1
|
Aguion PI, Marchanka A, Carlomagno T. Nucleic acid-protein interfaces studied by MAS solid-state NMR spectroscopy. J Struct Biol X 2022; 6:100072. [PMID: 36090770 PMCID: PMC9449856 DOI: 10.1016/j.yjsbx.2022.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Solid-state NMR (ssNMR) has become a well-established technique to study large and insoluble protein assemblies. However, its application to nucleic acid-protein complexes has remained scarce, mainly due to the challenges presented by overlapping nucleic acid signals. In the past decade, several efforts have led to the first structure determination of an RNA molecule by ssNMR. With the establishment of these tools, it has become possible to address the problem of structure determination of nucleic acid-protein complexes by ssNMR. Here we review first and more recent ssNMR methodologies that study nucleic acid-protein interfaces by means of chemical shift and peak intensity perturbations, direct distance measurements and paramagnetic effects. At the end, we review the first structure of an RNA-protein complex that has been determined from ssNMR-derived intermolecular restraints.
Collapse
Affiliation(s)
- Philipp Innig Aguion
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Alexander Marchanka
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Teresa Carlomagno
- School of Biosciences/College of Life and Enviromental Sciences, Institute of Cancer and Genomic Sciences/College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Lacabanne D, Boudet J, Malär AA, Wu P, Cadalbert R, Salmon L, Allain FHT, Meier BH, Wiegand T. Protein Side-Chain-DNA Contacts Probed by Fast Magic-Angle Spinning NMR. J Phys Chem B 2020; 124:11089-11097. [PMID: 33238710 PMCID: PMC7734624 DOI: 10.1021/acs.jpcb.0c08150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Protein–nucleic
acid interactions are essential in a variety
of biological events ranging from the replication of genomic DNA to
the synthesis of proteins. Noncovalent interactions guide such molecular
recognition events, and protons are often at the center of them, particularly
due to their capability of forming hydrogen bonds to the nucleic acid
phosphate groups. Fast magic-angle spinning experiments (100 kHz)
reduce the proton NMR line width in solid-state NMR of fully protonated
protein–DNA complexes to such an extent that resolved proton
signals from side-chains coordinating the DNA can be detected. We
describe a set of NMR experiments focusing on the detection of protein
side-chains from lysine, arginine, and aromatic amino acids and discuss
the conclusions that can be obtained on their role in DNA coordination.
We studied the 39 kDa enzyme of the archaeal pRN1 primase complexed
with DNA and characterize protein–DNA contacts in the presence
and absence of bound ATP molecules.
Collapse
Affiliation(s)
| | - Julien Boudet
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Pengzhi Wu
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.,Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Loic Salmon
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.,Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Cremer T, Cremer M, Hübner B, Silahtaroglu A, Hendzel M, Lanctôt C, Strickfaden H, Cremer C. The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus. Bioessays 2020; 42:e1900132. [PMID: 31994771 DOI: 10.1002/bies.201900132] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/24/2019] [Indexed: 12/11/2022]
Abstract
This article focuses on the role of the interchromatin compartment (IC) in shaping nuclear landscapes. The IC is connected with nuclear pore complexes (NPCs) and harbors splicing speckles and nuclear bodies. It is postulated that the IC provides routes for imported transcription factors to target sites, for export routes of mRNA as ribonucleoproteins toward NPCs, as well as for the intranuclear passage of regulatory RNAs from sites of transcription to remote functional sites (IC hypothesis). IC channels are lined by less-compacted euchromatin, called the perichromatin region (PR). The PR and IC together form the active nuclear compartment (ANC). The ANC is co-aligned with the inactive nuclear compartment (INC), comprising more compacted heterochromatin. It is postulated that the INC is accessible for individual transcription factors, but inaccessible for larger macromolecular aggregates (limited accessibility hypothesis). This functional nuclear organization depends on still unexplored movements of genes and regulatory sequences between the two compartments.
