1
|
Wodelo W, Wampande EM, Andama A, Kateete DP, Ssekatawa K. Polymorphisms in Immune Genes and Their Association with Tuberculosis Susceptibility: An Analysis of the African Population. Appl Clin Genet 2024; 17:33-46. [PMID: 38567200 PMCID: PMC10986402 DOI: 10.2147/tacg.s457395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Tuberculosis remains a global health concern, with substantial mortality rates worldwide. Genetic factors play a significant role in influencing susceptibility to tuberculosis. This review examines the current progress in studying polymorphisms within immune genes associated with tuberculosis susceptibility, focusing on African populations. The roles of various proteins, including Toll-like receptors, Dendritic Cell-Specific Intercellular Adhesion Molecule-3 Grabbing Non-Integrin, vitamin D nuclear receptor, soluble C-type lectins such as surfactant proteins A and D, C-type Lectin Domain Family 4 Member E, and mannose-binding lectin, phagocyte cytokines such as Interleukin-1, Interleukin-6, Interleukin-10, Interleukin-12, and Interleukin-18, and chemokines such as Interleukin-8, monocyte chemoattractant protein 1, Regulated upon activation, normal T-cell expressed and secreted are explored in the context of tuberculosis susceptibility. We also address the potential impact of genetic variants on protein functions, as well as how these findings align with the genetic polymorphisms not associated with tuberculosis. Functional studies in model systems provide insights into the intricate host-pathogen interactions and susceptibility mechanisms. Despite progress, gaps in knowledge remain, highlighting the need for further investigations. This review emphasizes the association of Single Nucleotide Polymorphisms with diverse aspects of tuberculosis pathogenesis, including disease detection and Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Wycliff Wodelo
- Department of Immunology and Molecular Biology, School of Biomedical Science, College of Health Science, Makerere University, Kampala, Uganda
| | - Eddie M Wampande
- Department of Immunology and Molecular Biology, School of Biomedical Science, College of Health Science, Makerere University, Kampala, Uganda
- Department of Veterinary Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Alfred Andama
- Department of Medical Microbiology, School of Medicine, College of Health Science, Makerere University, Kampala, Uganda
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Science, College of Health Science, Makerere University, Kampala, Uganda
| | - Kenneth Ssekatawa
- Department of Science, Technical and Vocational Education, Makerere University, Kampala, Uganda
- Africa Center Excellence in Materials Product Development and Nanotechnology (MAPRONANO ACE), Makerere University, Kampala, Uganda
| |
Collapse
|
2
|
Dow CT, Lin NW, Chan ED. Sarcoidosis, Mycobacterium paratuberculosis and Noncaseating Granulomas: Who Moved My Cheese. Microorganisms 2023; 11:microorganisms11040829. [PMID: 37110254 PMCID: PMC10143120 DOI: 10.3390/microorganisms11040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Clinical and histological similarities between sarcoidosis and tuberculosis have driven repeated investigations looking for a mycobacterial cause of sarcoidosis. Over 50 years ago, "anonymous mycobacteria" were suggested to have a role in the etiology of sarcoidosis. Both tuberculosis and sarcoidosis have a predilection for lung involvement, though each can be found in any area of the body. A key histopathologic feature of both sarcoidosis and tuberculosis is the granuloma-while the tuberculous caseating granuloma has an area of caseous necrosis with a cheesy consistency; the non-caseating granuloma of sarcoidosis does not have this feature. This article reviews and reiterates the complicity of the infectious agent, Mycobacterium avium subsp. paratuberculosis (MAP) as a cause of sarcoidosis. MAP is involved in a parallel story as the putative cause of Crohn's disease, another disease featuring noncaseating granulomas. MAP is a zoonotic agent infecting ruminant animals and is found in dairy products and in environmental contamination of water and air. Despite increasing evidence tying MAP to several human diseases, there is a continued resistance to embracing its pleiotropic roles. "Who Moved My Cheese" is a simple yet powerful book that explores the ways in which individuals react to change. Extending the metaphor, the "non-cheesy" granuloma of sarcoidosis actually contains the difficult-to-detect "cheese", MAP; MAP did not move, it was there all along.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI 53705, USA
| | - Nancy W Lin
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Edward D Chan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Department of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Asante-Poku A, Morgan P, Osei-Wusu S, Aboagye SY, Asare P, Otchere ID, Adadey SM, Mnika K, Esoh K, Mawuta KH, Arthur N, Forson A, Mazandu GK, Wonkam A, Yeboah-Manu D. Genetic Analysis of TB Susceptibility Variants in Ghana Reveals Candidate Protective Loci in SORBS2 and SCL11A1 Genes. Front Genet 2022; 12:729737. [PMID: 35242163 PMCID: PMC8886735 DOI: 10.3389/fgene.2021.729737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022] Open
Abstract
Despite advancements made toward diagnostics, tuberculosis caused by Mycobacterium africanum (Maf) and Mycobacterium tuberculosis sensu stricto (Mtbss) remains a major public health issue. Human host factors are key players in tuberculosis (TB) outcomes and treatment. Research is required to probe the interplay between host and bacterial genomes. Here, we explored the association between selected human/host genomic variants and TB disease in Ghana. Paired host genotype datum and infecting bacterial isolate information were analyzed for associations using a multinomial logistic regression. Mycobacterium tuberculosis complex (MTBC) isolates were obtained from 191 TB patients and genotyped into different phylogenetic lineages by standard methods. Two hundred and thirty-five (235) nondisease participants were used as healthy controls. A selection of 29 SNPs from TB disease-associated genes with high frequency among African populations was assayed using a TaqMan® SNP Genotyping Assay and iPLEX Gold Sequenom Mass Genotyping Array. Using 26 high-quality SNPs across 326 case-control samples in an association analysis, we found a protective variant, rs955263, in the SORBS2 gene against both Maf and Mtb infections (PBH = 0.05; OR = 0.33; 95% CI = 0.32–0.34). A relatively uncommon variant, rs17235409 in the SLC11A1 gene was observed with an even stronger protective effect against Mtb infection (MAF = 0.06; PBH = 0.04; OR = 0.05; 95% CI = 0.04–0.05). These findings suggest SLC11A1 and SORBS2 as a potential protective gene of substantial interest for TB, which is an important pathogen in West Africa, and highlight the need for in-depth host-pathogen studies in West Africa.
