1
|
Kaltsas A, Zikopoulos A, Dimitriadis F, Sheshi D, Politis M, Moustakli E, Symeonidis EN, Chrisofos M, Sofikitis N, Zachariou A. Oxidative Stress and Erectile Dysfunction: Pathophysiology, Impacts, and Potential Treatments. Curr Issues Mol Biol 2024; 46:8807-8834. [PMID: 39194738 DOI: 10.3390/cimb46080521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Erectile dysfunction (ED) is a prevalent condition affecting men's sexual health, with oxidative stress (OS) having recently been identified as a significant contributing causative factor. This narrative review aims to elucidate the role of OS in the pathophysiology of ED, focusing on impact, mechanisms, and potential therapeutic interventions. Key findings indicate that OS disrupts endothelial function and nitric oxide (NO) signaling, crucial for erectile function. Various sources of reactive oxygen species (ROS) and their detrimental effects on penile tissue are discussed, including aging, diabetes mellitus, hypertension, hyperlipidemia, smoking, obesity, alcohol consumption, psychological stress, hyperhomocysteinemia, chronic kidney disease, and sickle cell disease. Major sources of ROS, such as NADPH oxidase, xanthine oxidase, uncoupled endothelial NO synthase (eNOS), and mitochondrial electron transport, are identified. NO is scavenged by these ROS, leading to endothelial dysfunction characterized by reduced NO availability, impaired vasodilation, increased vascular tone, and inflammation. This ultimately results in ED due to decreased blood flow to penile tissue and the inability to achieve or maintain an erection. Furthermore, ROS impact the transmission of nitrergic neurotransmitters by causing the death of nitrergic neurons and reducing the signaling of neuronal NO synthase (nNOS), exacerbating ED. Therapeutic approaches targeting OS, including antioxidants and lifestyle modifications, show promise in ameliorating ED symptoms. The review underscores the need for further research to develop effective treatments, emphasizing the interplay between OS and vascular health in ED. Integrating pharmacological and non-pharmacological strategies could enhance clinical outcomes for ED patients, advocating for OS management in ED treatment protocols to improve patient quality of life.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Danja Sheshi
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Magdalena Politis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelos N Symeonidis
- Department of Urology II, European Interbalkan Medical Center, 55535 Thessaloniki, Greece
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
2
|
Ding W, Fan JH, Zhong LR, Wang NX, Liu LH, Zhang HB, Wang L, Wang MQ, He BL, Wei AY. N-acetylcysteine ameliorates erectile dysfunction in rats with hyperlipidemia by inhibiting oxidative stress and corpus cavernosum smooth muscle cells phenotypic modulation. Asian J Androl 2024; 26:99-106. [PMID: 37534881 PMCID: PMC10846835 DOI: 10.4103/aja202324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 05/22/2023] [Indexed: 08/04/2023] Open
Abstract
Hyperlipidemia is a major risk factor for erectile dysfunction (ED). Oxidative stress and phenotypic modulation of corpus cavernosum smooth muscle cells (CCSMCs) are the key pathological factors of ED. N-acetylcysteine (NAC) can inhibit oxidative stress; however, whether NAC can alleviate pathological variations in the corpus cavernosum and promote erectile function recovery in hyperlipidemic rats remains unclear. A hyperlipidemia model was established using 27 eight-week-old male Sprague-Dawley (SD) rats fed a high-fat and high-cholesterol diet (hyperlipidemic rats, HR). In addition, 9 male SD rats were fed a normal diet to serve as controls (NC). HR rats were divided into three groups: HR, HR+normal saline (NS), and HR+NAC (n = 9 for each group; NS or NAC intraperitoneal injections were administered daily for 16 weeks). Subsequently, the lipid profiles, erectile function, oxidative stress, phenotypic modulation markers of CCSMCs, and tissue histology were analyzed. The experimental results revealed that erectile function was significantly impaired in the HR and HR + NS groups, but enhanced in the HR + NAC group. Abnormal lipid levels, over-activated oxidative stress, and multi-organ lesions observed in the HR and HR + NS groups were improved in the HR + NAC group. Moreover, the HR group showed significant phenotypic modulation of CCSMCs, which was also inhibited by NAC treatment. This report focuses on the therapeutic effect of NAC in restoring erectile function using a hyperlipidemic rat model by preventing CCSMC phenotypic modulation and attenuating oxidative stress.
Collapse
Affiliation(s)
- Wei Ding
- Department of Urology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Jun-Hong Fan
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Li-Ren Zhong
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Nan-Xiong Wang
- Department of Urology, Shenzhen Immigration Inspection General Station Hospital, Shenzhen 518000, China
| | - Lu-Hao Liu
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Hai-Bo Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Li Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Ming-Qiang Wang
- Department of Endocrinology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Bing-Lin He
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - An-Yang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
3
|
Comerma-Steffensen S, Prat-Duran J, Mogensen S, Fais R, Pinilla E, Simonsen U. Erectile Dysfunction and Altered Contribution of KCa1.1 and KCa2.3 Channels in the Penile Tissue of Type-2 Diabetic db/db Mice. J Sex Med 2022; 19:697-710. [PMID: 37057569 DOI: 10.1016/j.jsxm.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/15/2022] [Accepted: 02/19/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Activation of endothelial small conductance calcium-activated K+ channels (KCa2.3) and intermediate conductance calcium-activated K+ channels (KCa3.1) leads to vascular relaxation. We found endothelial KCa2.3 down-regulation in the corpus cavernosum diminishes erectile function. AIM We hypothesized that in type-2 diabetic mice, the function of KCa2.3 and KCa1.1 channels is impaired in erectile tissue. METHODS Erectile function was measured, and corpus cavernosum strips were mounted for functional studies and processed for qPCR and immunoblotting. OUTCOMES Effects of type 2 diabetes on erectile function, expression and function of calcium-activated potassium channels. RESULTS In anesthetized diabetic db/db mice, erectile function was markedly decreased compared to non-diabetic heterozygous db/+ mice, and the impairment was even more pronounced compared to normal C57BL/6 mice. qPCR revealed KCa2.3 and KCa1.1α channel expressions were upregulated in corpus cavernosum from db/db mice. Immunoblotting showed down-regulation of KCa2.3 channels in the corpus cavernosum from db/db mice. Acetylcholine relaxations were impaired while relaxations induced by the nitric oxide, donor SNP were unaltered in corpus cavernosum from db/db compared to C57BL/6 and db/+ mice. Apamin, a blocker of KCa2 channels, inhibited acetylcholine relaxation in corpus cavernosum from all experimental groups. In the presence of apamin, acetylcholine relaxation was markedly decreased in corpus cavernosum from db/db vs C57BL/6 and db/+ mice. An opener of KCa2 and KCa3.1 channels, NS309, potentiated acetylcholine relaxations in corpus cavernosum from db/+ and db/db mice. Iberiotoxin, a blocker of KCa1.1 channels, inhibited acetylcholine relaxation in corpus cavernosum from db/+ mice, while there was no effect in tissue from db/db mice. CLINICAL TRANSLATION Erectile function in diabetic db/db mice was severely affected compared to heterozygous and control mice, findings suggesting the non-diabetic db/+ and diabetic db/db mice for translational purpose can be used for drug testing on, respectively, moderate and severe erectile dysfunction. The altered expressions and impaired acetylcholine relaxation in the presence of apamin compared to C57BL/6 mice may suggest decreased KCa1.1 channel function may underpin impaired endothelium-dependent relaxation and erectile dysfunction in diabetic db/db mice. STRENGTHS & LIMITATIONS The present study provides a mouse model for type 2 diabetes to test moderate and severe erectile dysfunction drugs. Decreased KCa1.1 channel function contributes to erectile dysfunction, and it is a limitation that it is not supported by electrophysiological measurements. CONCLUSION Our results suggest that the contribution of iberiotoxin-sensitive KCa1.1 channels to relaxation is reduced in the corpus cavernosum, while apamin-sensitive KCa2.3 channels appear upregulated. The impaired KCa1.1 channel function may contribute to the impaired erectile function in diabetic db/db mice.
