1
|
Suzdaltseva Y, Kiselev SL. Mesodermal Derivatives of Pluripotent Stem Cells Route to Scarless Healing. Int J Mol Sci 2023; 24:11945. [PMID: 37569321 PMCID: PMC10418846 DOI: 10.3390/ijms241511945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Scar formation during normal tissue regeneration in adults may result in noticeable cosmetic and functional defects and have a significant impact on the quality of life. In contrast, fetal tissues in the mid-gestation period are known to be capable of complete regeneration with the restitution of the initial architecture, organization, and functional activity. Successful treatments that are targeted to minimize scarring can be realized by understanding the cellular and molecular mechanisms of fetal wound regeneration. However, such experiments are limited by the inaccessibility of fetal material for comparable studies. For this reason, the molecular mechanisms of fetal regeneration remain unknown. Mesenchymal stromal cells (MSCs) are central to tissue repair because the molecules they secrete are involved in the regulation of inflammation, angiogenesis, and remodeling of the extracellular matrix. The mesodermal differentiation of human pluripotent stem cells (hPSCs) recapitulates the sequential steps of embryogenesis in vitro and provides the opportunity to generate the isogenic cell models of MSCs corresponding to different stages of human development. Further investigation of the functional activity of cells from stromal differon in a pro-inflammatory microenvironment will procure the molecular tools to better understand the fundamental mechanisms of fetal tissue regeneration. Herein, we review recent advances in the generation of clonal precursors of primitive mesoderm cells and MSCs from hPSCs and discuss critical factors that determine the functional activity of MSCs-like cells in a pro-inflammatory microenvironment in order to identify therapeutic targets for minimizing scarring.
Collapse
Affiliation(s)
- Yulia Suzdaltseva
- Department of Epigenetics, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119333 Moscow, Russia;
| | | |
Collapse
|
2
|
Soukup R, Gerner I, Mohr T, Gueltekin S, Grillari J, Jenner F. Mesenchymal Stem Cell Conditioned Medium Modulates Inflammation in Tenocytes: Complete Conditioned Medium Has Superior Therapeutic Efficacy than Its Extracellular Vesicle Fraction. Int J Mol Sci 2023; 24:10857. [PMID: 37446034 PMCID: PMC10342101 DOI: 10.3390/ijms241310857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Tendinopathy, a prevalent overuse injury, lacks effective treatment options, leading to a significant impact on quality of life and socioeconomic burden. Mesenchymal stem/stromal cells (MSCs) and their secretome, including conditioned medium (CM) and extracellular vesicles (EVs), have shown promise in tissue regeneration and immunomodulation. However, it remains unclear which components of the secretome contribute to their therapeutic effects. This study aimed to compare the efficacy of CM, EVs, and the soluble protein fraction (PF) in treating inflamed tenocytes. CM exhibited the highest protein and particle concentrations, followed by PF and EVs. Inflammation significantly altered gene expression in tenocytes, with CM showing the most distinct separation from the inflamed control group. Treatment with CM resulted in the most significant differential gene expression, with both upregulated and downregulated genes related to inflammation and tissue regeneration. EV treatment also demonstrated a therapeutic effect, albeit to a lesser extent. These findings suggest that CM holds superior therapeutic efficacy compared with its EV fraction alone, emphasizing the importance of the complete secretome in tendon injury treatment.