Collapse
Affiliation(s)
- Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- *Correspondence: Adwoa Asante-Poku,
| | - Portia Morgan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Samuel Yaw Aboagye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Samuel Mawuli Adadey
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Khuthala Mnika
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kevin Esoh
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kenneth Hayibor Mawuta
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Nelly Arthur
- Department of Chest Diseases, Korle-Bu Teaching Hospital Korle-Bu, Accra, Ghana
| | - Audrey Forson
- Department of Chest Diseases, Korle-Bu Teaching Hospital Korle-Bu, Accra, Ghana
| | - Gaston Kuzamunu Mazandu
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Ma PY, Tan JE, Hee EW, Yong DWX, Heng YS, Low WX, Wu XH, Cletus C, Kumar Chellappan D, Aung K, Yong CY, Liew YK. Human Genetic Variation Influences Enteric Fever Progression. Cells 2021; 10:cells10020345. [PMID: 33562108 PMCID: PMC7915608 DOI: 10.3390/cells10020345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/06/2023] Open
Abstract
In the 21st century, enteric fever is still causing a significant number of mortalities, especially in high-risk regions of the world. Genetic studies involving the genome and transcriptome have revealed a broad set of candidate genetic polymorphisms associated with susceptibility to and the severity of enteric fever. This review attempted to explain and discuss the past and the most recent findings on human genetic variants affecting the progression of Salmonella typhoidal species infection, particularly toll-like receptor (TLR) 4, TLR5, interleukin (IL-) 4, natural resistance-associated macrophage protein 1 (NRAMP1), VAC14, PARK2/PACRG, cystic fibrosis transmembrane conductance regulator (CFTR), major-histocompatibility-complex (MHC) class II and class III. These polymorphisms on disease susceptibility or progression in patients could be related to multiple mechanisms in eliminating both intracellular and extracellular Salmonella typhoidal species. Here, we also highlighted the limitations in the studies reported, which led to inconclusive results in association studies. Nevertheless, the knowledge obtained through this review may shed some light on the development of risk prediction tools, novel therapies as well as strategies towards developing a personalised typhoid vaccine.
Collapse
Affiliation(s)
- Pei Yee Ma
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Jing En Tan
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Edd Wyn Hee
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Dylan Wang Xi Yong
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Yi Shuan Heng
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Wei Xiang Low
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Xun Hui Wu
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Christy Cletus
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Kyan Aung
- Department of Pathology, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Yun Khoon Liew
- Department of Life Sciences, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| |
Collapse
|
5
|
Role of Infections in the Pathogenesis of Rheumatoid Arthritis: Focus on Mycobacteria. Microorganisms 2020; 8:microorganisms8101459. [PMID: 32977590 PMCID: PMC7598258 DOI: 10.3390/microorganisms8101459] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease characterized by chronic erosive polyarthritis. A complex interaction between a favorable genetic background, and the presence of a specific immune response against a broad-spectrum of environmental factors seems to play a role in determining susceptibility to RA. Among different pathogens, mycobacteria (including Mycobacterium avium subspecies paratuberculosis, MAP), and Epstein–Barr virus (EBV), have extensively been proposed to promote specific cellular and humoral response in susceptible individuals, by activating pathways linked to RA development. In this review, we discuss the available experimental and clinical evidence on the interplay between mycobacterial and EBV infections, and the development of the immune dysregulation in RA.
Collapse
|
6
|
Wang H, Yuan FF, Dai ZW, Wang B, Ye DQ. Association between rheumatoid arthritis and genetic variants of natural resistance-associated macrophage protein 1 gene: A meta-analysis. Int J Rheum Dis 2019; 21:1651-1658. [PMID: 30345642 DOI: 10.1111/1756-185x.13366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/03/2018] [Accepted: 07/19/2018] [Indexed: 11/29/2022]
Abstract
AIM To evaluate the association between natural resistance-associated macrophage protein 1 (NRAMP1) polymorphisms and rheumatoid arthritis (RA). METHOD All related studies were retrieved and screened from PubMed, CNKI and Web of Science. Pooled odds ratios (ORs) and 95% CIs were assessed for the strength of association between NRAMP1 and RA. Publication bias was measured by Begg's funnel plot and Egger's regression test. The robustness of this meta-analysis was detected by sensitivity analysis. RESULTS A total of five eligible publications were included in the present meta-analysis. The polled data showed no association between RA and NRAMP1 D543N and 1729 + 55del4 in the allele model. However, the relationship between RA and NRAMP1 INT4 was statistically significant (OR 1.65, 95% CI 1.14-2.38). Genotypic analysis demonstrated that there were no associations between RA and NRAMP1 D543N, 1729 + 55del4 and INT4 in homozygous comparison (D543N: OR 0.97, 95% CI 0.15-6.09; 1729 + 55del4: OR 1.19, 95% CI 0.29-24.88; INT4: OR 3.18, 95% CI 0.62-16.26), dominant model (D543N: OR 1.04, 95% CI 0.61-61.78; 1729 + 55del4: OR 1.41, 95% CI 0.81-2.47; INT4: OR 1.22, 95% CI 0.72-2.06) and recessive model (D543N: OR 0.93, 95% CI 0.15-5.91; 1729 + 55del4: OR 0.99, 95% CI 0.26-3.86; INT4: OR 2.95, 95% CI 0.61-14.16). In heterozygous comparison, it no association was shown between RA and NRAMP1 D543N and INT4, excepting NRAMP1 1729 + 55del4 (OR 1.73, 95% CI 1.17-2.56). Further subgroup analysis indicated that NRAMP1 1729 + 55del4 and INT4 were related to RA in Asia and in the Hardy-Weinberg equilibrium group. There exists no publication bias in this meta-analysis. CONCLUSION This meta-analysis indicated that NRAMP1 1729 + 55del4 and INT4 confer susceptibility to RA.
