1
|
Gai QJ, Fu Z, He J, Mao M, Yao XX, Qin Y, Lan X, Zhang L, Miao JY, Wang YX, Zhu J, Yang FC, Lu HM, Yan ZX, Chen FL, Shi Y, Ping YF, Cui YH, Zhang X, Liu X, Yao XH, Lv SQ, Bian XW, Wang Y. EPHA2 mediates PDGFA activity and functions together with PDGFRA as prognostic marker and therapeutic target in glioblastoma. Signal Transduct Target Ther 2022; 7:33. [PMID: 35105853 PMCID: PMC8807725 DOI: 10.1038/s41392-021-00855-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 11/10/2022] Open
Abstract
Platelet-derived growth subunit A (PDGFA) plays critical roles in development of glioblastoma (GBM) with substantial evidence from TCGA database analyses and in vivo mouse models. So far, only platelet-derived growth receptor α (PDGFRA) has been identified as receptor for PDGFA. However, PDGFA and PDGFRA are categorized into different molecular subtypes of GBM in TCGA_GBM database. Our data herein further showed that activity or expression deficiency of PDGFRA did not effectively block PDGFA activity. Therefore, PDGFRA might be not necessary for PDGFA function.To profile proteins involved in PDGFA function, we performed co-immunoprecipitation (Co-IP) and Mass Spectrum (MS) and delineated the network of PDGFA-associated proteins for the first time. Unexpectedly, the data showed that EPHA2 could be temporally activated by PDGFA even without activation of PDGFRA and AKT. Furthermore, MS, Co-IP, in vitro binding thermodynamics, and proximity ligation assay consistently proved the interaction of EPHA2 and PDGFA. In addition, we observed that high expression of EPHA2 leaded to upregulation of PDGF signaling targets in TCGA_GBM database and clinical GBM samples. Co-upregulation of PDGFRA and EPHA2 leaded to worse patient prognosis and poorer therapeutic effects than other contexts, which might arise from expression elevation of genes related with malignant molecular subtypes and invasive growth. Due to PDGFA-induced EPHA2 activation, blocking PDGFRA by inhibitor could not effectively suppress proliferation of GBM cells, but simultaneous inhibition of both EPHA2 and PDGFRA showed synergetic inhibitory effects on GBM cells in vitro and in vivo. Taken together, our study provided new insights on PDGFA function and revealed EPHA2 as a potential receptor of PDGFA. EPHA2 might contribute to PDGFA signaling transduction in combination with PDGFRA and mediate the resistance of GBM cells to PDGFRA inhibitor. Therefore, combination of inhibitors targeting PDGFRA and EHA2 represented a promising therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Qu-Jing Gai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhen Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiang He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Mao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Xue Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Qin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xi Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing-Ya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan-Xia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiang Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei-Cheng Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui-Min Lu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Biobank of Institute of Pathology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ze-Xuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fang-Lin Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Institute of Cancer, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
2
|
Cui M, Gao X, Chi Y, Zhang M, Lin H, Chen H, Sun C, Ma X. Molecular Alterations and Their Correlation With the Survival of Glioblastoma Patients With Corpus Callosum Involvement. Front Neurosci 2021; 15:701426. [PMID: 34393714 PMCID: PMC8361605 DOI: 10.3389/fnins.2021.701426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose: To explore molecular alterations and their correlation with the survival of patients with glioblastoma (GBM) with corpus callosum (CC) involvement (ccGBM). Methods: Electronic medical records were reviewed for glioma patients tested for molecular alterations and treated at our hospital between January 2016 and July 2020. ccGBM was compared to GBM without CC involvement (non-ccGBM) to identify differences in molecular alterations. Clinical outcomes and survival were compared between ccGBM and non-ccGBM patients, as well as among patients with ccGBM with different molecular alteration statuses. ccGBM was also compared to diffuse midline glioma (DMG) to clarify their correlation in molecular alterations, the progression-free survival (PFS), and overall survival (OS). Results: Thirty ccGBM and 88 non-ccGBM patients were included. PDGFRA amplification (PDGFRAamp, 33.3 vs. 9.1%, P = 0.004) and missense mutation (PDGFRAmut, 20.0 vs. 3.4%, P = 0.011) both had higher incidences in ccGBM than in non-ccGBM. PDGFRA alteration was associated with the occurrence of ccGBM (OR = 4.91 [95% CI: 1.55–15.52], P = 0.007). ccGBM with PDGFRAamp resulted in a shorter median PFS (8.6 vs. 13.5 months, P = 0.025) and OS (12.4 vs. 17.9 months, P = 0.022) than non-ccGBM with PDGFRAnon-amp. ccGBM with PDGFRAamp combined with PDGFRAmut (PDGFRAamp-mut) had a shorter median PFS (7.6 vs. 8.9 months, P = 0.022) and OS (9.6 vs. 17.8 months, P = 0.006) than non-ccGBM with wild-type PDGFRA and no amplification (PDGFRA-w, non-amp). Compared to ccGBM with PDGFRA-w, non-amp, ccGBM with PDGFRAamp and PDGFRAamp-mut both had a shorter median PFS and OS (P < 0.05). The hazard ratios (HRs) of PDGFRAamp for PFS and OS in ccGBM were 3.08 (95% CI: 1.02–9.35, P = 0.047) and 5.07 (1.52–16.89, P = 0.008), respectively, and the HRs of PDGFRAamp-mut for PFS and OS were 13.16 (95% CI: 3.19–54.40, P < 0.001) and 16.36 (2.66–100.70, P = 0.003). ccGBM may have similar incidences of PDGFRAamp or mut (PDGFRAamp/mut) as DMG, and they also had similar median PFS (10.9 vs. 9.0 months, P = 0.558) and OS (16.8 vs. 11.5 months, P = 0.510). Conclusion:PDGFRA alterations are significantly associated with the occurrence and poor prognosis of ccGBM. ccGBM with PDGFRAamp/mut may be classified as a single subtype of GBM that has a similar survival rate to DMG. PDGFR inhibitors may be a promising treatment method for ccGBM.