Collapse
Affiliation(s)
- Simon Comerma-Steffensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Biomedical Sciences/Animal Physiology, Veterinary Faculty, Central University of Venezuela, Maracay, Aragua, Venezuela
| | | | - Susie Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rafael Fais
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Pharmacology Department, Ribeirao Preto Medical School, Sao Paulo University, Brasil
| | | | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Russo GI, Broggi G, Cocci A, Capogrosso P, Falcone M, Sokolakis I, Gül M, Caltabiano R, Di Mauro M. Relationship between Dietary Patterns with Benign Prostatic Hyperplasia and Erectile Dysfunction: A Collaborative Review. Nutrients 2021; 13:nu13114148. [PMID: 34836403 PMCID: PMC8618879 DOI: 10.3390/nu13114148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Interest in the role of dietary patterns has been consistently emerging in recent years due to much research that has documented the impact of metabolism on erectile dysfunction (ED) and/or benign prostatic hyperplasia (BPH). We conducted a non-systematic review of English articles published from 1964 to September 2021. The search terms were: (“dietary patterns” OR “diet”) AND/OR (“erectile dysfunction”) AND/OR (“benign prostatic hyperplasia”). In the present review, we have highlighted how the association between dietary patterns and two of the most frequent pathologies in urology, namely erectile dysfunction and benign prostatic hyperplasia, is present in the literature. The data suggested that a diet that is more adherent to the Mediterranean diet or that emphasizes the presence of vegetables, fruits, nuts, legumes, and fish or other sources of long-chain (n-3) fats, in addition to reduced content of red meat, may have a beneficial role on erectile function. At the same time, the same beneficial effects can be transferred to BPH as a result of the indirect regulatory effects on prostatic growth and smooth muscle tone, thus determining an improvement in symptoms. Certainly, in-depth studies and translational medicine are needed to confirm these encouraging data.
Collapse
Affiliation(s)
- Giorgio Ivan Russo
- Urology Section, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.)
| | - Andrea Cocci
- Department of Urology, University of Florence, 50100 Florence, Italy;
| | - Paolo Capogrosso
- Department of Urology and Andrology, Ospedale di Circolo and Macchi Foundation, 21100 Varese, Italy;
| | - Marco Falcone
- Department of Urology, Molinette Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10100 Turin, Italy;
| | - Ioannis Sokolakis
- Department of Urology, Martha-Maria Hospital Nuremberg, 90491 Nuremberg, Germany;
| | - Murat Gül
- School of Medicine, Department of Urology, Selcuk University, 42005 Konya, Turkey;
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.)
| | | |
Collapse
|
5
|
de Oliveira AA, Nunes KP. Hypertension and Erectile Dysfunction: Breaking Down the Challenges. Am J Hypertens 2021; 34:134-142. [PMID: 32866225 DOI: 10.1093/ajh/hpaa143] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/15/2020] [Accepted: 08/29/2020] [Indexed: 02/07/2023] Open
Abstract
A diagnostic of hypertension increases the risk of erectile dysfunction (ED); likewise, ED can be an early sign of hypertension. In both cases, there is evidence that endothelial dysfunction is a common link between the 2 conditions. During hypertension, the sustained and widespread release of procontractile factors (e.g., angiotensin II, endothelin 1, and aldosterone) impairs the balance between vasoconstrictors and vasodilators and, in turn, detrimentally impacts vascular and erectile structures. This prohypertensive state associates with an enhancement in the generation of reactive oxygen species, which is not compensated by internal antioxidant mechanisms. Recently, the innate immune system, mainly via Toll-like receptor 4, has also been shown to actively contribute to the pathophysiology of hypertension and ED not only by inducing oxidative stress but also by sustaining a low-grade inflammatory state. Furthermore, some drugs used to treat hypertension can cause ED and, consequently, reduce compliance with the prescribed pharmacotherapy. To break down these challenges, in this review, we focus on discussing the well-established as well as the emerging mechanisms linking hypertension and ED with an emphasis on the signaling network of the vasculature and corpora cavernosa, the vascular-like structure of the penis.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
6
|
PRESERVATION OF ERECTILE FUNCTION BY STATINS IN A RAT MODEL OF ERECTILE DYSFUNCTION INDUCED BY HYPERCHOLESTEROLEMIA. JOURNAL OF MEN'S HEALTH 2020. [DOI: 10.15586/jomh.v16i1.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Exercise training causes a partial improvement through increasing testosterone and eNOS for erectile function in middle-aged rats. Exp Gerontol 2018; 108:131-138. [PMID: 29627420 DOI: 10.1016/j.exger.2018.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/16/2023]
Abstract
PURPOSE Aging changes the balance of sex hormones and causes endothelial dysfunction in the penis, both of which are important determinants of erectile dysfunction (ED). The purpose of this study was to evaluate whether exercise training could protect against erectile dysfunction by increasing serum testosterone and penile eNOS levels in aging rats. METHODS A total of 14 young (2-month-old) and 14 middle-aged (18-month-old) Sprague Dawley rats were randomly assigned to either untrained control (young control, [YC], middle-aged control, [MC]) or endurance exercise-trained (young exercise, [YE], middle-aged exercise, [ME]) groups with seven rats per group. The exercise groups trained with treadmill running for 6 weeks. Body composition parameters (body weight, heart mass, liver mass, and testicular mass), serum sex hormone levels (testosterone, luteinizing hormone, follicle-stimulating hormone, and prolactin), endothelial function-related parameters in the penis (endothelial nitric oxide synthase [eNOS], CD31, alpha smooth muscle actin [α-SMA]), and maximal intracavernous pressure measure (ICP) and total ICP were analyzed in middle-aged rats. RESULTS The middle-aged groups showed increased body weight, as compared with the young groups, but exercise training attenuated the aging-induced increase in body weight. The middle-aged groups had lower testicular mass compared with the young groups, but exercise training attenuated aging-induced decreases in testicular mass. Exercise training increased serum testosterone levels in both the young and middle-aged groups. However, there were no changes in the levels of luteinizing hormone, follicle-stimulating hormone, and prolactin among the groups. MC group showed decreased protein levels of p-eNOS, as compared with the YC group. However, exercise training protected against aging-induced decrease in eNOS and p-eNOS protein levels in the penis. Interestingly, exercise training also increased protein levels of α-SMA and maximal ICP in the middle-aged group. CONCLUSIONS Exercise training has beneficial effects on erectile function in aged rats through increased testosterone production from the testis and strengthening of the cavernous endothelium with activation of eNOS. Therefore, exercise training may be a therapeutic modality for improving erectile dysfunction associated with aging.
Collapse
|
8
|
Karakus S, Musicki B, La Favor JD, Burnett AL. cAMP-dependent post-translational modification of neuronal nitric oxide synthase neuroprotects penile erection in rats. BJU Int 2017; 120:861-872. [PMID: 28782252 DOI: 10.1111/bju.13981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To evaluate neuronal nitric oxide (NO) synthase (nNOS) phosphorylation, nNOS uncoupling, and oxidative stress in the penis and major pelvic ganglia (MPG), before and after the administration of the cAMP-dependent protein kinase A (PKA) agonist colforsin in a rat model of bilateral cavernous nerve injury (BCNI),which mimics nerve injury after prostatectomy. MATERIALS AND METHODS Adult male Sprague-Dawley rats were divided into BCNI and sham-operated groups. Each group included two subgroups: vehicle and colforsin (0.1 mg/kg/day i.p.). After 3 days, erectile function (intracavernosal pressure) was measured and penis and MPG were collected for molecular analyses of phospho (P)-nNOS (Ser-1412 and Ser-847), total nNOS, nNOS uncoupling, binding of protein inhibitor of nNOS (PIN) to nNOS, gp91phox subunit of NADPH oxidase, active caspase 3, PKA catalytic subunit α (PKA-Cα; by Western blot) and oxidative stress (hydrogen peroxide [H2 O2 ] and superoxide by Western blot and microdialysis method). RESULTS Erectile function was decreased 3 days after BCNI and normalized by colforsin. nNOS phosphorylation on both positive (Ser-1412) and negative (Ser-847) regulatory sites, and nNOS uncoupling, were increased after BCNI in the penis and MPG, and normalized by colforsin. H2 O2 and total reactive oxygen species production were increased in the penis after BCNI and normalized by colforsin. Protein expression of gp91phox was increased in the MPG after BCNI and was normalized by colforsin treatment. Binding of PIN to nNOS was increased in the penis after BCNI and was normalized by colforsin treatment. Protein expression of active Caspase 3 was increased in the MPG after BCNI and was normalized by colforsin treatment. Protein expression of PKA-Cα was decreased in the penis after BCNI and normalized by colforsin. CONCLUSION Collectively, BCNI impairs nNOS function in the penis and MPG by mechanisms involving its phosphorylation and uncoupling in association with increased oxidative stress, resulting in erectile dysfunction. PKA activation by colforsin reverses these molecular changes and preserves penile erection in the face of BCNI.