Collapse
Affiliation(s)
- Hong Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Fei-Fei Yuan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zi-Wei Dai
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Bin Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Dong-Qing Ye
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Correa MA, Canhamero T, Borrego A, Katz ISS, Jensen JR, Guerra JL, Cabrera WHK, Starobinas N, Fernandes JG, Ribeiro OG, Ibañez OM, De Franco M. Slc11a1 (Nramp-1) gene modulates immune-inflammation genes in macrophages during pristane-induced arthritis in mice. Inflamm Res 2017; 66:969-980. [PMID: 28669029 DOI: 10.1007/s00011-017-1077-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 04/06/2017] [Accepted: 06/26/2017] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE AND DESIGN Pristane-induced arthritis (PIA) in AIRmax mice homozygous for Slc11a1 R and S alleles was used to characterize the influence of Slc11a1 gene polymorphism on immune responses during disease manifestation. Previous reports demonstrated that the presence of the Slc11a1 S allele increased the incidence and severity of PIA in AIRmax SS , suggesting that this gene could interact with inflammatory loci to modulate PIA. We investigated the effects of Slc11a1 alleles on the activation of phagocytes during PIA. TREATMENT Mice were injected intraperitoneally with two doses of 0.5 mL of mineral oil pristane at 60-day intervals. Arthritis development was accompanied for 180 days. RESULTS AIRmax SS mice showed differential peritoneal macrophage gene expression profiles during PIA, with higher expression and production of H2O2, NO, IL-1β, IL-6, TNF-α, and several chemokines. The presence of the Slc11a1 R allele, on the other hand, diminished the intensity of macrophage activation, restricting arthritis development. CONCLUSION Our data demonstrated the fine-tuning roles of Slc11a1 alleles modulating macrophage activation, and consequent PIA susceptibility, in those mouse lines.
Collapse
Affiliation(s)
- Mara A Correa
- Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, 05503000, Brazil
| | - Tatiane Canhamero
- Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, 05503000, Brazil
| | - Andrea Borrego
- Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, 05503000, Brazil
| | | | - José R Jensen
- Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, 05503000, Brazil
| | | | - Wafa H K Cabrera
- Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, 05503000, Brazil
| | - Nancy Starobinas
- Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, 05503000, Brazil
| | - Jussara G Fernandes
- Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, 05503000, Brazil
| | - Orlando G Ribeiro
- Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, 05503000, Brazil
| | - Olga M Ibañez
- Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, 05503000, Brazil
| | - Marcelo De Franco
- Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, 05503000, Brazil. .,Instituto Pasteur, São Paulo, Brazil.
| |
Collapse
|
8
|
Liu K, Zhang B, Teng Z, Wang Y, Dong G, Xu C, Qin B, Song C, Chai J, Li Y, Shi X, Shu X, Zhang Y. Association between SLC11A1 (NRAMP1) polymorphisms and susceptibility to tuberculosis in Chinese Holstein cattle. Tuberculosis (Edinb) 2016; 103:10-15. [PMID: 28237028 DOI: 10.1016/j.tube.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
We investigated the associations between SLC11A1 polymorphisms and susceptibility to tuberculosis (TB) in Chinese Holstein cattle, using a case-control study of 136 animals that had positive reactions to TB tests and showed symptoms and 96 animals that had negative reactions to tests and showed no symptoms. Polymerase chain reaction (PCR) sequencing and the restriction fragment length polymorphism (RFLP) technique were used to detect and determine SLC11A1 polymorphisms. Association analysis identified significant correlations between SLC11A1 polymorphisms and susceptibility/resistance to TB, and two genetic markers for SLC11A1 were established using PCR-RFLP. Sequence alignment of SLC11A1 revealed seven single-nucleotide polymorphisms (SNPs). This is the first report of MaeII PCR-RFLP markers for the SLC11A1-SNP3 site and PstI PCR-RFLP markers for the SLC11A1-SNP5 and SLC11A1-SNP6 sites in Chinese Holstein cattle. Logistic regression analysis indicated that SLC11A1-SNP1, SLC11A1-SNP3, and SLC11A1-SNP5 were significantly associated with susceptibility/resistance to TB. Two genotypes of SLC11A1-SNP3 were susceptible to TB, whereas one genotype of SLC11A1-SNP1 and two genotypes of SLC11A1-SNP5 were resistant. Haplotype analysis showed that nine haplotypes were potentially resistant to TB. After Bonferroni correction, three of the haplotypes remained significantly associated with TB resistance. SLC11A1 is a useful candidate gene related to TB in Chinese Holstein cattle.