Collapse
Affiliation(s)
- Meng Cui
- Medical School of Chinese PLA, Beijing, China.,Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xin Gao
- Medical School of Chinese PLA, Beijing, China.,Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yihong Chi
- Department of Information Technology, Xian Janssen Pharmaceutical Ltd., Beijing, China
| | - Meng Zhang
- Medical School of Chinese PLA, Beijing, China.,Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hepu Lin
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Hewen Chen
- Medical School of Chinese PLA, Beijing, China.,Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Caihong Sun
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaodong Ma
- Medical School of Chinese PLA, Beijing, China.,Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Ochiai Y, Sumi K, Sano E, Yoshimura S, Yamamuro S, Ogino A, Ueda T, Suzuki Y, Nakayama T, Hara H, Katayama Y, Yoshino A. Antitumor effects of ribavirin in combination with TMZ and IFN-β in malignant glioma cells. Oncol Lett 2020; 20:178. [PMID: 32934745 PMCID: PMC7475644 DOI: 10.3892/ol.2020.12039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
Abstract
The prognosis of gioblastoma, the standard chemotherapy agent for which is temozolomide (TMZ), remains poor despite recent advances in multimodal treatments. Therefore, it is necessary to identify and develop novel therapeutics for this malignant disease. Ribavirin, an anti-viral agent which is one of the standard agents for treatment of chronic hepatitis C in combination with interferon (IFN), was recently revealed to have an antitumor potential towards various tumor cells, including malignant glioma cells. The aim of the present study was to examine the antitumor effect of ribavirin in combination with TMZ and IFN-β on glioma cells and to evaluate the possibility that such combinations might represent a novel candidate for glioblastoma therapy. The combination of ribavirin with TMZ and IFN-β displayed a significant cell growth inhibitory effect with a ribavirin dose-dependency, including a relatively low concentration of ribavirin, on not only TMZ-sensitive but also TMZ-resistant malignant glioma cells. The antitumor efficacy of such a combination further indicated a synergistic interaction when assessed by the Chou-Talalay method. Furthermore, flow cytometry analysis suggested that apoptosis induction was one of the possible biological processes underlying the synergistic antitumor effect of these triple combination treatments. Therefore, such combinations may be potentially important in the clinical setting for glioblastoma treatment, although further detailed studies, e.g. on the adverse effects, are required.
Collapse
Affiliation(s)
- Yushi Ochiai
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Koichiro Sumi
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Emiko Sano
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Sodai Yoshimura
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Shun Yamamuro
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Akiyoshi Ogino
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Takuya Ueda
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Tomohiro Nakayama
- Division of Companion Diagnostics, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiroyuki Hara
- Division of Functional Morphology, Department of Functional Morphology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoichi Katayama
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan.,Center for Brain and Health Sciences, Aomori University, Aomori 038-0003, Japan
| | - Atsuo Yoshino
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
4
|
Kazaana A, Sano E, Yoshimura S, Makita K, Hara H, Yoshino A, Ueda T. Promotion of TRAIL/Apo2L-induced apoptosis by low-dose interferon-β in human malignant melanoma cells. J Cell Physiol 2019; 234:13510-13524. [PMID: 30613977 DOI: 10.1002/jcp.28029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022]
Abstract
Interferon β (IFN-β) is considered a signaling molecule with important therapeutic potential in cancer since IFN-β-induced gene transcription mediates antiproliferation and cell death induction. Whereas, TNF-related apoptosis inducing ligand/Apo2 ligand (TRAIL/Apo2L) has emerged as a promising anticancer agent because it induces apoptosis specifically in cancer cells. In this study, we elucidated that IFN-β augments TRAIL-induced apoptosis synergistically using five human malignant melanoma cells. All of these cells were induced apoptosis by TRAIL. Whereas, the response against IFN-β was different in amelanotic cells (A375 and CRL1579) and melanotic cells (G361, SK-MEL-28, and MeWo). The responsibility of amelanotic cells against IFN-β was higher than those of melanotic cells. The synergism of IFN-β and TRAIL were correlated with the responsibilities of the cells against IFN-β. The synergistic interaction was confirmed by a combination index based on the Chou-Talalay method. The upregulation of apoptosis in amelanotic cells was caused by very low doses of IFN-β (over 0.1 IU/ml). Both of p53-mediated intrinsic pathway and Fas-related extrinsic pathway were activated by IFN-β alone and combination with TRAIL. Further, TRAIL death receptors (DR4 and DR5) were upregulated by a low-dose IFN-β (over 0.1 IU/ml) and the expression was more promoted by the combination with TRAIL. It was clarified that the upregulation of DR5 is associated with the declination of viability.