Collapse
Affiliation(s)
- Serkan Karakus
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin D La Favor
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Jang H, Bae WJ, Kim SJ, Cho HJ, Yuk SM, Han DS, Youn CS, Kwon EB, Hwang SY, Kim SW. The herbal formula KH-204 is protective against erectile dysfunction by minimizing oxidative stress and improving lipid profiles in a rat model of erectile dysfunction induced by hypercholesterolaemia. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:129. [PMID: 28235412 PMCID: PMC5324223 DOI: 10.1186/s12906-017-1588-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023]
Abstract
Background Hypercholesterolaemia (HC) is a major risk factor for ischemic heart disease and is also known to be a risk factor for erectile dysfunction (ED). ED caused by HC is thought to be related to HC-induced oxidative stress damage in the vascular endothelium and erectile tissue. KH-204 is an herbal formula with a strong antioxidant effect. We evaluated the effects of KH-204 on erectile function in a rat model of HC-induced ED. Methods Male Sprague-Dawley rats (6 weeks old) were divided into normal control, high-fat and cholesterol diet (HFC), and HFC with KH-204 treatment (HFC + KH) groups (n = 12 each). Normal control group rats were fed normal chow diet. HFC and HFC + KH group rats were fed high-fat and cholesterol diets and treated with or without daily oral doses of KH-204 for 12 weeks. Subsequently, intracavernous pressure (ICP) and mean arterial pressure (MAP) were measured, and lipid profiles, expression of endothelial (eNOS) and neuronal (nNOS) nitric oxide synthase, oxidative stress (8-hydroxy-2-deoxyguanosine), and ratio of smooth muscle cells and collagen fibres were evaluated in the serum and corpora tissue. Results Compared to the HFC group, the HFC + KH group showed statistically significant increases in peak ICP and ICP/MAP ratio, expression of eNOS and nNOS, and ratio of smooth muscle cells and collagen fibres (p < 0.05). The HFC + KH group also showed statistically significant decreases in oxidative stress (p < 0.05). Further the lipid profiles of this group were ameliorated compared to those of the HFC group (p < 0.05). Conclusions The current study shows that the antioxidant and hypolipidemic effects of KH-204 are effective in ameliorating ED by restoring endothelial dysfunction and suggests that KH-204 may be a potential therapeutic agent for ED by correcting the fundamental cause of ED.
Collapse
|
10
|
Musicki B, Burnett AL. Constitutive NOS uncoupling and NADPH oxidase upregulation in the penis of type 2 diabetic men with erectile dysfunction. Andrology 2017; 5:294-298. [PMID: 28076881 DOI: 10.1111/andr.12313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/24/2016] [Accepted: 11/15/2016] [Indexed: 01/31/2023]
Abstract
Erectile dysfunction (ED) associated with type 2 diabetes mellitus (T2DM) involves dysfunctional nitric oxide (NO) signaling and increased oxidative stress in the penis. However, the mechanisms of endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) dysregulation, and the sources of oxidative stress, are not well defined, particularly at the human level. The objective of this study was to define whether uncoupled eNOS and nNOS, and NADPH oxidase upregulation, contribute to the pathogenesis of ED in T2DM men. Penile erectile tissue was obtained from 9 T2DM patients with ED who underwent penile prosthesis surgery for ED, and from six control patients without T2DM or ED who underwent penectomy for penile cancer. The dimer-to-monomer protein expression ratio, an indicator of uncoupling for both eNOS and nNOS, total protein expressions of eNOS and nNOS, as well as protein expressions of NADPH oxidase catalytic subunit gp91phox (an enzymatic source of oxidative stress) and 4-hydroxy-2-nonenal [4-HNE] and nitrotyrosine (markers of oxidative stress) were measured by western blot in this tissue. In the erectile tissue of T2DM men, eNOS and nNOS uncoupling and protein expressions of NADPH oxidase subunit gp91phox, 4-HNE- and nitrotyrosine-modified proteins were significantly (p < 0.05) increased compared to control values. Total eNOS and nNOS protein expressions were not significantly different between the groups. In conclusion, mechanisms of T2DM-associated ED in the human penis may involve uncoupled eNOS and nNOS and NADPH oxidase upregulation. Our description of molecular factors contributing to the pathogenesis of T2DM-associated ED at the human level is relevant to advancing clinically therapeutic approaches to restore erectile function in T2DM patients.
Collapse
Affiliation(s)
- B Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - A L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Vascular adaptation to aerobic exercise: A new experimental approach. Sci Sports 2015. [DOI: 10.1016/j.scispo.2014.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Oliver JL, Kavoussi PK, Smith RP, Woodson RI, Corbett ST, Costabile RA, Palmer LA, Lysiak JJ. The Role of Regulatory Proteins and S‐nitrosylation of Endothelial Nitric Oxide Synthase in the Human Clitoris: Implications for Female Sexual Function. J Sex Med 2014; 11:1927-35. [DOI: 10.1111/jsm.12576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Yetik-Anacak G, Sorrentino R, Linder AE, Murat N. Gas what: NO is not the only answer to sexual function. Br J Pharmacol 2014; 172:1434-54. [PMID: 24661203 DOI: 10.1111/bph.12700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/18/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023] Open
Abstract
The ability to get and keep an erection is important to men for several reasons and the inability is known as erectile dysfunction (ED). ED has started to be accepted as an early indicator of systemic endothelial dysfunction and subsequently of cardiovascular diseases. The role of NO in endothelial relaxation and erectile function is well accepted. The discovery of NO as a small signalling gasotransmitter led to the investigation of the role of other endogenously derived gases, carbon monoxide (CO) and hydrogen sulphide (H2 S) in physiological and pathophysiological conditions. The role of NO and CO in sexual function and dysfunction has been investigated more extensively and, recently, the involvement of H2 S in erectile function has also been confirmed. In this review, we focus on the role of these three sister gasotransmitters in the physiology, pharmacology and pathophysiology of sexual function in man, specifically erectile function. We have also reviewed the role of soluble guanylyl cyclase/cGMP pathway as a common target of these gasotransmitters. Several studies have proposed alternative therapies targeting different mechanisms in addition to PDE-5 inhibition for ED treatment, since some patients do not respond to these drugs. This review highlights complementary and possible coordinated roles for these mediators and treatments targeting these gasotransmitters in erectile function/ED.