Collapse
Affiliation(s)
- Kaihua Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Bin Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Zhaochun Teng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Youtao Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Guodong Dong
- Center for Animal Disease Control and Prevention of Yunnan Province, China
| | - Cong Xu
- Center for Animal Disease Control and Prevention of Yuxi City, Yunnan Province, China
| | - Bo Qin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Chunlian Song
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Jun Chai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Yang Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Xianwei Shi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Xianghua Shu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China.
| | - Yifang Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China.
| |
Collapse
|
9
|
Somuk BT, Koc S, Ates O, Göktas G, Soyalic H, Uysal IO, Gurbuzler L, Sapmaz E, Sezer S, Eyibilen A. MBL, P2X7, and SLC11A1 gene polymorphisms in patients with oropharyngeal tularemia. Acta Otolaryngol 2016; 136:1168-1172. [PMID: 27223255 DOI: 10.1080/00016489.2016.1186835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONCLUSION A significant association was found of oropharyngeal tularemia with SLC11A1 allele polymorphism (INT4 G/C) and MBL2 C + 4T (P/Q). These results indicate C allele and Q allele might be a risk factor for the development of oropharyngeal tularemia. AIM This study aimed to investigate the relationship of SLC11A1, MBL, and P2X7 gene polymorphism with oropharyngeal tularemia. METHODS The study included totally 120 patients who were diagnosed with oropharyngeal tularemia. Frequencies of polymorphisms in the following genes were analyzed both in the patient and control groups in the study: SLC11A1 (5'(GT)n Allele 2/3, Int4 G/C, 3' UTR, D543N G/A), MBL (MBL2 C + 4T (P/Q), and P2X7 (-762 C/T and 1513 A/C). RESULTS Among all polymorphisms that were investigated in this study, SLC11A1 gene showed a significance in the distriburtion of polymorphism allelle frequency at the INT4 region. Frequency of C allele was 54 (28%) in patients with oropharyngeal tularemia, and 31 (13%) in the control group (p = 0.006 and OR = 1.96 (1.21-3.20)). An association was detected between MBL2 C + 4T (P/Q) gene polymorphism and oropharyngeal tularemia (p < 0.005 and OR = 0.30 (0.19-0.48)). No significant relation was found between P2X7 (-762 C/T and 1513 A/C) gene polymorphism and oropharyngeal tularemia in this study (p > 0.05).
Collapse
|
10
|
Abstract
ABSTRACT
Familial risk of tuberculosis (TB) has been recognized for centuries. Largely through studies of mono- and dizygotic twin concordance rates, studies of families with Mendelian susceptibility to mycobacterial disease, and candidate gene studies performed in the 20th century, it was recognized that susceptibility to TB disease has a substantial host genetic component. Limitations in candidate gene studies and early linkage studies made the robust identification of specific loci associated with disease challenging, and few loci have been convincingly associated across multiple populations. Genome-wide and transcriptome-wide association studies, based on microarray (commonly known as genechip) technologies, conducted in the past decade have helped shed some light on pathogenesis but only a handful of new pathways have been identified. This apparent paradox, of high heritability but few replicable associations, has spurred a new wave of collaborative global studies. This review aims to comprehensively review the heritability of TB, critically review the host genetic and transcriptomic correlates of disease, and highlight current studies and future prospects in the study of host genomics in TB. An implicit goal of elucidating host genetic correlates of susceptibility to
Mycobacterium tuberculosis
infection or TB disease is to identify pathophysiological features amenable to translation to new preventive, diagnostic, or therapeutic interventions. The translation of genomic insights into new clinical tools is therefore also discussed.
Collapse
|
11
|
Jafari M, Nasiri MR, Sanaei R, Anoosheh S, Farnia P, Sepanjnia A, Tajik N. The NRAMP1, VDR, TNF-α, ICAM1, TLR2 and TLR4 gene polymorphisms in Iranian patients with pulmonary tuberculosis: A case-control study. INFECTION GENETICS AND EVOLUTION 2016; 39:92-98. [PMID: 26774366 DOI: 10.1016/j.meegid.2016.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/15/2015] [Accepted: 01/11/2016] [Indexed: 01/22/2023]
Abstract
The innate immune response drives early events in Mycobacterium tuberculosis infection. Since human genetic variation is an important determinant in the outcome of infection with M. tuberculosis, we typed polymorphisms in the innate immune molecules, such as natural-resistance-associated macrophage protein 1 (NRAMP1), Vitamin D receptor (VDR), Tumor necrosis factor alpha (TNF-α), intercellular adhesion molecule1 (ICAM-1), Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) in a case-control study of pulmonary tuberculosis in Iranian population. We conducted an association study and included 96 patients and 122 matched healthy individuals. We used single ARMS-PCR technique to simultaneously genotype fourteen polymorphisms in this survey. Among all fourteen polymorphisms that were examined, three polymorphisms were significantly different between case and control groups. The TNF -308A polymorphism showed significant increase in allele and genotype frequencies among patients compared to control individuals [-308A allele: 19.3 vs. 9.4%, GA genotype: 28.1 vs. 17.2%, AA genotype: 5.2 vs. 0.8%; Corrected P (Pc)<0.05], and the TLR4 variant allele and genotypes prevalence (D299G and T399I) were significantly higher among patients compared to controls [DG genotype: 14.6 vs. 5.7%, Pc<0.05 and I399 allele: 4.2 vs. 0.8%, TI genotype: 8.3 vs. 1.6%; Pc<0.05], respectively. In conclusion, our data suggest that TLR4 (D299G and T399I) and TNF (-308G/A) genetic polymorphisms may influence the risk of developing tuberculosis after exposure to Mycobacterium.
Collapse
Affiliation(s)
- Mohammad Jafari
- Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran; Gerash Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Nasiri
- Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran
| | - Roozbeh Sanaei
- Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran
| | - Saber Anoosheh
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Parisa Farnia
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Sepanjnia
- Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran
| | - Nader Tajik
- Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections. PLoS One 2016; 11:e0146585. [PMID: 26751573 PMCID: PMC4713433 DOI: 10.1371/journal.pone.0146585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/18/2015] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects.