Collapse
Affiliation(s)
- Akira Kazaana
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Japan
| | - Emiko Sano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Japan
| | - Sodai Yoshimura
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kotaro Makita
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroyuki Hara
- Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Atsuo Yoshino
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Takuya Ueda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Japan
| |
Collapse
|
5
|
Lamballe F, Toscano S, Conti F, Arechederra M, Baeza N, Figarella-Branger D, Helmbacher F, Maina F. Coordination of signalling networks and tumorigenic properties by ABL in glioblastoma cells. Oncotarget 2018; 7:74747-74767. [PMID: 27732969 PMCID: PMC5342699 DOI: 10.18632/oncotarget.12546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022] Open
Abstract
The cytoplasmic tyrosine kinase ABL exerts positive or negative effects in solid tumours according to the cellular context, thus functioning as a “switch modulator”. The therapeutic effects of drugs targeting a set of signals encompassing ABL have been explored in several solid tumours. However, the net contribution of ABL inhibition by these agents remains elusive as these drugs also act on other signalling components. Here, using glioblastoma (GBM) as a cellular paradigm, we report that ABL inhibition exacerbates mesenchymal features as highlighted by down-regulation of epithelial markers and up-regulation of mesenchymal markers. Cells with permanent ABL inhibition exhibit enhanced motility and invasive capabilities, while proliferation and tumorigenic properties are reduced. Intriguingly, permanent ABL inhibition also interferes with GBM neurosphere formation and with expression of stemness markers in sphere-cultured GBM cells. Furthermore, we show that the molecular and biological characteristics of GBM cells with impaired ABL are reversible by restoring ABL levels, thus uncovering a remarkable plasticity of GBM cells to ABL threshold. A phospho-signalling screen revealed that loss of tumorigenic and self-renewal properties in GBM cells under permanent ABL inhibition coincide with drastic changes in the expression and/or phosphorylation levels of multiple signalling components. Our findings identify ABL as a crucial player for migration, invasion, proliferation, tumorigenic, and stem-cell like properties of GBM cells. Taken together, this work supports the notion that the oncogenic role of ABL in GBM cells is associated with its capability to coordinate a signalling setting that determines tumorigenic and stem-cell like properties.
Collapse
Affiliation(s)
- Fabienne Lamballe
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Sara Toscano
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Filippo Conti
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Maria Arechederra
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Nathalie Baeza
- Aix-Marseille Université, Inserm, CRO2 UMR S911, Marseille, France
| | | | - Françoise Helmbacher
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Flavio Maina
- Aix-Marseille Université, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
6
|
Sun Q, Pei C, Li Q, Dong T, Dong Y, Xing W, Zhou P, Gong Y, Zhen Z, Gao Y, Xiao Y, Su J, Ren H. Up-regulation of MSH6 is associated with temozolomide resistance in human glioblastoma. Biochem Biophys Res Commun 2018; 496:1040-1046. [PMID: 29366782 DOI: 10.1016/j.bbrc.2018.01.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/13/2018] [Indexed: 01/13/2023]
Abstract
The impact of DNA mismatch repair (MMR) on resistance to temozolomide (TMZ) therapy in patients with glioblastoma (GBM) is recently reported but the mechanisms are not understood. We aim to analyze the correlation between MMR function and the acquired TMZ resistance in GBM using both relevant clinical samples and TMZ resistant cells. First we found increased expression of MSH6, one of key components of MMR, in recurrent GBM patients' samples who underwent TMZ chemotherapy, comparing with those matched samples collected at the time of diagnosis. Using the cellular models of acquired resistance to TMZ, we further confirmed the up-regulation of MSH6 in TMZ resistant cells. Moreover, a TCGA dataset contains a large cohort of GBM clinical samples with or without TMZ treatment reinforced the increased expression of MSH6 and other MMR genes after long-term TMZ chemotherapy, which may resulted in MMR dysfunction and acquired TMZ resistance. Our results suggest that increased expression of MSH6, or other MMR, may be a new mechanism contributing to the acquired resistance during TMZ therapy; and may serve as an indicator to the resistance in GBM.