Collapse
Affiliation(s)
- G Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | | | | | | |
Collapse
|
14
|
Comparing the effects of meal replacements with reduced-fat diet on weight, sexual and endothelial function, testosterone and quality of life in obese Asian men. Int J Impot Res 2013; 26:61-6. [PMID: 24196274 DOI: 10.1038/ijir.2013.36] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/23/2013] [Accepted: 09/23/2013] [Indexed: 12/21/2022]
Abstract
Sexual dysfunction is more prevalent in obese than in normal-weight men. Meal replacements (MRs) are useful weight-loss strategies. We randomized obese (body mass index 27.5 kg m(-2), waist circumference (WC) 90 cm) Asian men (mean age 40.5 years, range 30-61) to a conventional reduced-fat diet (CD) (n=24) or MR-based plan (n=24) to reduce daily intake by 400 kcal for 12 weeks. There were significantly greater reductions in weight (4.2 ± 0.8 kg), WC (4.6 ± 0.7 cm), calorie and fat intake in the MR group, compared with the CD group (2.5 ± 0.4 kg, 2.6 ± 0.5 cm). Erectile function (International Index of Erectile Function 5-item score) improved comparably in the MR (3.4 ± 0.7 points) and CD (2.5 ± 0.5 points) groups, as did the Sexual Desire Inventory score (5.5 ± 2.3 vs 7.7 ± 2.1 points), quality of life (36-item Short Form survey score), plasma testosterone and endothelial function (Reactive Hyperemia Index). Subjects were switched to or continued CD for another 28 weeks. Weight, WC and erectile function were maintained at 40 weeks. MR induces greater reductions in weight and abdominal obesity than conventional diet, and comparable improvements in sexual and endothelial function, testosterone and quality of life.
Collapse
|
15
|
Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol 2013; 2:1143-211. [PMID: 23798298 DOI: 10.1002/cphy.c110025] [Citation(s) in RCA: 1310] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic diseases are major killers in the modern era. Physical inactivity is a primary cause of most chronic diseases. The initial third of the article considers: activity and prevention definitions; historical evidence showing physical inactivity is detrimental to health and normal organ functional capacities; cause versus treatment; physical activity and inactivity mechanisms differ; gene-environment interaction (including aerobic training adaptations, personalized medicine, and co-twin physical activity); and specificity of adaptations to type of training. Next, physical activity/exercise is examined as primary prevention against 35 chronic conditions [accelerated biological aging/premature death, low cardiorespiratory fitness (VO2max), sarcopenia, metabolic syndrome, obesity, insulin resistance, prediabetes, type 2 diabetes, nonalcoholic fatty liver disease, coronary heart disease, peripheral artery disease, hypertension, stroke, congestive heart failure, endothelial dysfunction, arterial dyslipidemia, hemostasis, deep vein thrombosis, cognitive dysfunction, depression and anxiety, osteoporosis, osteoarthritis, balance, bone fracture/falls, rheumatoid arthritis, colon cancer, breast cancer, endometrial cancer, gestational diabetes, pre-eclampsia, polycystic ovary syndrome, erectile dysfunction, pain, diverticulitis, constipation, and gallbladder diseases]. The article ends with consideration of deterioration of risk factors in longer-term sedentary groups; clinical consequences of inactive childhood/adolescence; and public policy. In summary, the body rapidly maladapts to insufficient physical activity, and if continued, results in substantial decreases in both total and quality years of life. Taken together, conclusive evidence exists that physical inactivity is one important cause of most chronic diseases. In addition, physical activity primarily prevents, or delays, chronic diseases, implying that chronic disease need not be an inevitable outcome during life.
Collapse
Affiliation(s)
- Frank W Booth
- Departments of Biomedical Sciences, Medical Pharmacology and Physiology, and Nutrition and Exercise Physiology, Dalton Cardiovascular Institute, University of Missouri, Columbia, Missouri, USA.
| | | | | |
Collapse
|
16
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Treatment with CB2 agonist JWH-133 reduces histological features associated with erectile dysfunction in hypercholesterolemic mice. Clin Dev Immunol 2013; 2013:263846. [PMID: 24302957 PMCID: PMC3835849 DOI: 10.1155/2013/263846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/08/2013] [Accepted: 09/09/2013] [Indexed: 12/20/2022]
Abstract
Hypercholesterolemia is one of the most important risk factors for erectile dysfunction, mostly due to the impairment of oxidative stress and endothelial function in the penis. The cannabinoid system might regulate peripheral mechanisms of sexual function; however, its role is still poorly understood. We investigated the effects of CB2 activation on oxidative stress and fibrosis within the corpus cavernosum of hypercholesterolemic mice. Apolipoprotein-E-knockout mice were fed with a western-type diet for 11 weeks and treated with JWH-133 (selective CB2 agonist) or vehicle during the last 3 weeks. CB2 receptor expression, total collagen content, and reactive oxygen species (ROS) production within the penis were assessed. In vitro corpus cavernosum strips preparation was performed to evaluate the nitric oxide (NO) bioavailability. CB2 protein expression was shown in cavernosal endothelial and smooth muscle cells of wild type and hypercholesterolemic mice. Treatment with JWH-133 reduced ROS production and NADPH-oxidase expression in hypercholesterolemic mice penis. Furthermore, JWH-133 increased endothelial NO synthase expression in the corpus cavernosum and augmented NO bioavailability. The decrease in oxidative stress levels was accompanied with a reduction in corpus cavernosum collagen content. In summary, CB2 activation decreased histological features, which were associated with erectile dysfunction in hypercholesterolemic mice.
Collapse
|
18
|
La Favor JD, Anderson EJ, Dawkins JT, Hickner RC, Wingard CJ. Exercise prevents Western diet-associated erectile dysfunction and coronary artery endothelial dysfunction: response to acute apocynin and sepiapterin treatment. Am J Physiol Regul Integr Comp Physiol 2013; 305:R423-34. [PMID: 23761637 PMCID: PMC4839473 DOI: 10.1152/ajpregu.00049.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/05/2013] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate aerobic exercise training as a means to prevent erectile dysfunction (ED) and coronary artery disease (CAD) development associated with inactivity and diet-induced obesity. Male Sprague-Dawley rats were fed a Western diet (WD) or a control diet (CD) for 12 wk. Subgroups within each diet remained sedentary (Sed) or participated in aerobic interval treadmill running throughout the dietary intervention. Erectile function was evaluated under anesthesia by measuring the mean arterial pressure and intracavernosal pressure in response to electrical field stimulation of the cavernosal nerve, in the absence or presence of either apocynin, an NADPH oxidase inhibitor, or sepiapterin, a tetrahydrobiopterin precursor. Coronary artery endothelial function (CAEF) was evaluated ex vivo with cumulative doses of ACh applied to preconstricted segments of the left anterior descending coronary artery. CAEF was assessed in the absence or presence of apocynin or sepiapterin. Erectile function (P < 0.0001) and CAEF (P < 0.001) were attenuated in WD-Sed. Exercise preserved erectile function (P < 0.0001) and CAEF (P < 0.05) within the WD. Erectile function (P < 0.01) and CAEF (P < 0.05) were augmented by apocynin only in WD-Sed, while sepiapterin (P < 0.05) only augmented erectile function in WD-Sed. These data demonstrate that a chronic WD induces impairment in erectile function and CAEF that are commonly partially reversible by apocynin, whereas sepiapterin treatment exerted differential functional effects between the two vascular beds. Furthermore, exercise training may be a practical means of preventing diet-induced ED and CAD development.
