphozoan Chrysaora lactea and two cubozoans Tamoya haplonema and Chiropsalmus quadrumanus. Protein recruitment patterns were then compared against 5 other cnidarian venom proteomes taken from the literature. A total of 28 putative toxin protein families were identified, many for the first time in Cnidaria. Character mapping analysis revealed that 17 toxin protein families with predominantly cytolytic biological activities were likely recruited into the cnidarian venom proteome before the lineage split between Anthozoa and Medusozoa. Thereafter, venoms of Medusozoa and Anthozoa differed during subsequent divergence of cnidarian classes. Recruitment and loss of toxin protein families did not correlate with accepted phylogenetic patterns of Cnidaria. Selective pressures that drive toxin diversification independent of taxonomic positioning have yet to be identified in Cnidaria and now warrant experimental consideration.
Collapse
Affiliation(s)
- Adrian Jaimes-Becerra
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua Matão, Trav. 14, 101, 05508-090 São Paulo, SP, Brazil.
| | - Ray Chung
- Proteomics Facility, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom
| | - André C Morandini
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua Matão, Trav. 14, 101, 05508-090 São Paulo, SP, Brazil
| | - Andrew J Weston
- Mass Spectrometry Laboratory, UCL School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Gabriel Padilla
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Professor Lineu Prestes 1374, 05508-000 Sao Paulo, SP, Brazil
| | - Ranko Gacesa
- Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Malcolm Ward
- Proteomics Facility, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom
| | - Paul F Long
- Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom; Brazil Institute, King's College London, Strand, London WC2R 2LS, United Kingdom; Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, B16, 05508-000 São Paulo, SP, Brazil
| | - Antonio C Marques
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua Matão, Trav. 14, 101, 05508-090 São Paulo, SP, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, Rodovia Manoel Hypólito do Rego, km. 131,5, 11600-000 São Sebastião, Brazil
| |
Collapse
|
16
|
Logashina YA, Solstad RG, Mineev KS, Korolkova YV, Mosharova IV, Dyachenko IA, Palikov VA, Palikova YA, Murashev AN, Arseniev AS, Kozlov SA, Stensvåg K, Haug T, Andreev YA. New Disulfide-Stabilized Fold Provides Sea Anemone Peptide to Exhibit Both Antimicrobial and TRPA1 Potentiating Properties. Toxins (Basel) 2017; 9:E154. [PMID: 28468269 PMCID: PMC5450702 DOI: 10.3390/toxins9050154] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/12/2023] Open
Abstract
A novel bioactive peptide named τ-AnmTx Ueq 12-1 (short name Ueq 12-1) was isolated and characterized from the sea anemone Urticina eques. Ueq 12-1 is unique among the variety of known sea anemone peptides in terms of its primary and spatial structure. It consists of 45 amino acids including 10 cysteine residues with an unusual distribution and represents a new group of sea anemone peptides. The 3D structure of Ueq 12-1, determined by NMR spectroscopy, represents a new disulfide-stabilized fold partly similar to the defensin-like fold. Ueq 12-1 showed the dual activity of both a moderate antibacterial activity against Gram-positive bacteria and a potentiating activity on the transient receptor potential ankyrin 1 (TRPA1). Ueq 12-1 is a unique peptide potentiator of the TRPA1 receptor that produces analgesic and anti-inflammatory effects in vivo. The antinociceptive properties allow us to consider Ueq 12-1 as a potential analgesic drug lead with antibacterial properties.
Collapse
Affiliation(s)
- Yulia A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine,Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Runar Gjerp Solstad
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT-The Arctic University of Norway, NO 9037 Tromsø, Norway.
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
- Moscow Institute of Physics and Technology, Institutskyi per., 9, Dolgoprudnyi, 141700, Moscow, Russia.
| | - Yuliya V Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Irina V Mosharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Igor A Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia.
- Pushchino State Natural-Science Institute, 142290 Pushchino, Russia.
| | - Victor A Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia.
- Pushchino State Natural-Science Institute, 142290 Pushchino, Russia.
| | - Yulia A Palikova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia.
