1
|
Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021; 23:ijms23010048. [PMID: 35008473 PMCID: PMC8744729 DOI: 10.3390/ijms23010048] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| |
Collapse
|
2
|
Hurtado-Carneiro V, Dongil P, Pérez-García A, Álvarez E, Sanz C. Preventing Oxidative Stress in the Liver: An Opportunity for GLP-1 and/or PASK. Antioxidants (Basel) 2021; 10:antiox10122028. [PMID: 34943132 PMCID: PMC8698360 DOI: 10.3390/antiox10122028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
The liver’s high metabolic activity and detoxification functions generate reactive oxygen species, mainly through oxidative phosphorylation in the mitochondria of hepatocytes. In contrast, it also has a potent antioxidant mechanism for counterbalancing the oxidant’s effect and relieving oxidative stress. PAS kinase (PASK) is a serine/threonine kinase containing an N-terminal Per-Arnt-Sim (PAS) domain, able to detect redox state. During fasting/feeding changes, PASK regulates the expression and activation of critical liver proteins involved in carbohydrate and lipid metabolism and mitochondrial biogenesis. Interestingly, the functional inactivation of PASK prevents the development of a high-fat diet (HFD)-induced obesity and diabetes. In addition, PASK deficiency alters the activity of other nutrient sensors, such as the AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR). In addition to the expression and subcellular localization of nicotinamide-dependent histone deacetylases (SIRTs). This review focuses on the relationship between oxidative stress, PASK, and other nutrient sensors, updating the limited knowledge on the role of PASK in the antioxidant response. We also comment on glucagon-like peptide 1 (GLP-1) and its collaboration with PASK in preventing the damage associated with hepatic oxidative stress. The current knowledge would suggest that PASK inhibition and/or exendin-4 treatment, especially under fasting conditions, could ameliorate disorders associated with excess oxidative stress.
Collapse
Affiliation(s)
- Verónica Hurtado-Carneiro
- Department of Physiology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (P.D.); (A.P.-G.); (E.Á.)
- Correspondence:
| | - Pilar Dongil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (P.D.); (A.P.-G.); (E.Á.)
- Department of Cell Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| | - Ana Pérez-García
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (P.D.); (A.P.-G.); (E.Á.)
- Department of Cell Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| | - Elvira Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (P.D.); (A.P.-G.); (E.Á.)
| | - Carmen Sanz
- Department of Cell Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| |
Collapse
|
3
|
Zafar A, Jabbar M, Manzoor Y, Gulzar H, Hassan SG, Nazir MA, Ain-ul-Haq, Mustafa G, Sahar R, Masood A, Iqbal A, Hussain M, Hasan M. Quantifying Serum Derived Differential Expressed and Low Molecular Weight Protein in Breast Cancer Patients. Protein Pept Lett 2020; 27:658-673. [DOI: 10.2174/0929866527666200110155609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
Abstract
Background:Searching the biomarker from complex heterogeneous material for early detection of disease is a challenging task in the field of biomedical sciences.Objective:The study has been arranged to explore the proteomics serum derived profiling of the differential expressed and low molecular weight protein in breast cancer patient.Methods:Quantitative proteome was analyzed using the Nano LC/Mass and Bioinformatics tool.Results:This quantification yields 239 total protein constituting 29% of differentially expressed protein, with 82% downregulated differential protein and 18% up-regulated differential protein. While 12% of total protein were found to be cancer inducing proteins. Gene Ontology (GO) described that the altered proteins with 0-60 kDa mass in nucleus, cytosol, ER, and mitochondria were abundant that chiefly controlled the RNA, DNA, ATP, Ca ion and receptor bindings.Conclusion:The study demonstrate that the organelle specific, low molecular weighted proteins are significantly important biomarker. That act as strong agents in the prognosis and diagnosis of breast cancer at early stage.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maryum Jabbar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasmeen Manzoor
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Huma Gulzar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shahzad Gul Hassan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Muniba Anum Nazir