Collapse
Affiliation(s)
- Robert Soukup
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
| | - Iris Gerner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Thomas Mohr
- Science Consult DI Thomas Mohr KG, 2353 Guntramsdorf, Austria
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Sinan Gueltekin
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1090 Vienna, Austria
| | - Florien Jenner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
3
|
Rampin A, Skoufos I, Raghunath M, Tzora A, Diakakis N, Prassinos N, Zeugolis DI. Allogeneic Serum and Macromolecular Crowding Maintain Native Equine Tenocyte Function in Culture. Cells 2022; 11:1562. [PMID: 35563866 PMCID: PMC9103545 DOI: 10.3390/cells11091562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
The absence of a native extracellular matrix and the use of xenogeneic sera are often associated with rapid tenocyte function losses during in vitro culture. Herein, we assessed the influence of different sera (equine serum and foetal bovine serum) on equine tenocyte morphology, viability, metabolic activity, proliferation and protein synthesis as a function of tissue-specific extracellular matrix deposition (induced via macromolecular crowding), aging (passages 3, 6, 9) and time in culture (days 3, 5, 7). In comparison to cells at passage 3, at day 3, in foetal bovine serum and without macromolecular crowding (traditional equine tenocyte culture), the highest number of significantly decreased readouts were observed for cells in foetal bovine serum, at passage 3, at day 5 and day 7 and without macromolecular crowding. Again, in comparison to traditional equine tenocyte culture, the highest number of significantly increased readouts were observed for cells in equine serum, at passage 3 and passage 6, at day 7 and with macromolecular crowding. Our data advocate the use of an allogeneic serum and tissue-specific extracellular matrix for effective expansion of equine tenocytes.
Collapse
Affiliation(s)
- Andrea Rampin
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.R.); (I.S.); (A.T.)
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research, School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.R.); (I.S.); (A.T.)
| | - Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Athina Tzora
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.R.); (I.S.); (A.T.)
| | - Nikolaos Diakakis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
| | - Nikitas Prassinos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.D.); (N.P.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research, School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| |
Collapse
|
4
|
Yang JX, Hsiung TC, Weng FC, Ding SL, Wu CP, Conti M, Chuang TH, Catherine Jin SL. Synergistic effect of phosphodiesterase 4 inhibitor and serum on migration of endotoxin-stimulated macrophages. Innate Immun 2019; 24:501-512. [PMID: 30409089 PMCID: PMC6830870 DOI: 10.1177/1753425918809155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macrophage migration is an essential step in host defense against infection and
wound healing. Elevation of cAMP by inhibiting phosphodiesterase 4 (PDE4),
enzymes that specifically degrade cAMP, is known to suppress various
inflammatory responses in activated macrophages, but the role of PDE4 in
macrophage migration is poorly understood. Here we show that the migration of
Raw 264.7 macrophages stimulated with LPS was markedly and dose-dependently
induced by the PDE4 inhibitor rolipram as assessed by scratch wound healing
assay. Additionally, this response required the involvement of serum in the
culture medium as serum starvation abrogated the effect. Further analysis
revealed that rolipram and serum exhibited synergistic effect on the migration,
and the influence of serum was independent of PDE4 mRNA expression in
LPS-stimulated macrophages. Moreover, the enhanced migration by rolipram was
mediated by activating cAMP/exchange proteins directly activated by cAMP (Epac)
signaling, presumably via interaction with LPS/TLR4 signaling with the
participation of unknown serum components. These results suggest that PDE4
inhibitors, together with serum components, may serve as positive regulators of
macrophage recruitment for more efficient pathogen clearance and wound
repair.
Collapse
Affiliation(s)
| | | | - Fu-Chun Weng
- 1 National Central University, Taoyuan City, Taiwan
| | | | | | - Marco Conti
- 3 Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, USA
| | - Tsung-Hsien Chuang
- 4 Immunology Research Center, National Health Research Institutes, Miaoli
| | | |
Collapse
|
5
|
Graham JG, Wang ML, Rivlin M, Beredjiklian PK. Biologic and mechanical aspects of tendon fibrosis after injury and repair. Connect Tissue Res 2019; 60:10-20. [PMID: 30126313 DOI: 10.1080/03008207.2018.1512979] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tendon injuries of the hand that require surgical repair often heal with excess scarring and adhesions to adjacent tissues. This can compromise the natural gliding mechanics of the flexor tendons in particular, which operate within a fibro-osseous tunnel system similar to a set of pulleys. Even combining the finest suture repair techniques with optimal hand therapy protocols cannot ensure predictable restoration of hand function in these cases. To date, the majority of research regarding tendon injuries has revolved around the mechanical aspects of the surgical repair (i.e. suture techniques) and postoperative rehabilitation. The central principles of treatment gleaned from this literature include using a combination of core and epitendinous sutures during repair and initiating motion early on in hand therapy to improve tensile strength and limit adhesion formation. However, it is likely that the best clinical solution will utilize optimal biological modulation of the healing response in addition to these core strategies and, recently, the research in this area has expanded considerably. While there are no proven additive biological agents that can be used in clinical practice currently, in this review, we analyze the recent literature surrounding cytokine modulation, gene and cell-based therapies, and tissue engineering, which may ultimately lead to improved clinical outcomes following tendon injury in the future.