Collapse
Affiliation(s)
- Justin D. La Favor
- Department of Kinesiology, East Carolina University, Greenville, North Carolina
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Ethan J. Anderson
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina; and
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Jillian T. Dawkins
- Department of Kinesiology, East Carolina University, Greenville, North Carolina
- Department of Physiology, East Carolina University, Greenville, North Carolina; and
| | - Robert C. Hickner
- Department of Kinesiology, East Carolina University, Greenville, North Carolina
- Department of Physiology, East Carolina University, Greenville, North Carolina; and
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Christopher J. Wingard
- Department of Physiology, East Carolina University, Greenville, North Carolina; and
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| |
Collapse
|
19
|
Khoo J, Tian HH, Tan B, Chew K, Ng CS, Leong D, Teo RCC, Chen RYT. Comparing Effects of Low- and High-Volume Moderate-Intensity Exercise on Sexual Function and Testosterone in Obese Men. J Sex Med 2013; 10:1823-32. [DOI: 10.1111/jsm.12154] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Guerrero F, Thioub S, Goanvec C, Theunissen S, Feray A, Balestra C, Mansourati J. Effect of tetrahydrobiopterin and exercise training on endothelium-dependent vasorelaxation in SHR. J Physiol Biochem 2013; 69:277-87. [PMID: 23011782 DOI: 10.1007/s13105-012-0210-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 09/05/2012] [Indexed: 12/13/2022]
Abstract
We examined whether the improvement of impaired NO-dependent vasorelaxation by exercise training could be mediated through a BH4-dependent mechanism. Male spontaneously hypertensive rats (SHR, n = 20) and Wistar-Kyoto rats (WKY, n = 20) were trained (Tr) for 9 weeks on a treadmill and compared to age-matched sedentary animals (Sed). Endothelium-dependent vasorelaxation (EDV) was assessed with acetylcholine by measuring isometric tension in rings of femoral artery precontracted with 10(-5) M phenylephrine. EDV was impaired in SHR-Sed as compared to WKY-Sed (p = 0.02). Training alone improved EDV in both WKY (p = 0.01) and SHR (p = 0.0001). Moreover, EDV was not different in trained SHR than in trained WKY (p = 0.934). Pretreatment of rings with L-NAME (50 μM) cancelled the difference in ACh-induced relaxation between all groups, suggesting that NO pathway is involved in these differences. The presence of 10(-5) M BH4 in the organ bath significantly improved EDV for sedentary SHR (p = 0.030) but not WKY group (p = 0.815). Exercise training turned the beneficial effect of BH4 on SHR to impairment of ACh-induced vasorelaxation in both SHR-Tr (p = 0.01) and WKY-Tr groups (p = 0.04). These results suggest that beneficial effect of exercise training on endothelial function is due partly to a BH4-dependent mechanism in established hypertension.
Collapse
Affiliation(s)
- François Guerrero
- European University of Britany, University of Brest, EA4324 ORPHY, 6 avenue Le Gorgeu, CS 93837, 29238, Brest, France,
| | | | | | | | | | | | | |
Collapse
|
21
|
La Favor JD, Anderson EJ, Hickner RC, Wingard CJ. Erectile dysfunction precedes coronary artery endothelial dysfunction in rats fed a high-fat, high-sucrose, Western pattern diet. J Sex Med 2012; 10:694-703. [PMID: 23170997 DOI: 10.1111/jsm.12001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction. It is suggested that erectile dysfunction (ED) may be an early risk factor for cardiovascular disease. Aim. The goal of this study was to determine whether development of ED precedes the onset of coronary artery endothelial dysfunction in response to a Western diet (WD), thereby establishing whether the WD differentially impacts the endothelium in a time-dependent manner. Additionally, a goal was to determine if diet-induced ED is reversible with intracavernosal sepiapterin treatment. Methods. Male Sprague-Dawley rats were fed a WD for 4, 8, or 12 weeks, or a control diet for 8 weeks. Erectile function was evaluated by measuring the mean arterial pressure (MAP) and intracavernosal pressure (ICP) in response to electrical field stimulation of the cavernosal nerve near the major pelvic ganglion, in the absence and presence of sepiapterin. Coronary artery endothelial function was evaluated ex vivo with cumulative doses of acetylcholine (ACh) applied to segments of the left anterior descending coronary artery preconstricted with serotonin. Main Outcome Measures. Erectile function was assessed as the ICP response to electrical field stimulation (EFS), normalized to MAP. Coronary artery endothelial function was assessed as the effective concentration producing 50% of a maximal response (EC50 ) of the ACh response. Results. The ICP/MAP response to EFS was significantly attenuated following both 8 and 12 weeks of the WD compared with the control diet (P < 0.05). Sepiapterin treatment augmented the ICP/MAP response in all WD groups (P < 0.05). The coronary artery EC50 of the ACh response was not different from control following 4 or 8 weeks but was significantly elevated following 12 weeks of the WD (P < 0.01). Conclusions. These data suggest that erectile function is reduced prior to coronary artery endothelial function in response to the WD. Improvement of erectile function with sepiapterin in WD rats indicates that nitric oxide synthase uncoupling is a key mechanism in diet-induced ED. La Favor JD, Anderson EJ, Hickner RC, and Wingard CJ. Erectile dysfunction precedes coronary artery endothelial dysfunction in rats fed a high-fat, high-sucrose, Western pattern diet. J Sex Med 2013;10:694-703.
Collapse
Affiliation(s)
- Justin D La Favor
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | | | | | | |
Collapse
|
22
|
Schjørring O, Kun A, Flyvbjerg A, Kirkeby HJ, Jensen JB, Simonsen U. Flow‐Evoked Vasodilation Is Blunted in Penile Arteries from Zucker Diabetic Fatty Rats. J Sex Med 2012; 9:1789-800. [DOI: 10.1111/j.1743-6109.2012.02743.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Musicki B, Liu T, Sezen SF, Burnett AL. Targeting NADPH oxidase decreases oxidative stress in the transgenic sickle cell mouse penis. J Sex Med 2012; 9:1980-7. [PMID: 22620981 DOI: 10.1111/j.1743-6109.2012.02798.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. AIMS We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. METHODS SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) ), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. MAIN OUTCOME MEASURES Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. RESULTS Relative to hemi mice, SCD increased (P<0.05) protein expression of NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) , 4-HNE-modified proteins, induced eNOS uncoupling, and reduced Gpx1 expression in the penis. Apocynin treatment of sickle mice reversed (P<0.05) the abnormalities in protein expressions of p47(phox) , gp91(phox) (but not p67(phox) ) and 4-HNE, but only slightly (P>0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. CONCLUSION NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a potential target for improving vascular function in the SCD mouse penis.
Collapse
Affiliation(s)
- Biljana Musicki
- Department of Urology, The Johns Hopkins University, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
24
|
Energy restriction and exercise modulate angiopoietins and vascular endothelial growth factor expression in the cavernous tissue of high-fat diet-fed rats. Asian J Androl 2011; 14:635-42. [PMID: 22138901 DOI: 10.1038/aja.2011.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The purpose of the current study was to evaluate the effect of a high-fat (HF) diet, energy restriction and exercise on the expression of vascular endothelial growth factor (VEGF), angiopoietin (Ang) 1 and 2, and their receptors in rat corpus cavernosum (CC). Male Wistar rats were fed ad libitum with an HF diet for 8 or 16 weeks. After 8 weeks of the HF diet, a group of rats was subjected to energy restriction with or without exercise for 8 weeks. Control animals had free access to standard diet for the same period. After euthanasia, blood was collected and the penises removed for immunofluorescence assays (VEGF, VEGF receptor (VEGFR) 1 and 2, Ang1, Ang2 and Tie2) and semiquantification of VEGF, VEGFR1, VEGFR2, Ang1, Ang2, Tie2, endothelial nitric oxide synthase (eNOS) and Akt/phospho-Akt by Western blotting. HF diet-fed rats exhibited lower high-density lipoprotein cholesterol (HDL-c) levels, higher systolic blood pressure and an increased atherogenic index. A significant increase in Ang2 expression in the CC was verified and coupled to a decrease in VEGF and VEGFRs. The Akt pathway was activated by the HF diet. Energy restriction and exercise increased eNOS expression and restored most HF diet-induced modifications except for VEGFR2 expression. These results emphasize the role of diet on vascular function regulation, demonstrating that cavernous imbalance of VEGF/VEGFRs and Angs/Tie2 systems occurs before serum lipid changes and obesity onset, antedating structural atherosclerotic features.