Collapse
Affiliation(s)
- Quanye Sun
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Chunying Pei
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Qiuyuan Li
- Fundamental Medicine Institute, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Tianxiu Dong
- Department of Abdominal Ultrasound, The 1st Affiliated Hospital to Harbin Medical University, Harbin 150081, China
| | - Yucui Dong
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Wenjing Xing
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Peng Zhou
- Department of Neurosurgery, The 4th Hospital Affiliated to Harbin Medical University, Harbin 150081, China
| | - Yujiao Gong
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Ziqi Zhen
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Yifan Gao
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Yun Xiao
- Department of Bioinformatics, College of Bioinformatics and Technology, Harbin Medical University, Harbin 150081, China.
| | - Jun Su
- Department of Neurosurgery, The 3rd Hospital Affiliated to Harbin Medical University, Harbin 150086, China.
| | - Huan Ren
- Department of Immunology, Harbin Medical University, Harbin 150081, China; Immunity & Infection Key Laboratory of Heilongjiang Province, Harbin 150081, China.
| |
Collapse
|
7
|
Guishard AF, Yakisich JS, Azad N, Iyer AKV. Translational gap in ongoing clinical trials for glioma. J Clin Neurosci 2018; 47:28-42. [PMID: 29066236 PMCID: PMC5733731 DOI: 10.1016/j.jocn.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022]
Abstract
Despite the vast amounts of information gathered about gliomas, the overall survival of glioma patients has not improved in the last four decades. This could partially be due to an apparent failure to include basic concepts of glioma biology into clinical trials. Specifically, attempts to overcome the limitations of the blood brain barrier (BBB) and the chemoresistance of glioma stem cells (GSCs) were seldom included (a phenomenon known as the translational gap, TG) in a study involving 29 Phase I/II clinical trials (P2CT) published in 2011. The aim of this study was to re-evaluate this finding with a new series of 100 ongoing, but still unpublished, P2CT in order to determine if there is a TG reduction. As indicators, we evaluated in each P2CT the number of drugs tested, concomitant radiotherapy, and the ability of drugs to pass the BBB and to target GSCs. Compared to clinical trials published in 2011, we found that while in OCT there is an increase in the number of P2CT using two drugs (from 24.1% to 44.9%), and an increase in the number of drugs able to pass the BBB (7.14% versus 64.29%) and target GSCs (0% versus 16.3%), there was a decrease in the number of P2CT using concomitant radiotherapy (34.5% versus 18.37%). Overall our results suggest that there is only a modest improvement regarding reducing the TG because the vast majority of ongoing P2CT are still not including well known concepts of glioma biology important for a successful treatment.
Collapse
Affiliation(s)
| | - Juan Sebastian Yakisich
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, VA 23668, USA
| | - Neelam Azad
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, VA 23668, USA
| | - Anand Krishnan V Iyer
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, VA 23668, USA.
| |
Collapse
|
8
|
Hong JD, Wang X, Peng YP, Peng JH, Wang J, Dong YP, He D, Peng ZZ, Tu QS, Sheng LF, Zhong MZ, Duan CJ. Silencing platelet-derived growth factor receptor-β enhances the radiosensitivity of C6 glioma cells in vitro and in vivo. Oncol Lett 2017; 14:329-336. [PMID: 28693172 DOI: 10.3892/ol.2017.6143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/11/2016] [Indexed: 01/03/2023] Open
Abstract
Platelet-derived growth factor receptor (PDGFR)-β is an important tyrosine kinase and its downregulation has been reported to alter the radiosensitivity of glioma cells, although the underlying mechanism is unclear. In order to investigate the effect of PDGFR-β on the radiosensitivity of glioblastoma, the present study transfected C6 glioma cells with a PDGFR-β-specific small interfering (si)RNA expression plasmid, and downregulation of the expression of PDGFR-β in C6 glioma cells was confirmed by western blotting and immunohistochemical analysis. Clone formation assays and xenograft growth curves demonstrated that PDGFR-β-siRNA enhanced the radiosensitivity of C6 glioma cells in vitro and in vivo. Furthermore, MTT and xenograft growth curves demonstrated that PDGFR-β-siRNA inhibited the proliferation of C6 glioma cells in vitro and in vivo, and terminal deoxynucleotidyl transferase dUTP nick end-labeling and immunohistochemical analyses demonstrated that PDGFR-β-siRNA induced apoptosis and inhibited the expression of Ki-67, cyclin B1 and vascular endothelial growth factor in C6 glioma cell xenografts. Taken together, these results suggested that PDGFR-β may be used as a target for the radiosensitization of glioblastoma.