Collapse
|
13
|
Sechi LA, Dow CT. Mycobacterium avium ss. paratuberculosis Zoonosis - The Hundred Year War - Beyond Crohn's Disease. Front Immunol 2015; 6:96. [PMID: 25788897 PMCID: PMC4349160 DOI: 10.3389/fimmu.2015.00096] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/18/2015] [Indexed: 12/15/2022] Open
Abstract
The factitive role of Mycobacterium avium ss. paratuberculosis (MAP) in Crohn's disease has been debated for more than a century. The controversy is due to the fact that Crohn's disease is so similar to a disease of MAP-infected ruminant animals, Johne's disease; and, though MAP can be readily detected in the infected ruminants, it is much more difficult to detect in humans. Molecular techniques that can detect MAP in pathologic Crohn's specimens as well as dedicated specialty labs successful in culturing MAP from Crohn's patients have provided strong argument for MAP's role in Crohn's disease. Perhaps more incriminating for MAP as a zoonotic agent is the increasing number of diseases with which MAP has been related: Blau syndrome, type 1 diabetes, Hashimoto thyroiditis, and multiple sclerosis. In this article, we debate about genetic susceptibility to mycobacterial infection and human exposure to MAP; moreover, it suggests that molecular mimicry between protein epitopes of MAP and human proteins is a likely bridge between infection and these autoimmune disorders.
Collapse
Affiliation(s)
- Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari , Sassari , Italy
| | - Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin , Madison, WI , USA ; Chippewa Valley Eye Clinic , Eau Claire, WI , USA
| |
Collapse
|
14
|
Ding X, Zhang X, Yang Y, Ding Y, Xue W, Meng Y, Zhu W, Yin Z. Polymorphism, Expression of Natural Resistance-associated Macrophage Protein 1 Encoding Gene (NRAMP1) and Its Association with Immune Traits in Pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1189-95. [PMID: 25083114 PMCID: PMC4109876 DOI: 10.5713/ajas.2014.14017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/21/2014] [Accepted: 04/14/2014] [Indexed: 11/27/2022]
Abstract
Natural resistance-associated macrophage protein 1 encoding gene (NRAMP1) plays an important role in immune response against intracellular pathogens. To evaluate the effects of NRAMP1 gene on immune capacity in pigs, tissue expression of NRAMP1 mRNA was observed by real time quantitative polymerase chain reaction (PCR), and the results revealed NRAMP1 expressed widely in nine tissues. One single nucleotide polymorphism (SNP) (ENSSSCG00000025058: g.130 C>T) in exon1 and one SNP (ENSSSCG00000025058: g.657 A>G) in intron1 region of porcine NRAMP1 gene were demonstrated by DNA sequencing and PCR-RFLP analysis. A further analysis of SNP genotypes associated with immune traits including contain of white blood cell (WBC), granulocyte, lymphocyte, monocyte (MO), rate of cytotoxin in monocyte (MC) and CD4/CD8 T lymphocyte subpopulations in blood was carried out in four pig populations including Large White and three Chinese indigenous breeds (Wannan Black, Huai pig and Wei pig). The results showed that the SNP (ENSSSCG00000025058: g.130 C>T) was significantly associated with level of WBC % (p = 0.031), MO% (p = 0.024), MC% (p = 0.013) and CD4(-)CD8(+) T lymphocyte (p = 0.023). The other SNP (ENSSSCG00000025058: g.657 A>G) was significantly associated with the level of MO% (p = 0.012), MC% (p = 0.019) and CD4(-)CD8(+) T lymphocyte (p = 0.037). These results indicate that the NRAMP1 gene can be regarded as a molecular marker for genetic selection of disease susceptibility in pig breeding.
Collapse
Affiliation(s)
- Xiaoling Ding
- Anhui Antai Pig Breeding Co., LTD., Hefei 340100, China
| | | | - Yong Yang
- Anhui Antai Pig Breeding Co., LTD., Hefei 340100, China
| | - Yueyun Ding
- Anhui Antai Pig Breeding Co., LTD., Hefei 340100, China
| | - Weiwei Xue
- Anhui Antai Pig Breeding Co., LTD., Hefei 340100, China
| | - Yun Meng
- Anhui Antai Pig Breeding Co., LTD., Hefei 340100, China
| | - Weihua Zhu
- Anhui Antai Pig Breeding Co., LTD., Hefei 340100, China
| | - Zongjun Yin
- Anhui Antai Pig Breeding Co., LTD., Hefei 340100, China
| |
Collapse
|
15
|
The effects of socioeconomic status, clinical factors, and genetic ancestry on pulmonary tuberculosis disease in northeastern Mexico. PLoS One 2014; 9:e94303. [PMID: 24728409 PMCID: PMC3984129 DOI: 10.1371/journal.pone.0094303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/14/2014] [Indexed: 12/15/2022] Open
Abstract
Diverse socioeconomic and clinical factors influence susceptibility to tuberculosis (TB) disease in Mexico. The role of genetic factors, particularly those that differ between the parental groups that admixed in Mexico, is unclear. The objectives of this study are to identify the socioeconomic and clinical predictors of the transition from latent TB infection (LTBI) to pulmonary TB disease in an urban population in northeastern Mexico, and to examine whether genetic ancestry plays an independent role in this transition. We recruited 97 pulmonary TB disease patients and 97 LTBI individuals from a public hospital in Monterrey, Nuevo León. Socioeconomic and clinical variables were collected from interviews and medical records, and genetic ancestry was estimated for a subset of 142 study participants from 291,917 single nucleotide polymorphisms (SNPs). We examined crude associations between the variables and TB disease status. Significant predictors from crude association tests were analyzed using multivariable logistic regression. We also compared genetic ancestry between LTBI individuals and TB disease patients at 1,314 SNPs in 273 genes from the TB biosystem in the NCBI BioSystems database. In crude association tests, 12 socioeconomic and clinical variables were associated with TB disease. Multivariable logistic regression analyses indicated that marital status, diabetes, and smoking were independently associated with TB status. Genetic ancestry was not associated with TB disease in either crude or multivariable analyses. Separate analyses showed that LTBI individuals recruited from hospital staff had significantly higher European genetic ancestry than LTBI individuals recruited from the clinics and waiting rooms. Genetic ancestry differed between individuals with LTBI and TB disease at SNPs located in two genes in the TB biosystem. These results indicate that Monterrey may be structured with respect to genetic ancestry, and that genetic differences in TB susceptibility in parental populations may contribute to variation in disease susceptibility in the region.