Collapse
Affiliation(s)
- Thomas Cremer
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University (LMU), Biocenter, Grosshadernerstr. 2, 82152, Martinsried, Germany
| | - Marion Cremer
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University (LMU), Biocenter, Grosshadernerstr. 2, 82152, Martinsried, Germany
| | - Barbara Hübner
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University (LMU), Biocenter, Grosshadernerstr. 2, 82152, Martinsried, Germany
| | - Asli Silahtaroglu
- Department of Cellular and Molecular Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, Byg.18.03, 2200, Copenhagen N, Denmark
| | - Michael Hendzel
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Christian Lanctôt
- Integration Santé, 1250 Avenue de la Station local 2-304, Shawinigan, Québec, G9N 8K9, Canada
| | - Hilmar Strickfaden
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Christoph Cremer
- Institute of Molecular Biology (IMB) Ackermannweg 4, 55128 Mainz, Germany, and Institute of Pharmacy & Molecular Biotechnology (IPMB), University Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Functional Prediction of Candidate MicroRNAs for CRC Management Using in Silico Approach. Int J Mol Sci 2019; 20:ijms20205190. [PMID: 31635135 PMCID: PMC6834124 DOI: 10.3390/ijms20205190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023] Open
Abstract
Approximately 30–50% of malignant growths can be prevented by avoiding risk factors and implementing evidence-based strategies. Colorectal cancer (CRC) accounted for the second most common cancer and the third most common cause of cancer death worldwide. This cancer subtype can be reduced by early detection and patients’ management. In this study, the functional roles of the identified microRNAs were determined using an in silico pipeline. Five microRNAs identified using an in silico approach alongside their seven target genes from our previous study were used as datasets in this study. Furthermore, the secondary structure and the thermodynamic energies of the microRNAs were revealed by Mfold algorithm. The triplex binding ability of the oligonucleotide with the target promoters were analyzed by Trident. Finally, evolutionary stage-specific somatic events and co-expression analysis of the target genes in CRC were analyzed by SEECancer and GeneMANIA plugin in Cytoscape. Four of the five microRNAs have the potential to form more than one secondary structure. The ranges of the observed/expected ratio of CpG dinucleotides of these genes range from 0.60 to 1.22. Three of the candidate microRNA were capable of forming multiple triplexes along with three of the target mRNAs. Four of the total targets were involved in either early or metastatic stage-specific events while three other genes were either a product of antecedent or subsequent events of the four genes implicated in CRC. The secondary structure of the candidate microRNAs can be used to explain the different degrees of genetic regulation in CRC due to their conformational role to modulate target interaction. Furthermore, due to the regulation of important genes in the CRC pathway and the enrichment of the microRNA with triplex binding sites, they may be a useful diagnostic biomarker for the disease subtype.
Collapse
|
5
|
Zhang W, Shi E, Feng Y, Zhao Y, Yang B. Endonuclease-like activity of the N-terminal domain of Euplotes octocarinatus centrin. RSC Adv 2017. [DOI: 10.1039/c7ra07907a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Euplotes octocarinatus centrin (EoCen) is a member of the EF-hand superfamily of calcium-binding proteins, which refer to nucleotide excision repair (NER).
Collapse
Affiliation(s)
- Wenlong Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Insitute of Molecular Science
- Taiyuan 030006
- China
| | - Enxian Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Insitute of Molecular Science
- Taiyuan 030006
- China
- Department of Pharmacy
| | - Yanan Feng
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Insitute of Molecular Science
- Taiyuan 030006
- China
| | - Yaqin Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Insitute of Molecular Science
- Taiyuan 030006
- China
| | - Binsheng Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Insitute of Molecular Science
- Taiyuan 030006
- China
| |
Collapse
|
6
|
Paugh SW, Coss DR, Bao J, Laudermilk LT, Grace CR, Ferreira AM, Waddell MB, Ridout G, Naeve D, Leuze M, LoCascio PF, Panetta JC, Wilkinson MR, Pui CH, Naeve CW, Uberbacher EC, Bonten EJ, Evans WE. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression. PLoS Comput Biol 2016; 12:e1004744. [PMID: 26844769 PMCID: PMC4742280 DOI: 10.1371/journal.pcbi.1004744] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 01/07/2016] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10−16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. We provide physical evidence, using NMR, FRET and SPR, that purine or pyrimidine-rich microRNAs can form triplexes with complementary purine-rich sequences of duplex DNA and provide an algorithm (Trident) to search genome-wide for potential microRNA double-stranded DNA triplex-forming sites. Using this algorithm we document enrichment of microRNA triplex binding sites in mammalian and non-mammalian genomes. We found in primary leukemia cells from patients a significant over-representation of positively correlated microRNA and mRNA expression for genes containing sequences favoring microRNA-duplex DNA triplex formation, suggesting this as a mechanism by which microRNA may enhance gene transcription.