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ain-ul-Haq
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghazala Mustafa
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Romana Sahar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aqeel Masood
- Bahawal Victoria Hospital, Bahawalpur (BVH), Pakistan
| | | | - Mulazim Hussain
- Department of Pediatrician, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Murtaza Hasan
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
4
|
Marosvári D, Nagy N, Kriston C, Deák B, Hajdu M, Bödör C, Csala I, Bagó AG, Szállási Z, Sebestyén A, Reiniger L. Discrepancy Between Low Levels of mTOR Activity and High Levels of P-S6 in Primary Central Nervous System Lymphoma May Be Explained by PAS Domain-Containing Serine/Threonine-Protein Kinase-Mediated Phosphorylation. J Neuropathol Exp Neurol 2019; 77:268-273. [PMID: 29361117 DOI: 10.1093/jnen/nlx121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The primary aim of this study was to determine mTOR-pathway activity in primary central nervous system lymphoma (PCNSL), which could be a potential target for therapy. After demonstrating that p-S6 positivity largely exceeded mTOR activity, we aimed to identify other pathways that may lead to S6 phosphorylation. We measured mTOR activity with immunohistochemistry for p-mTOR and its downstream effectors p(T389)-p70S6K1, p-S6, and p-4E-BP1 in 31 cases of PCNSL and 51 cases of systemic diffuse large B-cell lymphoma (DLBCL) and evaluated alternative S6 phosphorylation pathways with p-RSK, p(T229)-p70S6K1, and PASK antibodies. Finally, we examined the impact of PASK inhibition on S6 phosphorylation on BHD1 cell line. mTOR-pathway activity was significantly less frequent in PCNSL compared with DLBCL. p-S6 positivity was related to mTOR-pathway in DLBCL, but not in PCNSL. Among the other kinases potentially responsible for S6 phosphorylation, PASK proved to be positive in all cases of PCNSL and DLBCL. Inhibition of PASK resulted in reduced expression of p-S6 in BHD1-cells. This is the first study demonstrating an mTOR independent p-S6 activity in PCNSL and that PASK may contribute to the phosphorylation of S6. Our findings also suggest a potential role of PASK in the pathomechanism of PCNSL and in DLBCL.
Collapse
Affiliation(s)
- Dóra Marosvári
- 1st Department of Pathology and Experimental Cancer Research Semmelweis University, Budapest, Hungary.,MTA-SE Lendulet Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Noémi Nagy
- 1st Department of Pathology and Experimental Cancer Research Semmelweis University, Budapest, Hungary
| | - Csilla Kriston
- 1st Department of Pathology and Experimental Cancer Research Semmelweis University, Budapest, Hungary
| | - Beáta Deák
- National Institute of Oncology, Budapest, Hungary
| | - Melinda Hajdu
- 1st Department of Pathology and Experimental Cancer Research Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- 1st Department of Pathology and Experimental Cancer Research Semmelweis University, Budapest, Hungary.,MTA-SE Lendulet Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Irén Csala
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Attila G Bagó
- Department of Neurooncology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Zoltán Szállási
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, Harvard Medical School, and Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.,2nd Department of Pathology, MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research Semmelweis University, Budapest, Hungary.,Tumour Progression Research Group of Joint Research Organization of Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Lilla Reiniger
- 1st Department of Pathology and Experimental Cancer Research Semmelweis University, Budapest, Hungary.,2nd Department of Pathology, MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences
| |
Collapse
|
5
|