Collapse
|
16
|
Vir Singh S, Dhama K, Chaubey KK, Kumar N, Singh PK, Sohal JS, Gupta S, Vir Singh A, Verma AK, Tiwari R, Mahima, Chakraborty S, Deb R. Impact of host genetics on susceptibility and resistance to Mycobacterium avium subspecies Paratuberculosis infection in domestic ruminants. Pak J Biol Sci 2014; 16:251-66. [PMID: 24498788 DOI: 10.3923/pjbs.2013.251.266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Johne's disease or Paratuberculosis has emerged as major infectious disease of animals in general and domestic livestock in particular on global basis. There have been major initiatives in developed countries for the control of this incurable malady of animals and human beings alike (inflammatory bowel disease or Crohn's disease). Disease has not received similar attention due to inherent complexities of disease, diagnosis and control, in resource poor counties around the world. However, the rich genetic diverstiy of the otherwise low productive animal population offers opportunity for the control of Johne's disease and improve per animal productivity. Present review aims to gather and compile information available on genetics or resistance to Johne's disease and its future exploitation by resource poor countries rich in animal diversity. This review will also help to create awareness and share knowledge and experience on prevalence and opportunities for control of Johne's disease in the livestock population to boost per animal productivity among developing and poor countries of the world. Breeding of animals for disease resistance provides good, safe, effective and cheaper way of controlling Johne's disease in animals, with especial reference to domestic livestock of developing and poor countries. Study will help to establish better understanding of the correlation between host cell factors and resistance to MAP infection which may have ultimately help in the control of Johne's disease in future.
Collapse
Affiliation(s)
- Shoor Vir Singh
- Microbiology Lab., Animal Health Division, Central Institute for Research on Goats, Makhdoom, PO-Farah, Mathura (UP)-281122, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly (UP)-243 122, India
| | - Kundan Kumar Chaubey
- Microbiology Lab., Animal Health Division, Central Institute for Research on Goats, Makhdoom, PO-Farah, Mathura (UP)-281122, India
| | - Naveen Kumar
- Microbiology Lab., Animal Health Division, Central Institute for Research on Goats, Makhdoom, PO-Farah, Mathura (UP)-281122, India
| | - Pravin Kumar Singh
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJIL and OMD), TajGanj, Agra (UP)-282001, India
| | - Jagdip Singh Sohal
- Canadian Food Inspection Agency, 3400 W Casavant, St. Hyacihthe (QC), Canada-J2S 8E3, Canada
| | - Saurabh Gupta
- Microbiology Lab., Animal Health Division, Central Institute for Research on Goats, Makhdoom, PO-Farah, Mathura (UP)-281122, India
| | - Ajay Vir Singh
- Microbiology Lab., Animal Health Division, Central Institute for Research on Goats, Makhdoom, PO-Farah, Mathura (UP)-281122, India
| | - Amit Kumar Verma
- Department of Veterinary Epidemiology and Preventive Medicine, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, (UP)-281001, India
| | - Ruchi Tiwari
- Department of Microbiology and Immunology, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, (UP)-281001, India
| | - Mahima
- Department of Animal Nutrition, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, (UP)-281001, India
| | - S Chakraborty
- Animal Resource Development Department, Pt. Nehru Complex, Agartala, Tripura-799001, India
| | - Rajib Deb
- Animal Genetics and Breeding, Project Directorate on Cattle, Indian Council of Agricultural Research, Grass farm Road, Meerut, Uttar Pradesh-250001, India
| |
Collapse
|
17
|
Lockwood TD. Lysosomal metal, redox and proton cycles influencing the CysHis cathepsin reaction. Metallomics 2013; 5:110-24. [PMID: 23302864 DOI: 10.1039/c2mt20156a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the 1930's pioneers discovered that maximal autolysis in tissue homogenates requires metal chelator, sulfhydryl reducing agent and acid pH. However, metals, reducing equivalents and protons (MR&P) have been overlooked as combined catalytic controls. Three categories of lysosomal machinery drive three distinguishable cycles importing and exporting MR&P. Zn(2+) preemptively inhibits CysHis catalysis under otherwise optimal protonation and reduction. Protein-bound cell Zn(2+) concentration is 200-2000 times the non-sequestered inhibitory concentration. Following autophagy, lysosomal proteolysis liberates much inhibitory Zn(2+). The vacuolar proton pump is the driving force for Zn(2+) export, as well as protonation of the peptidolytic mechanism. Other machinery of lysosomal cycles includes proton-driven Zn(2+) exporters (e.g. SLC11A1), Zn(2+) channels (e.g. TRPML-1), lysosomal thiol reductase, etc. The CysHis dyad is a sensor of the vacuolar environment of MR&P, an integrator of these simultaneous variables, and a catalytic responder. Rate-determination can shift between autophagic substrate acquisition (swallowing) and substrate degradation (digesting). Zn(2+) recycling from degraded proteins to new proteins is a fourth cycle that might pace lysosomal function under some conditions. Heritable insufficient or excess functions of CysHis cathepsins are associated with dysfunctional inflammation and immunity/auto-immunity, including diabetic pathogenesis.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Dept. of Pharmacology, School of Medicine, Wright State University, Dayton, Ohio 45435, USA.
