1
|
Cantelmo RA, Dos Santos NAG, Dos Santos AC, Joca SRL. Dual effects of S-adenosyl-methyonine on PC12 cells exposed to the dopaminergic neurotoxin MPP . J Pharm Pharmacol 2020; 72:1427-1435. [PMID: 32602113 DOI: 10.1111/jphp.13323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/22/2020] [Accepted: 05/30/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To investigate S-adenosyl-methyonine (SAM) effects on PC12 cells viability and neuritogenesis treated with MPP+ (1-methyl-4-phenylpyridinium). METHODS PC12 cell viability test (MTT assay) in DMEM medium with SAM and/or MPP+; PC12 cell neuritogenesis test in F-12K medium with nerve growth factor (NGF); DNMT activity in PC12 cells (DNMT Activity Assay Kit) with SAM and/or MPP+. KEY FINDINGS (1) MPP+ decreased cell viability; (2) SAM did not affect cell viability per se, but it increased MPP+ neurotoxicity when co-incubated with the neurotoxin, an effect abolished by DNA methyltransferases (DNMT) inhibitors; (3) pretreatment with SAM for 30 min or 24 h before MPP+ addition had no effect on cell viability. Neuritogenesis: Treatment with SAM for 30 min or 24 h (1) increased cell differentiation per se, (2) increased NGF differentiating effects (additive effect) and (3) blocked the neuritogenesis impairment induced by MPP+. SAM with MPP+ increased the DNMT activity, whereas SAM alone or MPP+ alone did not. CONCLUSIONS (1) SAM might induce neurotoxic or neuroprotective effects on PC12 cells, depending on the exposure conditions; (2) DNMT inhibitors might attenuate the MPP+ exacerbation toxicity induced by SAM; (3) DNA methylation might be involved in the observed effects of SAM (needs further investigation).
Collapse
Affiliation(s)
- Rebeca Araujo Cantelmo
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Neife Aparecida G Dos Santos
- Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Antonio Cardozo Dos Santos
- Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Sâmia Regiane Lourenço Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Dai S, Holt MV, Horton JR, Woodcock CB, Patel A, Zhang X, Young NL, Wilkinson AW, Cheng X. Characterization of SETD3 methyltransferase-mediated protein methionine methylation. J Biol Chem 2020; 295:10901-10910. [PMID: 32503840 DOI: 10.1074/jbc.ra120.014072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Most characterized protein methylation events encompass arginine and lysine N-methylation, and only a few cases of protein methionine thiomethylation have been reported. Newly discovered oncohistone mutations include lysine-to-methionine substitutions at positions 27 and 36 of histone H3.3. In these instances, the methionine substitution localizes to the active-site pocket of the corresponding histone lysine methyltransferase, thereby inhibiting the respective transmethylation activity. SET domain-containing 3 (SETD3) is a protein (i.e. actin) histidine methyltransferase. Here, we generated an actin variant in which the histidine target of SETD3 was substituted with methionine. As for previously characterized histone SET domain proteins, the methionine substitution substantially (76-fold) increased binding affinity for SETD3 and inhibited SETD3 activity on histidine. Unexpectedly, SETD3 was active on the substituted methionine, generating S-methylmethionine in the context of actin peptide. The ternary structure of SETD3 in complex with the methionine-containing actin peptide at 1.9 Å resolution revealed that the hydrophobic thioether side chain is packed by the aromatic rings of Tyr312 and Trp273, as well as the hydrocarbon side chain of Ile310 Our results suggest that placing methionine properly in the active site-within close proximity to and in line with the incoming methyl group of SAM-would allow some SET domain proteins to selectively methylate methionine in proteins.