Collapse
Affiliation(s)
- Ji-Dong Hong
- Department of Radiation Oncology, The Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China.,Institute of Medical Sciences, The Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Xia Wang
- Department of Radiation Oncology, The Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yu-Ping Peng
- Department of Radiation Oncology, The Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jiang-Hua Peng
- Department of Radiation Oncology, The Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun Wang
- Institute of Medical Sciences, The Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Ye-Ping Dong
- Institute of Medical Sciences, The Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Dan He
- Institute of Medical Sciences, The Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhen-Zi Peng
- Institute of Medical Sciences, The Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Qing-Song Tu
- Department of Radiation Oncology, The Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Liang-Fang Sheng
- Department of Radiation Oncology, The Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Mei-Zuo Zhong
- Department of Radiation Oncology, The Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Chao-Jun Duan
- Institute of Medical Sciences, The Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China.,Key Laboratory of Cancer Proteomics of the Chinese Ministry of Health, The Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
9
|
Elmaci İ, Altinoz MA, Sav A, Yazici Z, Ozpinar A. Giving another chance to mifepristone in pharmacotherapy for aggressive meningiomas—A likely synergism with hydroxyurea? Curr Probl Cancer 2016; 40:229-243. [DOI: 10.1016/j.currproblcancer.2016.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/10/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022]
|
10
|
Khan AM, Ahmad FJ, Panda AK, Talegaonkar S. Investigation of imatinib loaded surface decorated biodegradable nanocarriers against glioblastoma cell lines: Intracellular uptake and cytotoxicity studies. Int J Pharm 2016; 507:61-71. [DOI: 10.1016/j.ijpharm.2016.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 11/30/2022]
|
11
|
Tobío A, Alfonso A, Botana LM. C-kit mutations determine dasatinib mechanism of action in HMC-1 neoplastic mast cells: dasatinib differently regulates PKCδ translocation in HMC-1(560) and HMC-1(560,816) cell lines. Immunopharmacol Immunotoxicol 2015; 37:380-7. [PMID: 26181649 DOI: 10.3109/08923973.2015.1064132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The second generation of tyrosine kinase inhibitors is a group of compounds that inhibit c-kit receptor activity and therefore widely used in the treatment of mastocytosis. In this research, the relationship between the mechanism of action of tyrosine kinase inhibitors and protein kinase C is investigated in HMC-1(560) or HMC-1(560,816) cell lines. RESULTS From all the tyrosine kinase inhibitors tested, nilotinib is the compound that has the highest cytotoxic effect against HMC-1(560) mast cell line, while midostaurin is the most potent in HMC-1(560,816). Moreover, an increase on histamine release is observed after protein kinase C activation either in HMC-1(560) or HMC-1(560,816) cells. Furthermore, dasatinib increases histamine release in both mast cell lines, which could be related with the secondary reactions previously described in dasatinib-treated patients. Dasatinib also induces Ca(2+)-dependent protein kinase C isoforms translocation from the cytosol to the membrane, whereas protein kinase Cδ is translocated from the cytosol to the nucleus in the HMC-1(560,816) cell line, but not in HMC-1(560) cells. CONCLUSION Results obtained demonstrate that dasatinib induces an important cytotoxic effect in both HMC-1 cell lines and differently regulates protein kinase Cδ in HMC-1(560) and HMC-1(560,816) cells. Finally, our results confirm that PKCδ is an essential target for dasatinib.
Collapse
Affiliation(s)
- Araceli Tobío
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario , Lugo , Spain
| | | | | |
Collapse
|
12
|
Tobío A, Alfonso A, Botana LM. Cross-talks between c-Kit and PKC isoforms in HMC-1560 and HMC-1560,816 cells. Different role of PKCδ in each cellular line. Cell Immunol 2015; 293:104-12. [DOI: 10.1016/j.cellimm.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/25/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022]
|
13
|
Role of receptor tyrosine kinases and their ligands in glioblastoma. Cells 2014; 3:199-235. [PMID: 24709958 PMCID: PMC4092852 DOI: 10.3390/cells3020199] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/12/2014] [Accepted: 03/21/2014] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme is the most frequent, aggressive and fatal type of brain tumor. Glioblastomas are characterized by their infiltrating nature, high proliferation rate and resistance to chemotherapy and radiation. Recently, oncologic therapy experienced a rapid evolution towards “targeted therapy,” which is the employment of drugs directed against particular targets that play essential roles in proliferation, survival and invasiveness of cancer cells. A number of molecules involved in signal transduction pathways are used as molecular targets for the treatment of various tumors. In fact, inhibitors of these molecules have already entered the clinic or are undergoing clinical trials. Cellular receptors are clear examples of such targets and in the case of glioblastoma multiforme, some of these receptors and their ligands have become relevant. In this review, the importance of glioblastoma multiforme in signaling pathways initiated by extracellular tyrosine kinase receptors such as EGFR, PDGFR and IGF-1R will be discussed. We will describe their ligands, family members, structure, activation mechanism, downstream molecules, as well as the interaction among these pathways. Lastly, we will provide an up-to-date review of the current targeted therapies in cancer, in particular glioblastoma that employ inhibitors of these pathways and their benefits.