| |
Collapse
|
18
|
He XM, Fang MX, Zhang ZT, Hu YS, Jia XZ, He DL, Liang SD, Nie QH, Zhang XQ. Characterization of chicken natural resistance-associated macrophage protein encoding genes (Nramp1 and Nramp2) and association with salmonellosis resistance. GENETICS AND MOLECULAR RESEARCH 2013; 12:618-30. [PMID: 23408449 DOI: 10.4238/2013.january.30.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Natural resistance-associated macrophage protein 1 and 2 encoding genes (Nramp1 and Nramp2) are related to many diseases. We cloned the cDNA of chicken Nramp1 and Nramp2 genes, characterized their expression and polymorphisms, and investigated the association of some SNPs with resistance to salmonellosis. The Nramp1 cDNA was 1746 bp long and the Nramp2 cDNA was 1938 bp long. These cDNAs are similar to previously reported cDNAs, varying by two and one amino acids, respectively. The chicken Nramp1 gene expressed predominantly in liver, thymus and spleen in both females and males. The Nramp2 gene expressed in almost all tissues, but predominantly in breast muscle, leg muscle, cerebrum, cerebellum, lung, kidney, and heart in both females and males. We identified 45 SNPs and 2 indels in the chicken Nramp1 gene; three of 13 SNPs in the exons were missense mutations (Arg223Gln, Ala273Glu and Arg497Gln). Association analysis indicated that A24101991G is significantly associated with chicken salmonellosis resistance. These results will be useful for functional investigation of chicken Nramp1 and Nramp2 genes.
Collapse
Affiliation(s)
- X M He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Tuberculosis (TB) is a leading cause worldwide of human mortality attributable to a single infectious agent. Recent studies targeting candidate genes and "case-control" association have revealed numerous polymorphisms implicated in host susceptibility to TB. Here, we review current progress in the understanding of causative polymorphisms in host innate immune genes associated with TB pathogenesis. We discuss genes encoding several types of proteins: macrophage receptors, such as the mannose receptor (MR, CD206), dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209), Dectin-1, Toll-like receptors (TLRs), complement receptor 3 (CR3, CD11b/CD18), nucleotide oligomerization domain 1 (NOD1) and NOD2, CD14, P2X7, and the vitamin D nuclear receptor (VDR); soluble C-type lectins, such as surfactant protein-A (SP-A), SP-D, and mannose-binding lectin (MBL); phagocyte cytokines, such as tumor necrosis factor (TNF), interleukin-1β (IL-1β), IL-6, IL-10, IL-12, and IL-18; chemokines, such as IL-8, monocyte chemoattractant protein 1 (MCP-1), RANTES, and CXCL10; and other important innate immune molecules, such as inducible nitric oxide synthase (iNOS) and solute carrier protein 11A1 (SLC11A1). Polymorphisms in these genes have been variably associated with susceptibility to TB among different populations. This apparent variability is probably accounted for by evolutionary selection pressure as a result of long-term host-pathogen interactions in certain regions or populations and, in part, by lack of proper study design and limited knowledge of molecular and functional effects of the implicated genetic variants. Finally, we discuss genomic technologies that hold promise for resolving questions regarding the evolutionary paths of the human genome, functional effects of polymorphisms, and corollary impacts of adaptation on human health, ultimately leading to novel approaches to controlling TB.
Collapse
Affiliation(s)
- Abul K. Azad
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| | - Wolfgang Sadee
- Department of Pharmacology, Program in Pharmacogenomics, The Ohio State University, Columbus, Ohio, USA
| | - Larry S. Schlesinger
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| |
Collapse
|
20
|
M. paratuberculosis Heat Shock Protein 65 and Human Diseases: Bridging Infection and Autoimmunity. Autoimmune Dis 2012; 2012:150824. [PMID: 23056923 PMCID: PMC3465878 DOI: 10.1155/2012/150824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the known infectious cause of Johne's disease, an enteric inflammatory disease mostly studied in ruminant animals. MAP has also been implicated in the very similar Crohn's disease of humans as well as sarcoidosis. Recently, MAP has been associated with juvenile sarcoidosis (Blau syndrome), autoimmune diabetes, autoimmune thyroiditis, and multiple sclerosis. While it is intuitive to implicate MAP in granulomatous diseases where the microbe participates in the granuloma, it is more difficult to assign a role for MAP in diseases where autoantibodies are a primary feature. MAP may trigger autoimmune antibodies via its heat shock proteins. Mycobacterial heat shock protein 65 (HSP65) is an immunodominant protein that shares sequential and conformational elements with several human host proteins. This molecular mimicry is the proposed etiopathology by which MAP stimulates autoantibodies associated with autoimmune (type 1) diabetes, autoimmune (Hashimoto's) thyroiditis, and multiple sclerosis. This paper proposes that MAP is a source of mycobacterial HSP65 and acts as a trigger of autoimmune disease.
Collapse
|
21
|
Louvain de Souza T, de Souza Campos Fernandes RC, Medina-Acosta E. HIV-1 control in battlegrounds: important host genetic variations for HIV-1 mother-to-child transmission and progression to clinical pediatric AIDS. Future Virol 2012. [DOI: 10.2217/fvl.12.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV-1 mother-to-child transmission (MTCT) is the passing of maternal HIV-1 to the offspring during pregnancy, labor and delivery, and/or breastfeeding. HIV-1 MTCT and the evolution to pediatric AIDS are multifactorial, dynamic and variable phenotypic conditions. Both genetic and nongenetic variables can influence susceptibility to HIV-1 MTCT or the rate of progression to clinical pediatric AIDS. In this review, we summarize the current state of knowledge about the roles of genetic variations seen in host immune response genes, and those that have been independently associated, mostly through population genetics of candidate genes, with interindividual susceptibility to HIV-1 MTCT, and progression to pediatric AIDS. We examine common and rare host genetic variations at coding and noncoding polymorphisms, whether functional or not, in agonists and antagonists of the immune response, which have been implicated in HIV-1 control in battlegrounds of cell entry, replication and evolution to AIDS. Further, we point to over 380 single-nucleotide polymorphisms, mostly within the HLA super region, recently identified in unbiased genome-wide association studies of HIV replication and evolution in adults, still unexplored in the context of HIV-1 MTCT, and which are likely to also influence susceptibility to pediatric HIV-1/AIDS.