Collapse
Affiliation(s)
- Shaobo Dai
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Matthew V Holt
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Clayton B Woodcock
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Nicolas L Young
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Alex W Wilkinson
- Department of Biology, Stanford University, Stanford, California, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Chatterjee B, Lin MH, Chen CC, Peng KL, Wu MS, Tseng MC, Chen YJ, Shen CKJ. DNA Demethylation by DNMT3A and DNMT3B in vitro and of Methylated Episomal DNA in Transiently Transfected Cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:1048-1061. [PMID: 30300721 DOI: 10.1016/j.bbagrm.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/03/2018] [Accepted: 09/25/2018] [Indexed: 12/24/2022]
Abstract
The DNA methylation program in vertebrates is an essential part of the epigenetic regulatory cascade of development, cell differentiation, and progression of diseases including cancer. While the DNA methyltransferases (DNMTs) are responsible for the in vivo conversion of cytosine (C) to methylated cytosine (5mC), demethylation of 5mC on cellular DNA could be accomplished by the combined action of the ten-eleven translocation (TET) enzymes and DNA repair. Surprisingly, the mammalian DNMTs also possess active DNA demethylation activity in vitro in a Ca2+- and redox conditions-dependent manner, although little is known about its molecular mechanisms and occurrence in a cellular context. In this study, we have used LC-MS/MS to track down the fate of the methyl group removed from 5mC on DNA by mouse DNMT3B in vitro and found that it becomes covalently linked to the DNA methylation catalytic cysteine of the enzyme. We also show that Ca2+ homeostasis-dependent but TET1/TET2/TET3/TDG-independent demethylation of methylated episomal DNA by mouse DNMT3A or DNMT3B can occur in transfected human HEK 293 and mouse embryonic stem (ES) cells. Based on these results, we present a tentative working model of Ca2+ and redox conditions-dependent active DNA demethylation by DNMTs. Our study substantiates the potential roles of the vertebrate DNMTs as double-edged swords in DNA methylation-demethylation during Ca2+-dependent physiological processes.
Collapse
Affiliation(s)
| | - Miao-Hsia Lin
- Institute of Chemistry, Academia Sinica, Taipei City 115, Taiwan
| | - Chun-Chang Chen
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan
| | - Kai-Lin Peng
- Genomics Research Center, Academia Sinica, Taipei City 115, Taiwan
| | - Mu-Sheng Wu
- Genomics Research Center, Academia Sinica, Taipei City 115, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei City 112, Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei City 115, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei City 115, Taiwan.
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan.
| |
Collapse
|
4
|
Zhi QQ, Li JY, Liu QY, He ZM. A cytosine methyltransferase ortholog dmtA is involved in the sensitivity of Aspergillus flavus to environmental stresses. Fungal Biol 2017; 121:501-514. [DOI: 10.1016/j.funbio.2017.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/21/2017] [Accepted: 02/01/2017] [Indexed: 01/05/2023]
|
5
|
Helf MJ, Jud A, Piel J. Enzyme from an Uncultivated Sponge Bacterium Catalyzes S-Methylation in a Ribosomal Peptide. Chembiochem 2017; 18:444-450. [DOI: 10.1002/cbic.201600594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Maximilian J. Helf
- Institute of Microbiology; HCI G431; Eidgenössische Technische Hochschule (ETH) Zürich; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
- Boyce Thompson Institute; Cornell University; 533 Tower Road Ithaca NY 14850 USA
| | - Aurelia Jud
- Institute of Microbiology; HCI G431; Eidgenössische Technische Hochschule (ETH) Zürich; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Jörn Piel
- Institute of Microbiology; HCI G431; Eidgenössische Technische Hochschule (ETH) Zürich; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| |
Collapse
|
6
|
Weirich S, Kusevic D, Kudithipudi S, Jeltsch A. Investigation of the methylation of Numb by the SET8 protein lysine methyltransferase. Sci Rep 2015; 5:13813. [PMID: 26391684 PMCID: PMC4585732 DOI: 10.1038/srep13813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/06/2015] [Indexed: 01/22/2023] Open
Abstract
It has been reported that the Numb protein is methylated at lysine 158 and 163 and that this methylation is introduced by the SET8 protein lysine methyltransferase [Dhami et al., (2013) Molecular Cell 50, 565-576]. We studied this methylation in vitro using peptide arrays and recombinant Numb protein as substrates. Numb peptides and protein were incubated with recombinant SET8 purified after expression in E. coli or human HEK293 cells. However, no methylation of Numb by SET8 was detectable. SET8 methylation of Histone H4 and p53 peptides and proteins, which were used as positive controls, was readily observed. While SET8 methylation of Numb in cells cannot be ruled out, based on our findings, more evidence is needed to support this claim. It appears likely that another not yet identified PKMT is responsible for the reported methylation of Numb in cells.