- Pushchino State Natural-Science Institute, 142290 Pushchino, Russia.
| | - Arkadii N Murashev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia.
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Klara Stensvåg
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT-The Arctic University of Norway, NO 9037 Tromsø, Norway.
| | - Tor Haug
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT-The Arctic University of Norway, NO 9037 Tromsø, Norway.
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine,Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| |
Collapse
|
17
|
Functional Elucidation of Nemopilema nomurai and Cyanea nozakii Nematocyst Venoms' Lytic Activity Using Mass Spectrometry and Zymography. Toxins (Basel) 2017; 9:toxins9020047. [PMID: 28134758 PMCID: PMC5331427 DOI: 10.3390/toxins9020047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/22/2023] Open
Abstract
Background: Medusozoans utilize explosively discharging penetrant nematocysts to inject venom into prey. These venoms are composed of highly complex proteins and peptides with extensive bioactivities, as observed in vitro. Diverse enzymatic toxins have been putatively identified in the venom of jellyfish, Nemopilema nomurai and Cyanea nozakii, through examination of their proteomes and transcriptomes. However, functional examination of putative enzymatic components identified in proteomic approaches to elucidate potential bioactivities is critically needed. Methods: In this study, enzymatic toxins were functionally identified using a combined approach consisting of in gel zymography and liquid chromatography tandem mass spectrometry (LC-MS/MS). The potential roles of metalloproteinases and lipases in hemolytic activity were explored using specific inhibitors. Results: Zymography indicated that nematocyst venom possessed protease-, lipase- and hyaluronidase-class activities. Further, proteomic approaches using LC-MS/MS indicated sequence homology of proteolytic bands observed in zymography to extant zinc metalloproteinase-disintegrins and astacin metalloproteinases. Moreover, pre-incubation of the metalloproteinase inhibitor batimastat with N. nomurai nematocyst venom resulted in an approximate 62% reduction of hemolysis compared to venom exposed sheep erythrocytes, suggesting that metalloproteinases contribute to hemolytic activity. Additionally, species within the molecular mass range of 14–18 kDa exhibited both egg yolk and erythrocyte lytic activities in gel overlay assays. Conclusion: For the first time, our findings demonstrate the contribution of jellyfish venom metalloproteinase and suggest the involvement of lipase species to hemolytic activity. Investigations of this relationship will facilitate a better understanding of the constituents and toxicity of jellyfish venom.
Collapse
|
18
|
Biochemical and kinetic evaluation of the enzymatic toxins from two stinging scyphozoans Nemopilema nomurai and Cyanea nozakii. Toxicon 2017; 125:1-12. [DOI: 10.1016/j.toxicon.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023]
|
19
|
Macrander J, Broe M, Daly M. Tissue-Specific Venom Composition and Differential Gene Expression in Sea Anemones. Genome Biol Evol 2016; 8:2358-75. [PMID: 27389690 PMCID: PMC5010892 DOI: 10.1093/gbe/evw155] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2016] [Indexed: 12/19/2022] Open
Abstract
Cnidarians represent one of the few groups of venomous animals that lack a centralized venom transmission system. Instead, they are equipped with stinging capsules collectively known as nematocysts. Nematocysts vary in abundance and type across different tissues; however, the venom composition in most species remains unknown. Depending on the tissue type, the venom composition in sea anemones may be vital for predation, defense, or digestion. Using a tissue-specific RNA-seq approach, we characterize the venom assemblage in the tentacles, mesenterial filaments, and column for three species of sea anemone (Anemonia sulcata, Heteractis crispa, and Megalactis griffithsi). These taxa vary with regard to inferred venom potency, symbiont abundance, and nematocyst diversity. We show that there is significant variation in abundance of toxin-like genes across tissues and species. Although the cumulative toxin abundance for the column was consistently the lowest, contributions to the overall toxin assemblage varied considerably among tissues for different toxin types. Our gene ontology (GO) analyses also show sharp contrasts between conserved GO groups emerging from whole transcriptome analysis and tissue-specific expression among GO groups in our differential expression analysis. This study provides a framework for future characterization of tissue-specific venom and other functionally important genes in this lineage of simple bodied animals.