Collapse
Affiliation(s)
- Steven W. Paugh
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - David R. Coss
- High Performance Computing Facility, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ju Bao
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Lucas T. Laudermilk
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Christy R. Grace
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Antonio M. Ferreira
- High Performance Computing Facility, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - M. Brett Waddell
- Molecular Interaction Analysis Laboratory, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Granger Ridout
- Functional Genomics Laboratory, Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Deanna Naeve
- Functional Genomics Laboratory, Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michael Leuze
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | | | - John C. Panetta
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Mark R. Wilkinson
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ching-Hon Pui
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Clayton W. Naeve
- Department of Information Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Edward C. Uberbacher
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Erik J. Bonten
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - William E. Evans
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
7
|
Wan H, Chang S, Hu JP, Tian YX, Tian XH. Molecular Dynamics Simulations of Ternary Complexes: Comparisons of LEAFY Protein Binding to Different DNA Motifs. J Chem Inf Model 2015; 55:784-94. [PMID: 25734970 DOI: 10.1021/ci500705j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LEAFY (LFY) is a plant-specific transcription factor, with a variety of roles in different species. LFY contains a conserved DNA-binding domain (DBD) that determines its DNA-binding specificity. Recently, the structures of the dimeric LFY-DBD bound to different DNA motifs were successively solved by X-ray crystallography. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of DNA-bound LFY protein from angiosperms and the moss Physcomitrella patens, respectively. The comparison of stabilities of the two systems is consistent with the experimental data of binding affinities. The calculation of hydrogen bonds showed that position 312 in LFY determines the difference of DNA-binding specificity. By using principal component analysis (PCA) and free energy landscape (FEL) methods, the open-close conformational change of the dimerization interface was found to be important for the system stability. At the dimerization interface, the protein-protein interaction has multiple influences on the cooperative DNA binding of LFY. The following analysis of DNA structural parameters further revealed that the protein-protein interaction contributes varying roles according to the specific DNA-binding efficiency. We propose that the protein-protein interaction serves a dual function as a connector between LFY monomers and a regulator of DNA-binding specificity. It will improve the robustness and adaptivity of the LFY-DNA ternary structure. This study provides some new insights into the understanding of the dynamics and interaction mechanism of dimeric LFY-DBD bound to DNA at the atomic level.
Collapse
Affiliation(s)
- Hua Wan
- †College of Informatics, South China Agricultural University, Guangzhou 510642, China
| | - Shan Chang
- ‡Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Jian-ping Hu
- §Faculty of Biotechnology Industry, Chengdu University, Chengdu 610106, China
| | - Yuan-xin Tian
- ∥School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xu-hong Tian
- †College of Informatics, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Ashby J, Schachermeyer S, Duan Y, Jimenez LA, Zhong W. Probing and quantifying DNA–protein interactions with asymmetrical flow field-flow fractionation. J Chromatogr A 2014; 1358:217-24. [DOI: 10.1016/j.chroma.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 12/20/2022]
|
9
|
De Biasio A, Blanco FJ. Proliferating Cell Nuclear Antigen Structure and Interactions. PROTEIN-NUCLEIC ACIDS INTERACTIONS 2013; 91:1-36. [DOI: 10.1016/b978-0-12-411637-5.00001-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Proliferating cell nuclear antigen (PCNA) interactions in solution studied by NMR. PLoS One 2012; 7:e48390. [PMID: 23139781 PMCID: PMC3491057 DOI: 10.1371/journal.pone.0048390] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/24/2012] [Indexed: 01/25/2023] Open
Abstract
PCNA is an essential factor for DNA replication and repair. It forms a ring shaped structure of 86 kDa by the symmetric association of three identical protomers. The ring encircles the DNA and acts as a docking platform for other proteins, most of them containing the PCNA Interaction Protein sequence (PIP-box). We have used NMR to characterize the interactions of PCNA with several other proteins and fragments in solution. The binding of the PIP-box peptide of the cell cycle inhibitor p21 to PCNA is consistent with the crystal structure of the complex. A shorter p21 peptide binds with reduced affinity but retains most of the molecular recognition determinants. However the binding of the corresponding peptide of the tumor suppressor ING1 is extremely weak, indicating that slight deviations from the consensus PIP-box sequence dramatically reduce the affinity for PCNA, in contrast with a proposed less stringent PIP-box sequence requirement. We could not detect any binding between PCNA and the MCL-1 or the CDK2 protein, reported to interact with PCNA in biochemical assays. This suggests that they do not bind directly to PCNA, or they do but very weakly, with additional unidentified factors stabilizing the interactions in the cell. Backbone dynamics measurements show three PCNA regions with high relative flexibility, including the interdomain connector loop (IDCL) and the C-terminus, both of them involved in the interaction with the PIP-box. Our work provides the basis for high resolution studies of direct ligand binding to PCNA in solution.
Collapse
|
11
|
Eberwine J, Lovatt D, Buckley P, Dueck H, Francis C, Kim TK, Lee J, Lee M, Miyashiro K, Morris J, Peritz T, Schochet T, Spaethling J, Sul JY, Kim J. Quantitative biology of single neurons. J R Soc Interface 2012; 9:3165-83. [PMID: 22915636 PMCID: PMC3481569 DOI: 10.1098/rsif.2012.0417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The building blocks of complex biological systems are single cells. Fundamental insights gained from single-cell analysis promise to provide the framework for understanding normal biological systems development as well as the limits on systems/cellular ability to respond to disease. The interplay of cells to create functional systems is not well understood. Until recently, the study of single cells has concentrated primarily on morphological and physiological characterization. With the application of new highly sensitive molecular and genomic technologies, the quantitative biochemistry of single cells is now accessible.
Collapse
Affiliation(s)
- James Eberwine
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, 36th and Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|