Collapse
|
25
|
Musicki B, Liu T, Lagoda GA, Strong TD, Sezen SF, Johnson JM, Burnett AL. Hypercholesterolemia-induced erectile dysfunction: endothelial nitric oxide synthase (eNOS) uncoupling in the mouse penis by NAD(P)H oxidase. J Sex Med 2011; 7:3023-32. [PMID: 20626609 DOI: 10.1111/j.1743-6109.2010.01880.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Hypercholesterolemia induces erectile dysfunction (ED) mostly by increasing oxidative stress and impairing endothelial function in the penis, but the mechanisms regulating reactive oxygen species (ROS) production in the penis are not understood. AIMS We evaluated whether hypercholesterolemia activates nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase in the penis, providing an initial source of ROS to induce endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction resulting in ED. METHODS Low-density-lipoprotein receptor (LDLR)-null mice were fed Western diet for 4 weeks to induce early-stage hyperlipidemia. Wild type (WT) mice fed regular chow served as controls. Mice received NAD(P)H oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Erectile function was assessed in response to cavernous nerve electrical stimulation. Markers of endothelial function (phospho [P]-vasodilator-stimulated-protein [VASP]-Ser-239), oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NAD[P]H oxidase subunits p67(phox) , p47(phox) , and gp91(phox) ), P-eNOS-Ser-1177, and eNOS were measured by Western blot in penes. MAIN OUTCOME MEASURES The main outcome measures are the molecular mechanisms of ROS generation and endothelial dysfunction in hypercholesterolemia-induced ED. RESULTS Erectile response was significantly (P<0.05) reduced in hypercholesterolemic LDLR-null mice compared with WT mice. Relative to WT mice, hypercholesterolemia increased (P<0.05) protein expressions of NAD(P)H oxidase subunits p67(phox) , p47(phox) and gp91(phox) , eNOS uncoupling, and 4-HNE-modified proteins, and reduced (P<0.05) P-VASP-Ser-239 expression in the penis. Apocynin treatment of LDLR-null mice preserved (P<0.05) maximal intracavernosal pressure, and reversed (P<0.05) the abnormalities in protein expressions of gp67(phox) and gp47(phox) , 4-HNE, P-VASP-Ser-239, and eNOS uncoupling in the penis. Apocynin treatment of WT mice did not affect any of these parameters. Protein expressions of P-eNOS-Ser-1177 and total eNOS were unaffected by hypercholesterolemia. CONCLUSION Activated NAD(P)H oxidase in the penis is an initial source of oxidative stress resulting in eNOS uncoupling, thus providing a mechanism of eNOS uncoupling and endothelial dysfunction in hypercholesterolemia-induced ED.
Collapse
Affiliation(s)
- Biljana Musicki
- Department of Urology, Johns Hopkins University, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Johnson JM, Bivalacqua TJ, Lagoda GA, Burnett AL, Musicki B. eNOS-uncoupling in age-related erectile dysfunction. Int J Impot Res 2011; 23:43-8. [PMID: 21289638 DOI: 10.1038/ijir.2011.2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH(4)) on erectile function in the aged rats. Male Fischer 344 'young' (4-month-old) and 'aged' (19-month-old) rats were treated with a BH(4) precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED.
Collapse
Affiliation(s)
- J M Johnson
- Department of Urology, The Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
27
|
Musicki B, Champion HC, Hsu LL, Bivalacqua TJ, Burnett AL. Post-translational inactivation of endothelial nitric oxide synthase in the transgenic sickle cell mouse penis. J Sex Med 2010; 8:419-26. [PMID: 21143412 DOI: 10.1111/j.1743-6109.2010.02123.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Sickle cell disease (SCD)-associated priapism is characterized by endothelial nitric oxide synthase (eNOS) dysfunction in the penis. However, the mechanism of decreased eNOS function/activation in the penis in association with SCD is not known. AIMS Our hypothesis in the present study was that eNOS is functionally inactivated in the SCD penis in association with impairments in eNOS post-translational phosphorylation and the enzyme's interactions with its regulatory proteins. METHODS Sickle cell transgenic (sickle) mice were used as an animal model of SCD. Wild-type (WT) mice served as controls. Penes were excised at baseline for molecular studies. eNOS phosphorylation on Ser-1177 (positive regulatory site) and Thr-495 (negative regulatory site), total eNOS, and phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177) expressions, and eNOS interactions with heat-shock protein 90 (HSP90) and caveolin-1 were measured by Western blot. Constitutive NOS catalytic activity was measured by conversion of L-[14C]arginine-to-L-[14C]citrulline in the presence of calcium. MAIN OUTCOME MEASURES Molecular mechanisms of eNOS dysfunction in the sickle mouse penis. RESULTS eNOS phosphorylated on Ser-1177, an active portion of eNOS, was decreased in the sickle mouse penis compared with WT penis. eNOS interaction with its positive protein regulator HSP90, but not with its negative protein regulator caveolin-1, and phosphorylated AKT expression, as well as constitutive NOS activity, were also decreased in the sickle mouse penis compared with WT penis. eNOS phosphorylated on Thr-495, total eNOS, HSP90, and caveolin-1 protein expressions in the penis were not affected by SCD. CONCLUSIONS These findings provide a molecular basis for chronically reduced eNOS function in the penis by SCD, which involves decreased eNOS phosphorylation on Ser-1177 and decreased eNOS-HSP90 interaction.
Collapse
Affiliation(s)
- Biljana Musicki
- The Johns Hopkins University, Department of Urology, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Esposito K, Giugliano F, Maiorino MI, Giugliano D. Dietary Factors, Mediterranean Diet and Erectile Dysfunction. J Sex Med 2010; 7:2338-45. [DOI: 10.1111/j.1743-6109.2010.01842.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Bae JH, Kim JW, Kweon GR, Park MG, Jeong KH, Kim JJ, Moon DG. Corpus cavernosal smooth muscle relaxation effect of a novel AMPK activator, beta-lapachone. J Sex Med 2010; 8:2205-14. [PMID: 20487243 DOI: 10.1111/j.1743-6109.2010.01809.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Adenosine monophosphate-activated protein kinase (AMPK) activation is suggested to relax smooth muscle by endothelial nitric oxide synthase (eNOS) phosphorylation. AIM To assess the mechanism and effect of a novel AMPK activator, beta-lapachone, upon cavernosal smooth muscle relaxation and the therapeutic potential for erectile dysfunction. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with beta-lapachone. The lysates were blotted with specific antibodies for phosphorylated AMPK (p-AMPK) or phosphorylated eNOS (p-eNOS). The membranes were re-blotted for total AMP total eNOS, or beta-actin. The eNOS activity was measured by the conversion of L-14C-arginine to L-14C-citrulline in HUVECs lysates. In a separated experiment, cavernosal strips from New Zealand white rabbits were harvested for organ bath study and the relaxation effect of beta-lapachone on phenylephrine-induced contracted strips was evaluated and compared with sodium nitroprusside, zaprinast, metformin, and aminoimidazole carboxamide ribonucleotide (AICAR). Methylene blue and L-NAME were used to assess the inhibition of cyclic guanosine monophosphate/nitric oxide pathway. Zinc-protoporphyrin-IX (ZnPP) was also used to investigate the contribution of mevalonate pathway. MAIN OUTCOME MEASURES The expression of p-AMPK, p-eNOS, AMPK and eNOS induced by beta-lapachone in HUVECs study and the percent relaxation of cavernosal tissue in organ bath study. RESULTS Beta-lapachone clearly induced AMPK phosphorylation and, as a consequence, eNOS phosphorylation in HUVECs. Beta-lapachone-induced upregulation of eNOS activity was also observed in HUVECs and steadily increased up to 1 hour. In organ bath study, beta-lapachone significantly relaxed the phenylephrine pretreated strips in a dose-dependent manner. This relaxation effect was not totally blocked by methylene blue or L-NAME. After removing endothelium, the relaxation was totally blocked by ZnPP. CONCLUSIONS A novel AMPK activator, beta-lapachone has a strong relaxation effect on precontracted cavernosal smooth muscle strips in the rabbit. And phosphorylation of AMPK and eNOS strongly related to the action of beta-lapachone. Mevalonate pathway also might be considered as a suggestive mechanism.