Collapse
Affiliation(s)
- Jack G Graham
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA
| | - Mark L Wang
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA.,b Hand Surgery Division , The Rothman Institute at Thomas Jefferson University , Philadelphia , PA , USA
| | - Michael Rivlin
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA.,b Hand Surgery Division , The Rothman Institute at Thomas Jefferson University , Philadelphia , PA , USA
| | - Pedro K Beredjiklian
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA.,b Hand Surgery Division , The Rothman Institute at Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
6
|
Zöller N, König A, Butting M, Kaufmann R, Bernd A, Valesky E, Kippenberger S. Water-filtered near-infrared influences collagen synthesis of keloid-fibroblasts in contrast to normal foreskin fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:194-202. [DOI: 10.1016/j.jphotobiol.2016.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/13/2016] [Indexed: 01/24/2023]
|
7
|
Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev 2015; 84:240-56. [PMID: 25543005 DOI: 10.1016/j.addr.2014.11.023] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
The last decade has seen significant developments in cell therapies, based on permanently differentiated, reprogrammed or engineered stem cells, for tendon injuries and degenerative conditions. In vitro studies assess the influence of biophysical, biochemical and biological signals on tenogenic phenotype maintenance and/or differentiation towards tenogenic lineage. However, the ideal culture environment has yet to be identified due to the lack of standardised experimental setup and readout system. Bone marrow mesenchymal stem cells and tenocytes/dermal fibroblasts appear to be the cell populations of choice for clinical translation in equine and human patients respectively based on circumstantial, rather than on hard evidence. Collaborative, inter- and multi-disciplinary efforts are expected to provide clinically relevant and commercially viable cell-based therapies for tendon repair and regeneration in the years to come.
Collapse
Affiliation(s)
- Diana Gaspar
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Kyriakos Spanoudes
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Carolyn Holladay
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Dimitrios Zeugolis
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
8
|
Rohde MC, Corydon TJ, Hansen J, Pedersen CB, Schmidt SP, Gregersen N, Banner J. Characteristics of human infant primary fibroblast cultures from Achilles tendons removed post-mortem. Forensic Sci Int 2014; 234:149-53. [PMID: 24378315 DOI: 10.1016/j.forsciint.2013.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 09/27/2013] [Accepted: 11/05/2013] [Indexed: 11/18/2022]
Abstract
Primary cell cultures were investigated as a tool for molecular diagnostics in a forensic setting. Fibroblast cultures had been established from human Achilles tendon resected at autopsies, from cases of sudden infant death syndrome and control infants who died in traumatic events (n=41). After isolation of primary cultures cells were stored at -135°C, and re-established up to 15 years later for experimental intervention. Growth characteristics in cultures were evaluated in relation to the age of the donor, the post mortem interval before sampling, and the storage interval of cells before entry into the study. High interpersonal variation in growth rates and cell doubling time was seen, but no statistically significant differences were found with increasing age of the donor (mean 19 weeks), length of post-mortem interval prior to sampling (6-100 h), or increase in years of storage. Fibroblast cultures established from post-mortem tissue are renewable sources of biological material; they can be the foundation for genetic, metabolic and other functional studies and thus constitute a valuable tool for molecular and pathophysiological investigations in biomedical and forensic sciences.