Collapse
Affiliation(s)
- Sara Weirich
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Denis Kusevic
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Srikanth Kudithipudi
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
7
|
Patel A, Vought VE, Swatkoski S, Viggiano S, Howard B, Dharmarajan V, Monteith KE, Kupakuwana G, Namitz KE, Shinsky SA, Cotter RJ, Cosgrove MS. Automethylation activities within the mixed lineage leukemia-1 (MLL1) core complex reveal evidence supporting a "two-active site" model for multiple histone H3 lysine 4 methylation. J Biol Chem 2013; 289:868-84. [PMID: 24235145 PMCID: PMC3887211 DOI: 10.1074/jbc.m113.501064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mixed lineage leukemia-1 (MLL1) core complex predominantly catalyzes mono- and dimethylation of histone H3 at lysine 4 (H3K4) and is frequently altered in aggressive acute leukemias. The molecular mechanisms that account for conversion of mono- to dimethyl H3K4 (H3K4me1,2) are not well understood. In this investigation, we report that the suppressor of variegation, enhancer of zeste, trithorax (SET) domains from human MLL1 and Drosophila Trithorax undergo robust intramolecular automethylation reactions at an evolutionarily conserved cysteine residue in the active site, which is inhibited by unmodified histone H3. The location of the automethylation in the SET-I subdomain indicates that the MLL1 SET domain possesses significantly more conformational plasticity in solution than suggested by its crystal structure. We also report that MLL1 methylates Ash2L in the absence of histone H3, but only when assembled within a complex with WDR5 and RbBP5, suggesting a restraint for the architectural arrangement of subunits within the complex. Using MLL1 and Ash2L automethylation reactions as probes for histone binding, we observed that both automethylation reactions are significantly inhibited by stoichiometric amounts of unmethylated histone H3, but not by histones previously mono-, di-, or trimethylated at H3K4. These results suggest that the H3K4me1 intermediate does not significantly bind to the MLL1 SET domain during the dimethylation reaction. Consistent with this hypothesis, we demonstrate that the MLL1 core complex assembled with a catalytically inactive SET domain variant preferentially catalyzes H3K4 dimethylation using the H3K4me1 substrate. Taken together, these results are consistent with a “two-active site” model for multiple H3K4 methylation by the MLL1 core complex.
Collapse
Affiliation(s)
- Anamika Patel
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dillon MBC, Rust HL, Thompson PR, Mowen KA. Automethylation of protein arginine methyltransferase 8 (PRMT8) regulates activity by impeding S-adenosylmethionine sensitivity. J Biol Chem 2013; 288:27872-80. [PMID: 23946480 DOI: 10.1074/jbc.m113.491092] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein arginine methyltransferase (PRMT) 8 is unique among the PRMTs, as it has a highly restricted tissue expression pattern and an N terminus that contains two automethylation sites and a myristoylation site. PRMTs catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a peptidylarginine on a protein substrate. Currently, the physiological roles, regulation, and cellular substrates of PRMT8 are poorly understood. However, a thorough understanding of PRMT8 kinetics should provide insights into each of these areas, thereby enhancing our understanding of this unique enzyme. In this study, we determined how automethylation regulates the enzymatic activity of PRMT8. We found that preventing automethylation with lysine mutations (preserving the positive charge of the residue) increased the turnover rate and decreased the Km of AdoMet but did not affect the Km of the protein substrate. In contrast, mimicking automethylation with phenylalanine (i.e. mimicking the increased hydrophobicity) decreased the turnover rate. The inhibitory effect of the PRMT8 N terminus could be transferred to PRMT1 by creating a chimeric protein containing the N terminus of PRMT8 fused to PRMT1. Thus, automethylation of the N terminus likely regulates PRMT8 activity by decreasing the affinity of the enzyme for AdoMet.