Kakar KU, Nawaz Z, Kakar K, Ali E, Almoneafy AA, Ullah R, Ren XL, Shu QY. Comprehensive genomic analysis of the CNGC gene family in Brassica oleracea: novel insights into synteny, structures, and transcript profiles. BMC Genomics 2017; 18:869. [PMID: 29132315 PMCID: PMC5683364 DOI: 10.1186/s12864-017-4244-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Background The cyclic nucleotide-gated ion channel (CNGC) family affects the uptake of cations, growth, pathogen defence, and thermotolerance in plants. However, the systematic identification, origin and function of this gene family has not been performed in Brassica oleracea, an important vegetable crop and genomic model organism. Results In present study, we identified 26 CNGC genes in B. oleracea genome, which are non-randomly localized on eight chromosomes, and classified into four major (I-IV) and two sub-groups (i.e., IV-a and IV-b). The BoCNGC family is asymmetrically fractioned into the following three sub-genomes: least fractionated (14 genes), most fractionated-I (10), and most fractionated-II (2). The syntenic map of BoCNGC genes exhibited strong relationships with the model Arabidopsis thaliana and B. rapa CNGC genes and provided markers for defining the regions of conserved synteny among the three genomes. Both whole-genome triplication along with segmental and tandem duplications contributed to the expansion of this gene family. We predicted the characteristics of BoCNGCs regarding exon-intron organisations, motif compositions and post-translational modifications, which diversified their structures and functions. Using orthologous Arabidopsis CNGCs as a reference, we found that most CNGCs were associated with various protein–protein interaction networks involving CNGCs and other signalling and stress related proteins. We revealed that five microRNAs (i.e., bol-miR5021, bol-miR838d, bol-miR414b, bol-miR4234, and bol-miR_new2) have target sites in nine BoCNGC genes. The BoCNGC genes were differentially expressed in seven B. oleracea tissues including leaf, stem, callus, silique, bud, root and flower. The transcript abundance levels quantified by qRT-PCR assays revealed that BoCNGC genes from phylogenetic Groups I and IV were particularly sensitive to cold stress and infections with bacterial pathogen Xanthomonas campestris pv. campestris, suggesting their importance in abiotic and biotic stress responses. Conclusion Our comprehensive genome-wide analysis represents a rich data resource for studying new plant gene families. Our data may also be useful for breeding new B. oleracea cultivars with improved productivity, quality, and stress resistance. Electronic supplementary material The online version of this article (10.1186/s12864-017-4244-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaleem U Kakar
- State Key Laboratory of Rice Biology, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.,Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Zarqa Nawaz
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China.,Wuxi Hupper Bioseed Technology Academy Ltd., Wuxi, 214000, China
| | - Khadija Kakar
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Essa Ali
- State Key Laboratory of Rice Biology, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Abdulwareth A Almoneafy
- Department of Biological sciences, College of Education and Science, Albaydaa University, Rada'a, Yemen
| | - Raqeeb Ullah
- Department of Environmental Sciences, Quaid -i- Azam University, Islamabad, Pakistan
| | - Xue-Liang Ren
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China. .,Guizhou Academy of Tobacco Science, Longtanba Road No. 29, Guanshanhu District, Guiyang, (550081), Guizhou, People's Republic of China.
| | - Qing-Yao Shu
- State Key Laboratory of Rice Biology, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China. .,Institute of Crop Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310029, China.
| |
Collapse
|
6
|
Prole DL, Taylor CW. Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J Physiol 2016; 594:2849-66. [PMID: 26830355 PMCID: PMC4887697 DOI: 10.1113/jp271139] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/06/2015] [Indexed: 01/26/2023] Open
Abstract
Inositol 1,4,5‐trisphosphate receptors (IP3Rs) are expressed in nearly all animal cells, where they mediate the release of Ca2+ from intracellular stores. The complex spatial and temporal organization of the ensuing intracellular Ca2+ signals allows selective regulation of diverse physiological responses. Interactions of IP3Rs with other proteins contribute to the specificity and speed of Ca2+ signalling pathways, and to their capacity to integrate information from other signalling pathways. In this review, we provide a comprehensive survey of the proteins proposed to interact with IP3Rs and the functional effects that these interactions produce. Interacting proteins can determine the activity of IP3Rs, facilitate their regulation by multiple signalling pathways and direct the Ca2+ that they release to specific targets. We suggest that IP3Rs function as signalling hubs through which diverse inputs are processed and then emerge as cytosolic Ca2+ signals.