Collapse
Affiliation(s)
| | | | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Denmark.
| | - Christina Bak Pedersen
- Institute of Forensic Medicine, Department of Forensic Pathology, Aarhus University, Denmark.
| | - Stinne P Schmidt
- Research Unit for Molecular Medicine, Aarhus University, Denmark.
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Aarhus University, Denmark.
| | - Jytte Banner
- Department of Forensic Medicine, Aarhus University, Denmark.
| |
Collapse
|
9
|
Conteduca F, Fabio C, Caperna L, Ludovico C, Ferretti A, Andrea F, Iorio R, Raffaele I, Civitenga C, Carolina C, Ponzo A, Antonio P. Knee stability after anterior cruciate ligament reconstruction in patients older than forty years: comparison between different age groups. INTERNATIONAL ORTHOPAEDICS 2013; 37:2265-9. [PMID: 23995333 DOI: 10.1007/s00264-013-2050-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/21/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of this study was to compare clinical and arthrometrical results of a series of patients older than 40 years with those of younger patients following anterior cruciate ligament (ACL) reconstruction. The hypothesis of this study was that certain biological and biomechanical factors related to middle-aged patients, ACL reconstruction would provide different results compared with younger patients. METHODS Thirty-six patients >40 years operated for ACL reconstruction between 2002 and 2010 were selected for this retrospective study, and results were compared with patients in two other age groups (<30 years and 30-40 years). At a minimum follow-up of two years, patients were reviewed and clinically examined subjectively and objectively according to Tegner, International Knee Documentation Committee (IKDC) classification and Lysholm evaluation scales. An arthrometric evaluation with KT-1000 was also performed. RESULTS No statistically significant difference was found among the three different age groups at the subjective and objective evaluations. However, the KT-1000 arthrometric study showed a statistically significant mean side-to-side difference at 30 lb with 1.8 mm [standard deviation (SD) 2.4] for patients >40 years, 2.7 mm (SD 1.8) for patients aged 30-40 years and 2.6 mm (SD 1.8) for patients <30 years. CONCLUSIONS Our results seem to show that ACL reconstruction is a safe and valid option for patients of all age groups, even for those >40 years. Moreover, in that group, greater knee stability was found when compared with the younger patient groups.
Collapse
Affiliation(s)
| | - Conteduca Fabio
- Azienda Ospedaliera S.Andrea, Via di Grottarossa, 1035-1039, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ionescu LC, Lee GC, Garcia GH, Zachry TL, Shah RP, Sennett BJ, Mauck RL. Maturation state-dependent alterations in meniscus integration: implications for scaffold design and tissue engineering. Tissue Eng Part A 2010; 17:193-204. [PMID: 20712419 DOI: 10.1089/ten.tea.2010.0272] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The knee meniscus is a crucial component of the knee that functions to stabilize the joint, distribute load, and maintain congruency. Meniscus tears and degeneration are common, and natural healing is limited. Notably, few children present with meniscus injuries and other related fibrocartilaginous tissues heal regeneratively in immature animals and in the fetus. In this work, we evaluated fetal, juvenile, and adult bovine meniscus properties and repair capacity in vitro. Although no changes in cell behavior (migration and proliferation) were noted with age, drastic alterations in the density and distribution of the major components of meniscus tissue (proteoglycan, collagen, and DNA) occurred with development. Coincident with these marked tissue changes, the in vitro healing capacity of the tissue decreased with age. Fetal and juvenile meniscus formed a robust repair over 8 weeks on both a histological and mechanical basis, despite a lack of vascular supply. In contrast, adult meniscus did not integrate over this period. However, integration was improved significantly with the addition of the growth factor transforming growth factor-beta 3. Finally, to evaluate engineered scaffold integration in the context of aging, we monitored cellular infiltration from native tissue into engineered nanofibrous constructs. Our findings suggest that maturation processes that enable load bearing in the adult limit endogenous healing potential and identify new metrics for the development of tissue-engineered meniscus implants.