Collapse
|
14
|
Veine DM, Yao H, Stafford DR, Fay KS, Livant DL. A D-amino acid containing peptide as a potent, noncovalent inhibitor of α5β1 integrin in human prostate cancer invasion and lung colonization. Clin Exp Metastasis 2014; 31:379-93. [PMID: 24464034 DOI: 10.1007/s10585-013-9634-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/28/2013] [Indexed: 01/09/2023]
Abstract
Primary tumors often give rise to disseminated tumor cells (DTC's), which acquire full malignancy after invading distant site(s). Thus, DTC's may be a productive target for preventing prostate cancer metastasis progression. Our prior research showed that PHSCN peptide (Ac-PHSCN-NH2) targets activated α5β1 integrin to prevent invasion and metastasis in preclinical adenocarcinoma models, and disease progression in Phase I clinical trial. Here, we report that D-stereoisomer replacement of histidine and cysteine in PHSCN produces a highly potent derivative, Ac-PhScN-NH2 (PhScN). PhScN was 27,000- to 150,000-fold more potent as an inhibitor of basement membrane invasion by DU 145 and PC-3 prostate cancer cells. A large increase in invasion-inhibitory potency occurred after covalent modification of the sulfhydryl group in PHSCN to prevent disulfide bond formation; while the potency of covalently modified PhScN was not significantly increased. Thus PhScN and PHSCN invasion inhibition occurs by a noncovalent mechanism. These peptides also displayed similar cell surface binding dissociation constants (Kd), and competed for the same site. Consistent with its increased invasion-inhibitory potency, PhScN was also a highly potent inhibitor of lung extravasation and colonization in athymic nude mice: it was several hundred- or several thousand-fold more potent than PHSCN at blocking extravasation by PC-3 or DU 145 cells, and 111,000- or 379,000-fold more potent at inhibiting lung colonization, respectively. Furthermore, systemic 5 mg/kg PhScN monotherapy was sufficient to cause complete regression of established, intramuscular DU 145 tumors. PhScN thus represents a potent new family of therapeutic agents targeting metastasis by DTC's to prevent parallel progression in prostate cancer.
Collapse
Affiliation(s)
- Donna M Veine
- Department of Radiation Oncology, University of Michigan, Room 4424F Medical Science 1, 1301 Catherine Street, Ann Arbor, MI, 48109-5637, USA
| | - Hongren Yao
- Department of Radiation Oncology, University of Michigan, Room 4424F Medical Science 1, 1301 Catherine Street, Ann Arbor, MI, 48109-5637, USA
| | - Daniel R Stafford
- Department of Radiation Oncology, University of Michigan, Room 4424F Medical Science 1, 1301 Catherine Street, Ann Arbor, MI, 48109-5637, USA
| | - Kevin S Fay
- Department of Radiation Oncology, University of Michigan, Room 4424F Medical Science 1, 1301 Catherine Street, Ann Arbor, MI, 48109-5637, USA
| | - Donna L Livant
- Department of Radiation Oncology, University of Michigan, Room 4424F Medical Science 1, 1301 Catherine Street, Ann Arbor, MI, 48109-5637, USA.
| |
Collapse
|
15
|
In Vitro and In Vivo Analysis of RTK Inhibitor Efficacy and Identification of Its Novel Targets in Glioblastomas. Transl Oncol 2013; 6:187-96. [PMID: 23544171 DOI: 10.1593/tlo.12400] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 01/31/2023] Open
Abstract
Treatment for glioblastoma consists of radiotherapy and temozolomide-based chemotherapy. However, virtually all patients recur, leading to a fatal outcome. Receptor tyrosine kinase (RTK)-targeted therapy has been the focus of attention in novel treatment options for these patients. Here, we compared the efficacy of imatinib, sunitinib, and cediranib in glioblastoma models. In the present work, the biologic effect of the drugs was screened by viability, cell cycle, apoptosis, migration, and invasion in vitro assays or in vivo by chick chorioallantoic membrane assay. Intracellular signaling was assessed by Western blot and the RTK targets were identified using phospho-RTK arrays. The amplified status of KIT, PDGFRA, and VEGFR2 genes was assessed by quantitative polymerase chain reaction. In a panel of 10 glioblastoma cell lines, we showed that cediranib was the most potent. In addition, cediranib and sunitinib synergistically sensitize the cells to temozolomide. Cediranib efficacy was shown to associate with higher cytostatic and unique cytotoxic effects in vitro and both antitumoral and antiangiogenic activity in vivo, which could associate with its great capacity to inhibit mitogen-activated protein kinase (MAPK) and AKT pathways. The molecular status of KIT, PDGFRA, and VEGFR2 did not predict glioblastoma cell responsiveness to any of the RTK inhibitors. Importantly, phospho-RTK arrays revealed novel targets for cediranib and sunitinib therapy. In conclusion, the novel targets found may be of value as future biomarkers for therapy response in glioblastoma and lead to the rational selection of patients for effective molecular targeted treatment.