Collapse
Affiliation(s)
- Jason Macrander
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University
| | - Michael Broe
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University
| |
Collapse
|
20
|
Macrander J, Brugler MR, Daly M. A RNA-seq approach to identify putative toxins from acrorhagi in aggressive and non-aggressive Anthopleura elegantissima polyps. BMC Genomics 2015; 16:221. [PMID: 25886045 PMCID: PMC4397815 DOI: 10.1186/s12864-015-1417-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/28/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The use of venom in intraspecific aggression is uncommon and venom-transmitting structures specifically used for intraspecific competition are found in few lineages of venomous taxa. Next-generation transcriptome sequencing allows robust characterization of venom diversity and exploration of functionally unique tissues. Using a tissue-specific RNA-seq approach, we investigate the venom composition and gene ontology diversity of acrorhagi, specialized structures used in intraspecific competition, in aggressive and non-aggressive polyps of the aggregating sea anemone Anthopleura elegantissima (Cnidaria: Anthozoa: Hexacorallia: Actiniaria: Actiniidae). RESULTS Collectively, we generated approximately 450,000 transcripts from acrorhagi of aggressive and non-aggressive polyps. For both transcriptomes we identified 65 candidate sea anemone toxin genes, representing phospholipase A2s, cytolysins, neurotoxins, and acrorhagins. When compared to previously characterized sea anemone toxin assemblages, each transcriptome revealed greater within-species sequence divergence across all toxin types. The transcriptome of the aggressive polyp had a higher abundance of type II voltage gated potassium channel toxins/Kunitz-type protease inhibitors and type II acrorhagins. Using toxin-like proteins from other venomous taxa, we also identified 612 candidate toxin-like transcripts with signaling regions, potentially unidentified secretory toxin-like proteins. Among these, metallopeptidases and cysteine rich (CRISP) candidate transcripts were in high abundance. Furthermore, our gene ontology analyses identified a high prevalence of genes associated with "blood coagulation" and "positive regulation of apoptosis", as well as "nucleoside: sodium symporter activity" and "ion channel binding". The resulting assemblage of expressed genes may represent synergistic proteins associated with toxins or proteins related to the morphology and behavior exhibited by the aggressive polyp. CONCLUSION We implement a multifaceted approach to investigate the assemblage of expressed genes specifically within acrorhagi, specialized structures used only for intraspecific competition. By combining differential expression, phylogenetic, and gene ontology analyses, we identify several candidate toxins and other potentially important proteins in acrorhagi of A. elegantissima. Although not all of the toxins identified are used in intraspecific competition, our analysis highlights some candidates that may play a vital role in intraspecific competition. Our findings provide a framework for further investigation into components of venom used exclusively for intraspecific competition in acrorhagi-bearing sea anemones and potentially other venomous animals.
Collapse
Affiliation(s)
- Jason Macrander
- The Ohio State University, Evolution, Ecology, and Organismal Biology, 318 W. 12th Avenue, Columbus, OH, 43210-1293, USA.
| | - Mercer R Brugler
- Sackler Institute for Comparative Genomics, Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA. .,Biological Sciences Department, NYC College of Technology (CUNY), 300 Jay Street, Brooklyn, NY, 11201, USA.
| | - Marymegan Daly
- The Ohio State University, Evolution, Ecology, and Organismal Biology, 318 W. 12th Avenue, Columbus, OH, 43210-1293, USA.