Collapse
Affiliation(s)
- Lara C Ionescu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Satish L, Johnson S, Wang JHC, Post JC, Ehrlich GD, Kathju S. Chaperonin containing T-complex polypeptide subunit eta (CCT-eta) is a specific regulator of fibroblast motility and contractility. PLoS One 2010; 5:e10063. [PMID: 20442790 PMCID: PMC2862014 DOI: 10.1371/journal.pone.0010063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 03/16/2010] [Indexed: 11/19/2022] Open
Abstract
Integumentary wounds in mammalian fetuses heal without scar; this scarless wound healing is intrinsic to fetal tissues and is notable for absence of the contraction seen in postnatal (adult) wounds. The precise molecular signals determining the scarless phenotype remain unclear. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta) is specifically reduced in healing fetal wounds in a rabbit model. In this study, we examine the role of CCT-eta in fibroblast motility and contractility, properties essential to wound healing and scar formation. We demonstrate that CCT-eta (but not CCT-beta) is underexpressed in fetal fibroblasts compared to adult fibroblasts. An in vitro wound healing assay demonstrated that adult fibroblasts showed increased cell migration in response to epidermal growth factor (EGF) and platelet derived growth factor (PDGF) stimulation, whereas fetal fibroblasts were unresponsive. Downregulation of CCT-eta in adult fibroblasts with short inhibitory RNA (siRNA) reduced cellular motility, both basal and growth factor-induced; in contrast, siRNA against CCT-beta had no such effect. Adult fibroblasts were more inherently contractile than fetal fibroblasts by cellular traction force microscopy; this contractility was increased by treatment with EGF and PDGF. CCT-eta siRNA inhibited the PDGF-induction of adult fibroblast contractility, whereas CCT-beta siRNA had no such effect. In each of these instances, the effect of downregulating CCT-eta was to modulate the behavior of adult fibroblasts so as to more closely approximate the characteristics of fetal fibroblasts. We next examined the effect of CCT-eta modulation on alpha-smooth muscle actin (alpha-SMA) expression, a gene product well known to play a critical role in adult wound healing. Fetal fibroblasts were found to constitutively express less alpha-SMA than adult cells. Reduction of CCT-eta with siRNA had minimal effect on cellular beta-actin but markedly decreased alpha-SMA; in contrast, reduction of CCT-beta had minimal effect on either actin isoform. Direct inhibition of alpha-SMA with siRNA reduced both basal and growth factor-induced fibroblast motility. These results indicate that CCT-eta is a specific regulator of fibroblast motility and contractility and may be a key determinant of the scarless wound healing phenotype by means of its specific regulation of alpha-SMA expression.
Collapse
Affiliation(s)
- Latha Satish
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Sandra Johnson
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - James H-C. Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - J. Christopher Post
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Sandeep Kathju
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Brink HE, Bernstein J, Nicoll SB. Fetal dermal fibroblasts exhibit enhanced growth and collagen production in two- and three-dimensional culture in comparison to adult fibroblasts. J Tissue Eng Regen Med 2010; 3:623-33. [PMID: 19685484 DOI: 10.1002/term.204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The high morbidity of tendon injuries and the poor outcomes observed following repair or replacement have stimulated interest in regenerative approaches to treatment and, in particular, the use of cell-based analogues as alternatives to autologous and allogeneic graft repair. Given the known regenerative properties of fetal tissues, the objective of this study was to assess the biological and mechanical properties of tissue-engineered three-dimensional (3D) composites seeded with fetal skin cells. Dermal fibroblasts were isolated from pregnant rats and their fetuses and characterized in monolayer culture and on 3D resorbable polyester scaffolds. To determine the differences between fetal and adult fibroblasts, DNA, total protein and types I and III collagen production were measured. In addition, morphology and mechanical properties of the 3D constructs were examined. In monolayer culture, fetal fibroblasts produced significantly more types I and III collagen and displayed serum-independent growth, while adult fibroblasts elaborated less collagen and exhibited reduced cell spreading and attachment under low-serum conditions. In 3D culture, fetal constructs appeared more developed based on gross examination, with significantly more total DNA, total protein and normalized type I collagen production compared to adult specimens. Finally, after 35 days, fetal fibroblast-seeded constructs possessed superior mechanical properties compared to adult samples. Taken together, these findings indicate that fetal dermal fibroblasts may be an effective source of cells for fabricating tissue equivalents to regenerate injured tendons.