Collapse
Affiliation(s)
- Myles B C Dillon
- From the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 and
| | | | | | | |
Collapse
|
9
|
Patananan AN, Palmer JM, Garvey GS, Keller NP, Clarke SG. A novel automethylation reaction in the Aspergillus nidulans LaeA protein generates S-methylmethionine. J Biol Chem 2013; 288:14032-14045. [PMID: 23532849 PMCID: PMC3656261 DOI: 10.1074/jbc.m113.465765] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The filamentous fungi in the genus Aspergillus are opportunistic plant and animal pathogens that can adapt to their environment by producing various secondary metabolites, including lovastatin, penicillin, and aflatoxin. The synthesis of these small molecules is dependent on gene clusters that are globally regulated by the LaeA protein. Null mutants of LaeA in all pathogenic fungi examined to date show decreased virulence coupled with reduced secondary metabolism. Although the amino acid sequence of LaeA contains the motifs characteristic of seven-β-strand methyltransferases, a methyl-accepting substrate of LaeA has not been identified. In this work we did not find a methyl-accepting substrate in Aspergillus nidulans with various assays, including in vivo S-adenosyl-[methyl-(3)H]methionine labeling, targeted in vitro methylation experiments using putative protein substrates, or in vitro methylation assays using whole cell extracts grown under different conditions. However, in each experiment LaeA was shown to self-methylate. Amino acid hydrolysis of radioactively labeled LaeA followed by cation exchange and reverse phase chromatography identified methionine as the modified residue. Point mutations show that the major site of modification of LaeA is on methionine 207. However, in vivo complementation showed that methionine 207 is not required for the biological function of LaeA. LaeA is the first protein to exhibit automethylation at a methionine residue. These findings not only indicate LaeA may perform novel chemistry with S-adenosylmethionine but also provide new insights into the physiological function of LaeA.
Collapse
Affiliation(s)
- Alexander N. Patananan
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | | | | | - Nancy P. Keller
- the Departments of Medical Microbiology and Immunology and ,Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Steven G. Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and , To whom correspondence should be addressed: Dept. of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Dr. East, Los Angeles, CA. Tel.: 310-825-8754; Fax: 310-825-1968; E-mail:
| |
Collapse
|
10
|
Niu Y, Xia Y, Wang S, Li J, Niu C, Li X, Zhao Y, Xiong H, Li Z, Lou H, Cao Q. A prototypic lysine methyltransferase 4 from archaea with degenerate sequence specificity methylates chromatin proteins Sul7d and Cren7 in different patterns. J Biol Chem 2013; 288:13728-40. [PMID: 23530048 DOI: 10.1074/jbc.m113.452979] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The origin of eukaryotic histone modification enzymes still remains obscure. RESULTS Prototypic KMT4/Dot1 from Archaea targets chromatin proteins (Sul7d and Cren7) and shows increased activity on Sul7d, but not Cren7, in the presence of DNA. CONCLUSION Promiscuous aKMT4 could be regulated by chromatin environment. SIGNIFICANCE This study supports the prokaryotic origin model of eukaryotic histone methyltransferases and sheds light on chromatin dynamics in Archaea. Histone methylation is one of the major epigenetic modifications even in early diverging unicellular eukaryotes. We show that a widespread lysine methyltransferase from Archaea (aKMT4), bears striking structural and functional resemblance to the core of distantly related eukaryotic KMT4/Dot1. aKMT4 methylates a set of various proteins, including the chromatin proteins Sul7d and Cren7, and RNA exosome components. Csl4- and Rrp4-exosome complexes are methylated in different patterns. aKMT4 can self-methylate intramolecularly and compete with other proteins for the methyl group. Automethylation is inhibited by suitable substrates or DNA in a concentration-dependent manner. The automethylated enzyme shows relatively compromised activity. aKMT4-8A mutant with abrogated automethylation shows a more than 150% increase in methylation of substrates, suggesting a possible mechanism to regulate methyltransferase activity. More interestingly, methylation of Sul7d, but not Cren7, by aKMT4 is significantly enhanced by DNA. MS/MS and kinetic analysis further suggest that aKMT4 methylates Sul7d in the chromatin context. These data provide a clue to the possible regulation of aKMT4 activity by the local chromatin environment, albeit as a promiscuous enzyme required for extensive and variegated lysine methylation in Sulfolobus. This study supports the prokaryotic origin model of eukaryotic histone modification enzymes and sheds light on regulation of archaeal chromatin.
Collapse
Affiliation(s)
- Yanling Niu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem Sci 2013; 38:243-52. [PMID: 23490039 DOI: 10.1016/j.tibs.2013.02.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 01/08/2023]
Abstract
Methylated lysine and arginine residues in histones represent a crucial part of the histone code, and recognition of these methylated residues by protein interaction domains modulates transcription. Although some methylating enzymes appear to be histone specific, many can modify histone and non-histone substrates and an increasing number are specific for non-histone substrates. Some of the non-histone substrates can also be involved in transcription, but a distinct subset of protein methylation reactions occurs at residues buried deeply in ribosomal proteins that may function in protein-RNA interactions rather than protein-protein interactions. Additionally, recent work has identified enzymes that catalyze protein methylation reactions at new sites in ribosomal and other proteins. These reactions include modifications of histidine and cysteine residues as well as the N terminus.