![]()
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| |
Collapse
|
7
|
Yi YW, You K, Bae EJ, Kwak SJ, Seong YS, Bae I. Dual inhibition of EGFR and MET induces synthetic lethality in triple-negative breast cancer cells through downregulation of ribosomal protein S6. Int J Oncol 2015; 47:122-32. [PMID: 25955731 PMCID: PMC4735702 DOI: 10.3892/ijo.2015.2982] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/09/2015] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) exhibits innate resistance to the EGFR inhibition despite high level expression of EGFR. Recently, we found that the proliferation of basal-like (BL) subtype TNBC cells is synergistically inhibited by combination of EGFR and PI3K/AKT inhibitors. On the contrary, TNBC cells of mesenchymal stem-like (MSL) subtype are resistant to these combinations. To identify potential synthetic lethal interaction of compounds for treatment of MSL subtype TNBC cells, we performed MTT screening of MDA-MB-231 cells with a small library of receptor tyrosine kinase inhibitors (RTKIs) in the presence of gefitinib, an EGFR inhibitor. We identified MET inhibitors as potent RTKIs that caused synthetic lethality in combination with gefitinib in MDA-MB-231 cells. We demonstrated that combination of a MET inhibitor SU11274 with various EGFR inhibitors resulted in synergistic suppression of cell viability (in MTT assay) and cell survival (in colony formation assay) of MSL subtype TNBC cells. We further demonstrated that SU11274 alone induced G2 arrest and gefitinib/SU11274 combination sustained the SU11274-induced G2 arrest in these cells. In addition, SU11274/gefitinib combination synergistically reduced the level of ribosomal protein S6 (RPS6) in MSL subtype TNBC cells. In addition, knockdown of RPS6 itself, in both HS578T and MDA-MB-231, markedly reduced the proliferation of these cells. Taken together, our data suggest that dual targeting of EGFR and MET inhibits the proliferation of MSL subtype TNBC cells through down-regulation of RPS6.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Kyusic You
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Edward Jeong Bae
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Sahng-June Kwak
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yeon-Sun Seong
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Insoo Bae
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
8
|
DeMille D, Bikman BT, Mathis AD, Prince JT, Mackay JT, Sowa SW, Hall TD, Grose JH. A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1. Mol Biol Cell 2014; 25:2199-215. [PMID: 24850888 PMCID: PMC4091833 DOI: 10.1091/mbc.e13-10-0631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PAS kinase is a conserved sensory protein kinase required for glucose homeostasis. The interactome for yeast PAS kinase 1 (Psk1) is identified, revealing 93 binding partners. Evidence is provided for in vivo phosphorylation of Cbf1 and subsequent inhibition of respiration, supporting a role for Psk1 in partitioning glucose for cell growth. Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein–protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase–deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Desiree DeMille
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Benjamin T Bikman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602
| | - Andrew D Mathis
- Department of Chemistry, Brigham Young University, Provo, UT 84602
| | - John T Prince
- Department of Chemistry, Brigham Young University, Provo, UT 84602
| | - Jordan T Mackay
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Steven W Sowa
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Tacie D Hall
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
9
|
DeMille D, Grose JH. PAS kinase: a nutrient sensing regulator of glucose homeostasis. IUBMB Life 2013; 65:921-9. [PMID: 24265199 PMCID: PMC4081539 DOI: 10.1002/iub.1219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 12/16/2022]
Abstract
Per-Arnt-Sim (PAS) kinase (PASK, PASKIN, and PSK) is a member of the group of nutrient sensing protein kinases. These protein kinases sense the energy or nutrient status of the cell and regulate cellular metabolism appropriately. PAS kinase responds to glucose availability and regulates glucose homeostasis in yeast, mice, and man. Despite this pivotal role, the molecular mechanisms of PAS kinase regulation and function are largely unknown. This review focuses on what is known about PAS kinase, including its conservation from yeast to man, identified substrates, associated phenotypes and role in metabolic disease.
Collapse
Affiliation(s)
- Desiree DeMille
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT
| | - Julianne H. Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT
| |
Collapse
|
10
|
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery. Biochem J 2013; 451:313-28. [PMID: 23398362 DOI: 10.1042/bj20121418] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite the development of a number of efficacious kinase inhibitors, the strategies for rational design of these compounds have been limited by target promiscuity. In an effort to better understand the nature of kinase inhibition across the kinome, especially as it relates to off-target effects, we screened a well-defined collection of kinase inhibitors using biochemical assays for inhibitory activity against 234 active human kinases and kinase complexes, representing all branches of the kinome tree. For our study we employed 158 small molecules initially identified in the literature as potent and specific inhibitors of kinases important as therapeutic targets and/or signal transduction regulators. Hierarchical clustering of these benchmark kinase inhibitors on the basis of their kinome activity profiles illustrates how they relate to chemical structure similarities and provides new insights into inhibitor specificity and potential applications for probing new targets. Using this broad dataset, we provide a framework for assessing polypharmacology. We not only discover likely off-target inhibitor activities and recommend specific inhibitors for existing targets, but also identify potential new uses for known small molecules.