Collapse
Affiliation(s)
- Hallie E Brink
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
13
|
Majewski M, Ochsner PE, Liu F, Flückiger R, Evans CH. Accelerated healing of the rat Achilles tendon in response to autologous conditioned serum. Am J Sports Med 2009; 37:2117-25. [PMID: 19875360 DOI: 10.1177/0363546509348047] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Despite advances in the treatment of ruptured Achilles tendon, imperfections of endogenous repair often leave patients symptomatic. Local administration of autologous conditioned serum (ACS) in patients with inflammatory, degenerative conditions has shown beneficial effects. PURPOSE Because ACS also contains growth factors that should accelerate tendon healing, we studied the effect of ACS on the healing of transected rat Achilles tendon. STUDY DESIGN Controlled laboratory study. METHODS In preliminary in vitro experiments, rat tendons were incubated with ACS and the effect on the expression of Col1A1 and Col3A1 was assessed by real-time quantitative polymerase chain reaction. To test its effect in vivo, the Achilles tendons of 80 Sprague Dawley rats were transected and sutured back together. Ten rats from each group (ACS group, n = 40; control group, n = 40) were euthanized at 1, 2, 4, and 8 weeks postoperatively for biomechanical (n = 7) and histologic (n = 3) testing. Lysyl oxidase activity was assayed by a flurometric assay. The organization of repair tissue was assessed histologically with hematoxylin and eosin- and with Sirius red-stained sections, and with immunohistochemistry. RESULTS Tendons exposed to ACS in vitro showed a greatly enhanced expression of the Col1A1 gene. The ACS-treated tendons were thicker, had more type I collagen, and an accelerated recovery of tendon stiffness and histologic maturity of the repair tissue. However, there were no differences in the maximum load to failure between groups up to week 8, perhaps because lysyl oxidase activities were unchanged. CONCLUSION AND CLINICAL RELEVANCE Overall, our study demonstrates that treatment with ACS has the potential to improve Achilles tendon healing and should be considered as a treatment modality in man. However, as strength was not shown to be increased within the parameters of this study, the clinical importance of the observed changes in humans still needs to be defined.
Collapse
|
14
|
Stalling SS, Nicoll SB. Fetal ACL fibroblasts exhibit enhanced cellular properties compared with adults. Clin Orthop Relat Res 2008; 466:3130-7. [PMID: 18648900 PMCID: PMC2628219 DOI: 10.1007/s11999-008-0391-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 06/30/2008] [Indexed: 01/31/2023]
Abstract
Fetal tendons and skin heal regeneratively without scar formation. Cells isolated from these fetal tissues exhibit enhanced cellular migration and collagen production in comparison to cells from adult tissue. We determined whether fetal and adult fibroblasts isolated from the anterior cruciate ligament (ACL), a tissue that does not heal regeneratively, exhibit differences in cell migration rates and collagen elaboration. An in vitro migration assay showed fetal ACL fibroblasts migrated twice as fast as adult ACL fibroblasts at a rate of 38.90 +/- 7.69 microm per hour compared with 18.88 +/- 4.18 microm per hour, respectively. Quantification of Type I collagen elaboration by enzyme-linked immunosorbent assay showed fetal ACL fibroblasts produced four times the amount of Type I collagen compared with adult ACL fibroblasts after 7 days in culture. We observed no differences in Type III collagen with time for adult or fetal ACL fibroblasts. Our findings indicate fetal ACL fibroblasts are intrinsically different from adult ACL fibroblasts, suggesting the healing potential of the ACL may be age-dependent.
Collapse
Affiliation(s)
- Simone S. Stalling
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 USA
| | - Steven B. Nicoll
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 USA ,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|