Collapse
|
12
|
Human calmodulin methyltransferase: expression, activity on calmodulin, and Hsp90 dependence. PLoS One 2012; 7:e52425. [PMID: 23285036 PMCID: PMC3527508 DOI: 10.1371/journal.pone.0052425] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/15/2012] [Indexed: 12/12/2022] Open
Abstract
Deletion of the first exon of calmodulin-lysine N-methyltransferase (CaM KMT, previously C2orf34) has been reported in two multigene deletion syndromes, but additional studies on the gene have not been reported. Here we show that in the cells from 2p21 deletion patients the loss of CaM KMT expression results in accumulation of hypomethylated calmodulin compared to normal controls, suggesting that CaM KMT is essential for calmodulin methylation and there are no compensatory mechanisms for CaM methylation in humans. We have further studied the expression of this gene at the transcript and protein levels. We have identified 2 additional transcripts in cells of the 2p21 deletion syndrome patients that start from alternative exons positioned outside the deletion region. One of them starts in the 2nd known exon, the other in a novel exon. The transcript starting from the novel exon was also identified in a variety of tissues from normal individuals. These new transcripts are not expected to produce proteins. Immunofluorescent localization of tagged CaM KMT in HeLa cells indicates that it is present in both the cytoplasm and nucleus of cells whereas the short isoform is localized to the Golgi apparatus. Using Western blot analysis we show that the CaM KMT protein is broadly expressed in mouse tissues. Finally we demonstrate that the CaM KMT interacts with the middle portion of the Hsp90 molecular chaperon and is probably a client protein since it is degraded upon treatment of cells with the Hsp90 inhibitor geldanamycin. These findings suggest that the CaM KMT is the major, possibly the single, methyltransferase of calmodulin in human cells with a wide tissue distribution and is a novel Hsp90 client protein. Thus our data provides basic information for a gene potentially contributing to the patient phenotype of two contiguous gene deletion syndromes.
Collapse
|
13
|
McCusker KP, Medzihradszky KF, Shiver AL, Nichols RJ, Yan F, Maltby DA, Gross CA, Fujimori DG. Covalent intermediate in the catalytic mechanism of the radical S-adenosyl-L-methionine methyl synthase RlmN trapped by mutagenesis. J Am Chem Soc 2012; 134:18074-81. [PMID: 23088750 PMCID: PMC3499099 DOI: 10.1021/ja307855d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The posttranscriptional modification of ribosomal RNA (rRNA) modulates ribosomal function and confers resistance to antibiotics targeted to the ribosome. The radical S-adenosyl-L-methionine (SAM) methyl synthases, RlmN and Cfr, both methylate A2503 within the peptidyl transferase center of prokaryotic ribosomes, yielding 2-methyl- and 8-methyl-adenosine, respectively. The C2 and C8 positions of adenosine are unusual methylation substrates due to their electrophilicity. To accomplish this reaction, RlmN and Cfr use a shared radical-mediated mechanism. In addition to the radical SAM CX(3)CX(2)C motif, both RlmN and Cfr contain two conserved cysteine residues required for in vivo function, putatively to form (cysteine 355 in RlmN) and resolve (cysteine 118 in RlmN) a covalent intermediate needed to achieve this challenging transformation. Currently, there is no direct evidence for this proposed covalent intermediate. We have further investigated the roles of these conserved cysteines in the mechanism of RlmN. Cysteine 118 mutants of RlmN are unable to resolve the covalent intermediate, either in vivo or in vitro, enabling us to isolate and characterize this intermediate. Additionally, tandem mass spectrometric analyses of mutant RlmN reveal a methylene-linked adenosine modification at cysteine 355. Employing deuterium-labeled SAM and RNA substrates in vitro has allowed us to further clarify the mechanism of formation of this intermediate. Together, these experiments provide compelling evidence for the formation of a covalent intermediate species between RlmN and its rRNA substrate and well as the roles of the conserved cysteine residues in catalysis.
Collapse
Affiliation(s)
- Kevin P McCusker
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|