Collapse
|
11
|
Semplici F, Vaxillaire M, Fogarty S, Semache M, Bonnefond A, Fontés G, Philippe J, Meur G, Diraison F, Sessions RB, Rutter J, Poitout V, Froguel P, Rutter GA. Human mutation within Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) causes basal insulin hypersecretion. J Biol Chem 2011; 286:44005-44014. [PMID: 22065581 PMCID: PMC3243507 DOI: 10.1074/jbc.m111.254995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PAS kinase (PASK) is a glucose-regulated protein kinase involved in the control of pancreatic islet hormone release and insulin sensitivity. We aimed here to identify mutations in the PASK gene that may be associated with young-onset diabetes in humans. We screened 18 diabetic probands with unelucidated maturity-onset diabetes of the young (MODY). We identified two rare nonsynonymous mutations in the PASK gene (p.L1051V and p.G1117E), each of which was found in a single MODY family. Wild type or mutant PASKs were expressed in HEK 293 cells. Kinase activity of the affinity-purified proteins was assayed as autophosphorylation at amino acid Thr307 or against an Ugp1p-derived peptide. Whereas the PASK p.G1117E mutant displayed a ∼25% increase with respect to wild type PASK in the extent of autophosphorylation, and a ∼2-fold increase in kinase activity toward exogenous substrates, the activity of the p.L1051V mutant was unchanged. Amino acid Gly1117 is located in an α helical region opposing the active site of PASK and may elicit either: (a) a conformational change that increases catalytic efficiency or (b) a diminished inhibitory interaction with the PAS domain. Mouse islets were therefore infected with adenoviruses expressing wild type or mutant PASK and the regulation of insulin secretion was examined. PASK p.G1117E-infected islets displayed a 4-fold decrease in glucose-stimulated (16.7 versus 3 mM) insulin secretion, chiefly reflecting a 4.5-fold increase in insulin release at low glucose. In summary, we have characterized a rare mutation (p.G1117E) in the PASK gene from a young-onset diabetes family, which modulates glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Francesca Semplici
- Department of Medicine, Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martine Vaxillaire
- CNRS-UMR-8199, Pasteur Institute of Lille, BP245 59019 Lille Cedex, France; Lille Nord de France University, BP245 59019 Lille Cedex, France
| | - Sarah Fogarty
- University of Utah School of Medicine, Salt Lake City, Utah 84132-3201
| | - Meriem Semache
- Montreal Diabetes Research Center, CRCHUM, University of Montréal, Québec, Canada
| | - Amélie Bonnefond
- CNRS-UMR-8199, Pasteur Institute of Lille, BP245 59019 Lille Cedex, France; Lille Nord de France University, BP245 59019 Lille Cedex, France
| | - Ghislaine Fontés
- Montreal Diabetes Research Center, CRCHUM, University of Montréal, Québec, Canada
| | - Julien Philippe
- CNRS-UMR-8199, Pasteur Institute of Lille, BP245 59019 Lille Cedex, France; Lille Nord de France University, BP245 59019 Lille Cedex, France
| | - Gargi Meur
- Department of Medicine, Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Imperial College London, London SW7 2AZ, United Kingdom
| | - Frederique Diraison
- Centre for Research in Biomedicine, Faculty of Health and Life Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom
| | - Richard B Sessions
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Jared Rutter
- University of Utah School of Medicine, Salt Lake City, Utah 84132-3201
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, University of Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal QC H1W 4A4 Québec, Canada
| | - Philippe Froguel
- CNRS-UMR-8199, Pasteur Institute of Lille, BP245 59019 Lille Cedex, France; Lille Nord de France University, BP245 59019 Lille Cedex, France; Department of Genomics of Common Disease, School of Public Health, Imperial College London, London SW7 2AZ, United Kingdom
| | - Guy A Rutter
- Department of Medicine, Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|