Collapse
Affiliation(s)
- Jae Hyun Bae
- Department of Urology, Korea University Medical Center and Korea University Institute of Regenerative Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Maio G, Saraeb S, Marchiori A. Physical activity and PDE5 inhibitors in the treatment of erectile dysfunction: results of a randomized controlled study. J Sex Med 2010; 7:2201-2208. [PMID: 20367777 DOI: 10.1111/j.1743-6109.2010.01783.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Physical activity (PhA) has proven to be a protective factor for normal erectile function in numerous epidemiological studies. AIM The aim of this study was to establish if PhA could have a therapeutic role in the treatment of erectile dysfunction (ED). METHODS This was a randomized, open-label study. A total of 60 patients complaining of ED were studied. Patients were assessed at baseline and after 3 months of study treatment. At baseline, patients were randomized to receive phosphodiesterase type 5 inhibitor (PDE5i) alone (group A) or PDE5i plus regular (≥3 hours/week), aerobic, non-agonistic PhA (group B). MAIN OUTCOME MEASURES All subjects completed the International Index of Erectile Function (IIEF-15) questionnaire and performed total testosterone (TT). RESULTS Mean PhA was 3.4 hours/week in group B vs. 0.43 in group A; mean energy expenditure in group B was 1,868 kcal/ week or 22.8 metabolic equivalent (MET)/week. IIEF restoration of ED occurred in 77.8% (intervention group) vs. 39.3% (control) (P < 0.004). The IIEF-15 score resulted in statistical improvement in intervention group in all the domains but one (orgasm): erectile function 24.7 vs. 26.8 (P = 0.003); confidence (Q15) 3.53 vs. 4.07 (P = 0.006); sexual desire 6.46 vs. 7.18 (P = 0.028); intercourse satisfaction 9.85 vs. 11.25 (P = 0.001); total satisfaction 7.17 vs. 8.07 (P = 0.009); total score 56.2 vs. 61.07 (P = 0.007). TT was statistically similar in the two groups; separate analysis in each group showed statistical increase in group B 4.24 vs. 4.55 (P = 0.012). At multivariate logistic regression analysis, PhA was the only independent variable for normal erection (P = 0.010) (95% confidence interval [CI] 0.036-0.643), higher sexual satisfaction (P = 0.022) (95% CI 0.084-0.821) and normal total IIEF-15 score (P = 0.023) (95% CI 0.85-0.837). CONCLUSION In this randomized controlled pilot study, PDE5i plus PhA was more effective than PDE5i alone in the treatment of ED.
Collapse
Affiliation(s)
- Giuseppe Maio
- Policlinico Abano Terme, Andrological Unit, Padova, Italy.
| | | | | |
Collapse
|
32
|
Musicki B, Liu T, Strong TD, Lagoda GA, Bivalacqua TJ, Burnett AL. Post-translational regulation of endothelial nitric oxide synthase (eNOS) by estrogens in the rat vagina. J Sex Med 2010; 7:1768-77. [PMID: 20233295 DOI: 10.1111/j.1743-6109.2010.01750.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Estrogens control vaginal blood flow during female sexual arousal mostly through nitric oxide (NO). Although vascular effects of estrogens are attributed to an increase in endothelial NO production, the mechanisms of endothelial NO synthase (eNOS) regulation by estrogens in the vagina are largely unknown. AIMS Our hypothesis was that estrogens regulate eNOS post-translationally in the vagina, providing a mechanism to affect NO bioavailability without changes in eNOS protein expression. METHODS We measured eNOS phosphorylation and eNOS interaction with caveolin-1 and heat shock protein 90 (HSP90) in the distal and proximal vagina of female rats at diestrus, 7 days after ovariectomy and 2 days after replacement of ovariectomized rats with estradiol-17beta (15 microg). MAIN OUTCOME MEASURES Molecular mechanisms of eNOS regulation by estrogen in the rat vagina. RESULTS We localized phospho-eNOS (Ser-1177) immunohistochemically to the endothelium lining blood vessels and vaginal sinusoids. Estrogen withdrawal decreased phosphorylation of eNOS on its positive regulatory site (Ser-1177) and increased eNOS binding to its negative regulator caveolin-1 (without affecting eNOS/HSP90 interaction), and they were both normalized by estradiol replacement. Protein expressions of phosphorylated Akt (protein kinase B) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) were not affected by estrogen status, suggesting that the effect of estrogens on eNOS (Ser-1177) phosphorylation was not mediated by activated AKT or ERK1/2. eNOS phosphorylation on its negative regulatory site (Ser-114) was increased in the vagina by estrogen withdrawal and normalized by estradiol replacement, implying that the maintenance of low phosphorylation of eNOS on this site by estradiol may limit eNOS interaction with caveolin-1 and preserve the enzyme's activity. Total eNOS, inducible NOS, caveolin-1, and HSP90 protein expressions were not affected by ovariectomy or estradiol replacement in the distal or proximal vagina. CONCLUSIONS These results define novel estrogen signaling mechanisms in the vagina which involve eNOS phosphorylation and eNOS-caveolin-1 interaction.
Collapse
Affiliation(s)
- Biljana Musicki
- Department of Urology, The Johns Hopkins University, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Carneiro FS, Sturgis LC, Giachini FRC, Carneiro ZN, Lima VV, Wynne BM, San Martin S, Brands MW, Tostes RC, Webb RC. TNF-alpha knockout mice have increased corpora cavernosa relaxation. J Sex Med 2009; 6:115-25. [PMID: 19170842 DOI: 10.1111/j.1743-6109.2008.01029.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Erectile dysfunction is considered an early clinical manifestation of vascular disease and an independent risk factor for cardiovascular events associated with endothelial dysfunction and increased levels of pro-inflammatory cytokines. Tumor necrosis factor-alpha (TNF-alpha), a pro-inflammatory cytokine, suppresses endothelial nitric oxide synthase (eNOS) expression. AIM Considering that nitric oxide (NO) is of critical importance in penile erection, we hypothesized that blockade of TNF-alpha actions would increase cavernosal smooth muscle relaxation. METHODS In vitro organ bath studies were used to measure cavernosal reactivity in wild type and TNF-alpha knockout (TNF-alpha KO) mice and NOS expression was evaluated by western blot. In addition, spontaneous erections (in vivo) were evaluated by videomonitoring the animals (30 minutes). Collagen and elastin expression were evaluated by Masson trichrome and Verhoff-van Gieson stain reaction, respectively. MAIN OUTCOME MEASURES Corpora cavernosa from TNF-alpha KO mice exhibited increased NO-dependent relaxation, which was associated with increased eNOS and neuronal NOS (nNOS) cavernosal expression. RESULTS Cavernosal strips from TNF-alpha KO mice displayed increased endothelium-dependent (97.4 +/- 5.3 vs. CONTROL 76.3 +/- 6.3, %) and nonadrenergic-noncholinergic (93.3 +/- 3.0 vs. CONTROL 67.5 +/- 16.0; 16 Hz) relaxation compared to control animals. These responses were associated with increased protein expression of eNOS and nNOS (P < 0.05). Sympathetic-mediated (0.69 +/- 0.16 vs. CONTROL 1.22 +/- 0.22; 16 Hz) as well as phenylephrine-induced contractile responses (1.6 +/- 0.1 vs. CONTROL 2.5 +/- 0.1, mN) were attenuated in cavernosal strips from TNF-alpha KO mice. Additionally, corpora cavernosa from TNF-alpha KO mice displayed increased collagen and elastin expression. In vivo experiments demonstrated that TNF-alpha KO mice display increased number of spontaneous erections. CONCLUSION Corpora cavernosa from TNF-alpha KO mice display alterations that favor penile tumescence, indicating that TNF-alpha plays a detrimental role in erectile function. A key role for TNF-alpha in mediating endothelial dysfunction in ED is markedly relevant since we now have access to anti-TNF-alpha therapies.
Collapse
Affiliation(s)
- Fernando S Carneiro
- Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo; Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
INTRODUCTION The endothelial monolayer plays a crucial role in the vasodilation and hemodynamic events involved in erection physiology. Due to its relevant functions, a close link has been established between endothelial integrity and erectile dysfunction (ED). Endothelial dysfunction is induced by the detrimental actions of vascular risk factors (VRFs), identified as common correlates for the development of cardiovascular disease and ED. It is currently recognized that ED is the early harbinger of a more generalized vascular systemic disorder, and, therefore, an evaluation of endothelial health in ED patients should be of prime relevance. Several noninvasive methods for endothelial function assessment have been proposed, including the Penile Nitric Oxide Release Test (PNORT). AIM To highlight the most recent gathered knowledge on basic and clinical mechanisms underlying loss of cavernosal endothelial function promoted by VRFs and to discuss local and systemic methods for endothelial function assessment in ED individuals, focusing on the PNORT. MAIN OUTCOME MEASURES A complete revision on the novel basic and clinical links between endothelial and ED. METHODS A systematic review of the literature regarding the aforementioned issues. RESULTS Risk factor-associated cavernosal endothelial dysfunction is mostly induced by unifying mechanisms, including oxidative stress and impaired endothelial nitric oxide functional activities, which present clinically as ED. Several techniques to evaluate endothelial dysfunction were revised, with advantages and limitations debated, focusing on our detailed expertise using the PNORT method. CONCLUSIONS The established endothelial-erectile dysfunction connection was thoroughly revised, from basic mechanisms to the clinical importance of endothelial dysfunction assessment as diagnosis for generalized vascular disease. Further studies are required to disclose efficient approaches to repair disabled endothelium and both restore and prevent endothelial dysfunction.