| |
Collapse
|
21
|
Proteomic characterisation of toxins isolated from nematocysts of the South Atlantic jellyfish Olindias sambaquiensis. Toxicon 2013; 71:11-7. [PMID: 23688393 DOI: 10.1016/j.toxicon.2013.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/24/2013] [Accepted: 05/01/2013] [Indexed: 11/21/2022]
Abstract
Surprisingly little is known of the toxic arsenal of cnidarian nematocysts compared to other venomous animals. Here we investigate the toxins of nematocysts isolated from the jellyfish Olindias sambaquiensis. A total of 29 unique ms/ms events were annotated as potential toxins homologous to the toxic proteins from diverse animal phyla, including cone-snails, snakes, spiders, scorpions, wasp, bee, parasitic worm and other Cnidaria. Biological activities of these potential toxins include cytolysins, neurotoxins, phospholipases and toxic peptidases. The presence of several toxic enzymes is intriguing, such as sphingomyelin phosphodiesterase B (SMase B) that has only been described in certain spider venoms, and a prepro-haystatin P-IIId snake venom metalloproteinase (SVMP) that activates coagulation factor X, which is very rare even in snake venoms. Our annotation reveals sequence orthologs to many representatives of the most important superfamilies of peptide venoms suggesting that their origins in higher organisms arise from deep eumetazoan innovations. Accordingly, cnidarian venoms may possess unique biological properties that might generate new leads in the discovery of novel pharmacologically active drugs.
Collapse
|
22
|
Oliveira JS, Fuentes-Silva D, King GF. Development of a rational nomenclature for naming peptide and protein toxins from sea anemones. Toxicon 2012; 60:539-50. [DOI: 10.1016/j.toxicon.2012.05.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/21/2012] [Accepted: 05/24/2012] [Indexed: 01/30/2023]
|
23
|
Frazão B, Vasconcelos V, Antunes A. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs 2012; 10:1812-1851. [PMID: 23015776 PMCID: PMC3447340 DOI: 10.3390/md10081812] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/09/2012] [Accepted: 07/25/2012] [Indexed: 01/20/2023] Open
Abstract
The Cnidaria phylum includes organisms that are among the most venomous animals. The Anthozoa class includes sea anemones, hard corals, soft corals and sea pens. The composition of cnidarian venoms is not known in detail, but they appear to contain a variety of compounds. Currently around 250 of those compounds have been identified (peptides, proteins, enzymes and proteinase inhibitors) and non-proteinaceous substances (purines, quaternary ammonium compounds, biogenic amines and betaines), but very few genes encoding toxins were described and only a few related protein three-dimensional structures are available. Toxins are used for prey acquisition, but also to deter potential predators (with neurotoxicity and cardiotoxicity effects) and even to fight territorial disputes. Cnidaria toxins have been identified on the nematocysts located on the tentacles, acrorhagi and acontia, and in the mucous coat that covers the animal body. Sea anemone toxins comprise mainly proteins and peptides that are cytolytic or neurotoxic with its potency varying with the structure and site of action and are efficient in targeting different animals, such as insects, crustaceans and vertebrates. Sea anemones toxins include voltage-gated Na⁺ and K⁺ channels toxins, acid-sensing ion channel toxins, Cytolysins, toxins with Kunitz-type protease inhibitors activity and toxins with Phospholipase A2 activity. In this review we assessed the phylogentic relationships of sea anemone toxins, characterized such toxins, the genes encoding them and the toxins three-dimensional structures, further providing a state-of-the-art description of the procedures involved in the isolation and purification of bioactive toxins.
Collapse
Affiliation(s)
- Bárbara Frazão
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; (B.F.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Vitor Vasconcelos
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; (B.F.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; (B.F.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
24
|
Nevalainen TJ, Cardoso JCR, Riikonen PT. Conserved domains and evolution of secreted phospholipases A2. FEBS J 2012; 279:636-49. [DOI: 10.1111/j.1742-4658.2011.08453.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Carneiro RFV, Nascimento NRFD, Costa PPC, Gomes VM, Souza AJF, Oliveira SCB, Santos Diz Filho EB, Zara FJ, Fonteles MC, Oliveira Toyama D, Toyama MH, Santos CF. The extract of the jellyfish Phyllorhiza punctata promotes neurotoxic effects. J Appl Toxicol 2011; 31:720-9. [DOI: 10.1002/jat.1620] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/26/2010] [Accepted: 10/28/2010] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Fernando José Zara
- UNESP; Campus Experimental do Litoral Paulista; São Vicente; São Paulo; Brazil
| | | | | | | | | |
Collapse
|