Collapse
|
16
|
Dong Y, Han Q, Zou Y, Deng Z, Lu X, Wang X, Zhang W, Jin H, Su J, Jiang T, Ren H. Long-term exposure to imatinib reduced cancer stem cell ability through induction of cell differentiation via activation of MAPK signaling in glioblastoma cells. Mol Cell Biochem 2012; 370:89-102. [PMID: 22829019 DOI: 10.1007/s11010-012-1401-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/07/2012] [Indexed: 01/13/2023]
Abstract
Glioblastoma multiforme (GBM) was shown to harbor therapy-resistant cancer stem cells that were major causes of recurrence. PDGFR (platelet-derived growth factor receptor) and c-Kit (stem cell factor receptor) signaling play important roles in initiation and maintenance of malignant glioma. This study demonstrated that long-term culture with imatinib mesylate, the tyrosine kinase inhibitor against PDGFR and c-Kit resulted in reduced cancer stem cell ability in glioblastoma cells through cell differentiation. Derived from RG glioblastoma cells co-cultured with imatinib for 3 months, RG-IM cells showed distinct properties of cell cycle distribution and morphology in addition to significantly decreased ability to form aggregates and colonies in vitro and tumorigenicity in vivo. Increased expression of GFAP (astrocyte marker) and class III β-tubulin isotype (Tuj1, neuron marker) were detected with morphology like neurons or astrocytes in RG-IM cells. Furthermore, decreased expression of stem cell markers, i.e., CD133, Oct-3/4, nestin, and Bmi1, and increased terminal neural cell markers, GFAP, Tuj1, etc., were identified in RG-IM at the mRNA level. All these markers were changed in RG cells when PDGFRB and c-Kit expression were double knocked down by siRNA. Cell differentiation agent, all-trans retinoic acid (ATRA) caused similar effect as that with imatinib in RG cells, while adding PDGF-B and SCF in RG-IM resulted in cell dedifferentiation to some extent. Moreover, differentiation in RG cells treated by imatinib or ATRA was mainly driven by MAPK signaling pathways. In summary, continuous inhibition on PDGFR and c-Kit signaling disturbed glioma stem cells biology in subsets of GBM cells and may have potentials in clinical applications.
Collapse
Affiliation(s)
- Yucui Dong
- Department of Immunology, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tan SY, Kan E, Lim WY, Chay G, Law JHK, Soo GW, Bukhari NI, Segarra I. Metronidazole leads to enhanced uptake of imatinib in brain, liver and kidney without affecting its plasma pharmacokinetics in mice. J Pharm Pharmacol 2011; 63:918-25. [DOI: 10.1111/j.2042-7158.2011.01296.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Objectives
The pharmacokinetic interaction between metronidazole, an antibiotic–antiparasitic drug used to treat anaerobic bacterial and protozoal infections, and imatinib, a CYP3A4, P-glycoprotein substrate kinase inhibitor anticancer drug, was evaluated.
Methods
Male imprinting control region mice were given 50 mg/kg imatinib PO (control group) or 50 mg/kg imatinib PO, 15 min after 40 mg/kg PO metronidazole (study group). Imatinib plasma, brain, kidney and liver concentrations were measured by HPLC and non-compartmental pharmacokinetic parameters estimated.
Key findings
Metronidazole coadministration resulted in a double-peak imatinib disposition profile. The maximum concentration (Cmax) decreased by 38%, the area under the curve (AUC0–∞) decreased by 14% and the time to Cmax (Tmax) was earlier (50%) in plasma. Apparent volume of distribution (VSS/F) and oral clearance (Cl/F) increased by 21% and 17%, respectively. Imatinib tissue penetration was higher after metronidazole coadministration, with 1.7 and 2.1-fold AUC0–∞ increases in liver and kidney, respectively. Metronidazole increased imatinib's tissue-to-plasma AUC0–∞ ratio in liver from 2.29 to 4.53 and in kidney from 3.04 to 7.57, suggesting higher uptake efficiency. Brain Cmax was 3.9-fold higher than control and AUC0–t last was 2.3-fold greater than plasma (3.5% in control group). No tissue-plasma concentration correlation was found.
Conclusions
Metronidazole slightly decreased imatinib systemic exposure but enhanced liver, kidney and brain penetration, probably due to metronidazole-mediated inhibition of P-glycoprotein and other efflux transporters. The high brain exposure opens possibilities for treatment of glioma and glioblastoma. Renal and hepatic functions may need to be monitored due to potential renal and hepatic toxicity.
Collapse
Affiliation(s)
- Shin Yee Tan
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Elaine Kan
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Wei Yin Lim
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Grace Chay
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Jason H K Law
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Gian Wan Soo
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Nadeem Irfan Bukhari
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Ignacio Segarra
- Department of Pharmaceutical Technology, School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Imatinib and docetaxel in combination can effectively inhibit glioma invasion in an in vitro 3D invasion assay. J Neurooncol 2010; 101:189-98. [PMID: 20512610 DOI: 10.1007/s11060-010-0246-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/16/2010] [Indexed: 10/19/2022]
Abstract
The main problem in the treatment of malignant astrocytomas is their invasive behaviour. Successful resection of the main tumour mass cannot prevent recurrence due to single cells invading the surrounding brain parenchyma at the time of diagnosis. The classical combination therapy, PCV (Procarbazine, CCNU and Vincristine) used for over 30 years; has shown its clinical effectiveness in the treatment of malignant astrocytomas and glioblastomas is still doubtful. Using an in vitro three dimensional invasion model, we tested the effect of the tyrosine kinase inhibitor imatinib and the microtubule inhibitor docetaxel on the invasion activity of a panel of astrocytic tumour cell lines, including two established glioma cell lines, IPSB-18 and SNB-19, and two primary cell lines, originating from glioblastomas, CLOM002 and UPHHJA, and in normal astrocytes. A dose response curve for each drug alone and in combination was determined. The half maximal inhibitory concentration (IC(50)) concentration of imatinib was between 15.7 and 18.7 μM, which did not affect invasion activity of the cell lines. The IC(50) concentration of docetaxel was between 0.7 and 19.8 nM, and at 14.9 nM docetaxel had a slight transient inhibitory effect on invasion activity of all tested cells. The combination of imatinib at 13.5 μM and docetaxel at 14.9 nM, however, synergistically inhibited cell growth and invasion activity and could not be reversed by drug removal. A combination treatment with tyrosine kinase inhibitors and cytotoxic drugs shows promise in tackling both glioma proliferation and invasion, and could present a new treatment regimen for malignant astrocytomas.