Collapse
Affiliation(s)
- Carla Costa
- Faculty of Medicine of the University of Porto, Department of Biochemistry (U38-FCT), Porto, Portugal.
| | | |
Collapse
|
36
|
Erol B, Bozdogan G, Akduman B, Dursun A, Bozdogan S, Onem K, Mungan A. eNOS Gene Intron 4 VNTR and Exon 7-G894T Polymorphisms in Turkish Men with Erectile Dysfunction: A Case Control Study. J Sex Med 2009; 6:1423-9. [DOI: 10.1111/j.1743-6109.2009.01226.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Musicki B, Ross AE, Champion HC, Burnett AL, Bivalacqua TJ. Posttranslational modification of constitutive nitric oxide synthase in the penis. ACTA ACUST UNITED AC 2009; 30:352-62. [PMID: 19342700 DOI: 10.2164/jandrol.108.006999] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Erectile dysfunction (ED) is a common men's health problem characterized by the consistent inability to sustain an erection sufficient for sexual intercourse. Basic science research on erectile physiology has been devoted to investigating the pathogenesis of ED and has led to the conclusion that ED is predominately a disease of vascular origin, neurogenic dysfunction, or both. The constitutive forms of nitric oxide synthase (NOS, endothelial [eNOS] and neuronal [nNOS]) are important enzymes involved in the production of nitric oxide (NO) and thus regulate penile vascular homeostasis. Given the effect of endothelial- and neuronal-derived NO in penile vascular biology, a great deal of research over the past decade has focused on the role of NO synthesis from the endothelium and nitrergic nerve terminal in normal erectile physiology, as well as in disease states. Loss of the functional integrity of the endothelium and subsequent endothelial dysfunction plays an integral role in the occurrence of ED. Therefore, molecular mechanisms involved in dysregulation of these NOS isoforms in the development of ED are essential to discovering the pathogenesis of ED in various disease states. This communication reviews the role of eNOS and nNOS in erectile physiology and discusses the alterations in eNOS and nNOS via posttranslation modification in various vascular diseases of the penis.
Collapse
Affiliation(s)
- Biljana Musicki
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins Medical Institutions, 600 N Wolfe Avenue, Marburg 143, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
38
|
Kuo YC, Chung SD, Liu SP, Chang HC, Yu HJ, Hsieh JT. The Role of Chloride Channels in Rat Corpus Cavernosum: In Vivo Study. J Sex Med 2009; 6:708-16. [DOI: 10.1111/j.1743-6109.2008.01062.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Carosa E, Rossi S, Giansante N, Gravina GL, Castri A, Dolci S, Botti F, Morelli A, Di Luigi L, Pepe M, Lenzi A, Jannini EA. The ontogenetic expression pattern of type 5 phosphodiesterase correlates with androgen receptor expression in rat corpora cavernosa. J Sex Med 2008; 6:388-96. [PMID: 19138372 DOI: 10.1111/j.1743-6109.2008.01091.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The mechanisms controlling erection in animals and in humans are mainly age-dependent. However, the ontogenesis of the biochemical machinery of erection is largely unknown. AIM The aim of this article was to study the expression pattern of androgen receptor (AR) and the major cyclic guanosine monophosphate-hydrolyzing enzyme present in the corpora cavernosa, type 5 phosphodiesterase (PDE5), in the rat penis during development. METHODS AR and PDE5 expression was tested on ribonucleic acids (RNAs) and proteins extracted from the whole penis or from primary cultures of smooth muscle cells obtained from the corpora cavernosa of 3- (rCC3), 20- (rCC20), and 60- (rCC60) day-old rats. Rat corpus cavernosum cells were characterized by immunocytochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR). MAIN OUTCOME MEASURES Expression of PDE5 and AR messenger RNA (mRNA) and protein have been measured by RT-PCR and Western blot, respectively. RESULTS A significant increase in PDE5 mRNA expression was observed with RT-PCR from prepuberty to adulthood (0.5 +/- 0.06 vs. 1.6 +/- 0.046 arbitrary units [a.u.]P = 0.049). This age-dependent increase was mirrored by the increase in PDE5 protein expression found when comparing neonatal to adult corpus cavernosum smooth muscle cells (1.5 +/- 0.26 vs. 4.9 +/- 0.59 a.u. P = 0.0038) and the further 1.6-fold increase from rCC20 to rCC60 (4.9 +/- 0.59 vs. 8.0 +/- 0.8 a.u. P = 0.0024). This is the first demonstration of the ontogenetic profile of PDE5 expression in corpus cavernosum smooth muscle. As it has been demonstrated that androgens control PDE5 expression and that PDE5 inhibitors need an optimal androgenic milieu to act perfectly on erection, the expression of AR protein in rat corpus cavernosum cells was then tested by Western blot. A 7.0-fold increase was observed in primary cultured cells from 3 to 60 days old (1.4 +/- 0.38 vs. 9.8 +/- 1.3 a.u. P = 0.0052). CONCLUSION The increase in ARs during rat penile development parallels that of PDE5 RNA and protein, thus suggesting a positive effect of androgens on PDE5 expression.
Collapse
Affiliation(s)
- Eleonora Carosa
- Course of Endocrinology and Medical Sexology, Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shakirova Y, Hedlund P, Swärd K. Impaired nerve-mediated relaxation of penile tissue from caveolin-1 deficient mice. Eur J Pharmacol 2008; 602:399-405. [PMID: 19068211 DOI: 10.1016/j.ejphar.2008.11.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/29/2008] [Accepted: 11/17/2008] [Indexed: 11/18/2022]
Abstract
Caveolin-1-deficient mice are characterised by a high vascular NO production. Because NO-dependent smooth muscle relaxation is considered to play an important role in penile erection, it was hypothesized that the erectile function would be affected by genetic ablation of caveolae. This study assessed penile erectile mechanisms in caveolin-1 knockout (KO) mice ex vivo. Immunofluorescence confirmed caveolin-1 expression primarily in the endothelium surrounding the sinusoids of the corpus cavernosum, but also in smooth muscle cells of the sinusoidal bundles. In KO mice, caveolin-1 was absent, and the expression of the caveola-associated protein PTRF-Cavin was reduced. Nitric oxide synthase (endothelial and neuronal) and caveolin-3 levels were not affected, and staining of the neuronal marker PGP 9.5 did not disclose any apparent change in the density or pattern of innervation. Moreover, no apparent morphological differences were noted. Functionally, the force response following stimulation of alpha(1)-adrenergic receptors, and the sensitivity to the Rho-kinase inhibitor Y27632, were unaltered, whereas relaxation of alpha(1)-precontracted corpus cavernosum in response to electrical field stimulation and the muscarinic agonist carbachol were impaired. The nitric oxide donor sodium nitroprusside produced less relaxation in KO as compared to wild type corpus cavernosum. We conclude that nerve-mediated dilatation of the corpus cavernosum is impaired in the absence of caveolin-1, and that this is due in part to reduced sensitivity of the target tissue to NO. All in all our data support an important role of caveolin-1 in penile erection.
Collapse
Affiliation(s)
- Yulia Shakirova
- Department of Experimental Medical Science, Lund University, Biomedical Centre, BMC D12, Lund, Sweden.
| | | | | |
Collapse
|