Collapse
|
19
|
Increased potency of the PHSCN dendrimer as an inhibitor of human prostate cancer cell invasion, extravasation, and lung colony formation. Clin Exp Metastasis 2010; 27:173-84. [PMID: 20339907 DOI: 10.1007/s10585-010-9316-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
Activated alpha5beta1 integrin occurs specifically on tumor cells and on endothelial cells of tumor-associated vasculature, and plays a key role in invasion and metastasis. The PHSCN peptide (Ac-PHSCN-NH(2)) preferentially binds activated alpha5beta1, to block invasion in vitro, and inhibit growth, metastasis and tumor recurrence in preclinical models of prostate cancer. In Phase I clinical trial, systemic Ac-PHSCN-NH(2) monotherapy was well tolerated, and metastatic disease progression was prevented for 4-14 months in one-third of treated patients. We have developed a significantly more potent derivative, the PHSCN-polylysine dendrimer (Ac-PHSCNGGK-MAP). Using in vitro invasion assays with naturally serum-free basement membranes, we observed that the PHSCN dendrimer was 130- to 1900-fold more potent than the PHSCN peptide at blocking alpha5beta1-mediated invasion by DU 145 and PC-3 human prostate cancer cells, whether invasion was induced by serum, or by the Ac-PHSRN-NH(2) peptide, under serum-free conditions. The PHSCN dendrimer was also approximately 800 times more effective than PHSCN peptide at preventing DU 145 and PC-3 extravasation in the lungs of athymic mice. Chou-Talalay analysis suggested that inhibition of both invasion in vitro and extravasation in vivo by the PHSCN dendrimer are highly synergistic. We found that many extravasated DU 145 and PC-3 cells go onto develop into metastatic colonies, and that a single pretreatment with the PHSCN dendrimer was 100-fold more affective than the PHSCN peptide at reducing lung colony formation. Since many patients newly diagnosed with prostate cancer already have locally advanced or metastatic disease, the availability of a well-tolerated, nontoxic systemic therapy, like the PHSCN dendrimer, which prevents metastatic progression by inhibiting invasion, could be very beneficial.
Collapse
|
20
|
Yao H, Veine DM, Fay KS, Staszewski ED, Zeng ZZ, Livant DL. The PHSCN dendrimer as a more potent inhibitor of human breast cancer cell invasion, extravasation, and lung colony formation. Breast Cancer Res Treat 2010; 125:363-75. [DOI: 10.1007/s10549-010-0826-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
|
21
|
Ranza E, Mazzini G, Facoetti A, Nano R. In-vitro effects of the tyrosine kinase inhibitor imatinib on glioblastoma cell proliferation. J Neurooncol 2009; 96:349-57. [PMID: 19629393 DOI: 10.1007/s11060-009-9975-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/06/2009] [Indexed: 12/31/2022]
Abstract
Glioblastoma (GBL) is the most malignant brain tumour in adults, causing the death of most patients within 9-12 months of diagnosis. Treatment is based on a combination of surgery, radiation therapy, and chemotherapy. With these treatment modalities, however, responses are extremely poor, so identification of novel treatment strategies is highly warranted. Platelet-derived growth factors (PDGF) and their receptors are commonly coexpressed in GBL, suggesting that stimulation of autocrine PDGF receptors may contribute to their growth. Interest in these receptors as drug target for glioblastoma treatment has increased with the clinical availability of the PDGFR kinase inhibitor antagonist imatinib mesylate (STI571). In this study, T98G and A172 human GBL cell lines were analysed for their sensitivity to treatment with imatinib. In particular, we focussed our attention on analysis of DNA distribution by flow cytometry at different times of incubation with different imatinib concentrations (1-30 microM: ). Our results show that imatinib induces growth arrest in T98G and A172 cells in the G(0)/G(1) phase of the cell cycle, at all the concentrations tested, as early as 24 h after treatment. However we have also seen, by means of annexin V staining, that at 20 and 30 microM: concentrations, in concomitance with a significant growth arrest in the G(0)/G(1) phase, there is an increase of apoptotic cells 48 h after treatment, suggesting that imatinib at low concentrations (1-10 microM: ) could act as a cytostatic agent whereas at high concentrations (20, 30 microM: ) it mainly behaves as a cytotoxic agent.
Collapse
Affiliation(s)
- E Ranza
- Department of Nuclear and Theoretical Physics, University of Pavia, Pavia, Italy.
| | | | | | | |
Collapse
|