Collapse
Affiliation(s)
- Thais Louvain de Souza
- Molecular Identification & Diagnosis Unit, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Regina Célia de Souza Campos Fernandes
- Municipal Program for the Surveillance of Sexually Transmitted Diseases & Acquired Immunodeficiency Syndrome of Campos dos Goytacazes, Brazil
- Faculty of Medicine of Campos, Campos dos Goytacazes, Brazil
| | | |
Collapse
|
22
|
Dow CT. Mycobacterium avium subspecies paratuberculosis—An environmental trigger of type 1 diabetes mellitus. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jdm.2012.21014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Akçakaya P, Azeroglu B, Even I, Ates O, Turker H, Ongen G, Topal-Sarikaya A. The functional SLC11A1 gene polymorphisms are associated with sarcoidosis in Turkish population. Mol Biol Rep 2011; 39:5009-16. [DOI: 10.1007/s11033-011-1297-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 11/30/2011] [Indexed: 11/30/2022]
|
24
|
Yang JHM, Downes K, Howson JMM, Nutland S, Stevens HE, Walker NM, Todd JA. Evidence of association with type 1 diabetes in the SLC11A1 gene region. BMC MEDICAL GENETICS 2011; 12:59. [PMID: 21524304 PMCID: PMC3114708 DOI: 10.1186/1471-2350-12-59] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 04/27/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND Linkage and congenic strain analyses using the nonobese diabetic (NOD) mouse as a model for human type 1 autoimmune diabetes (T1D) have identified several NOD mouse Idd (insulin dependent diabetes) loci, including Slc11a1 (formerly known as Nramp1). Genetic variants in the orthologous region encompassing SLC11A1 in human chromosome 2q35 have been reported to be associated with various immune-related diseases including T1D. Here, we have conducted association analysis of this candidate gene region, and then investigated potential correlations between the most T1D-associated variant and RNA expression of the SLC11A1 gene and its splice isoform. METHODS Nine SNPs (rs2276631, rs2279015, rs1809231, rs1059823, rs17235409 (D543N), rs17235416 (3'UTR), rs3731865 (INT4), rs7573065 (-237 C → T) and rs4674297) were genotyped using TaqMan genotyping assays and the polymorphic promoter microsatellite (GT)n was genotyped using PCR and fragment length analysis. A maximum of 8,863 T1D British cases and 10,841 British controls, all of white European descent, were used to test association using logistic regression. A maximum of 5,696 T1D families were also tested for association using the transmission/disequilibrium test (TDT). We considered P ≤ 0.005 as evidence of association given that we tested nine variants in total. Upon identification of the most T1D-associated variant, we investigated the correlation between its genotype and SLC11A1 expression overall or with splice isoform ratio using 42 PAXgene whole blood samples from healthy donors by quantitative PCR (qPCR). RESULTS Using the case-control collection, rs3731865 (INT4) was identified to be the variant most associated with T1D (P = 1.55 × 10-6). There was also some evidence of association at rs4674297 (P = 1.57 × 10-4). No evidence of disease association was obtained at any of the loci using the family collections (PTDT ≥ 0.13). We also did not observe a correlation between rs3731865 genotypes and SLC11A1 expression overall or with splice isoform expression. CONCLUSION We conclude that rs3731685 (INT4) in the SLC11A1 gene may be associated with T1D susceptibility in the European ancestry population studied. We did not observe a difference in SLC11A1 expression at the RNA level based on the genotypes of rs3731865 in whole blood samples. However, a potential correlation cannot be ruled out in purified cell subsets especially monocytes or macrophages.
Collapse
Affiliation(s)
- Jennie H M Yang
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Li X, Yang Y, Zhou F, Zhang Y, Lu H, Jin Q, Gao L. SLC11A1 (NRAMP1) polymorphisms and tuberculosis susceptibility: updated systematic review and meta-analysis. PLoS One 2011; 6:e15831. [PMID: 21283567 PMCID: PMC3026788 DOI: 10.1371/journal.pone.0015831] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 11/25/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Natural resistance associated macrophage protein 1 (NRAMP1), encoded by the SLC11A1 gene, has been described to regulate macrophage activation and be associated with infectious and autoimmune diseases. The relation between SLC11A1 polymorphisms and tuberculosis susceptibility has been studied in different populations. METHODS We systematically reviewed published studies on SLC11A1 polymorphisms and tuberculosis susceptibility until September 15, 2010 and quantitatively summarized associations of the most widely studied polymorphisms using meta-analysis. RESULTS In total, 36 eligible articles were included in this review. In Meta-analysis, significant associations were observed between tuberculosis risk and widely studied SLC11A1 polymorphisms with summarized odds ratio of 1.35 (95%CI, 1.17-1.54), 1.25 (95% CI, 1.04-1.50), 1.23 (95% CI, 1.04-1.44), 1.31 (95%CI, 1.08-1.59) for 3' UTR, D543N, INT4, and 5' (GT)n, respectively. Heterogeneity between studies was not pronounced, and the associations did not remarkably vary in the stratified analysis with respect to study population and study base. CONCLUSIONS The association between SLC11A1 polymorphisms and tuberculosis susceptibility observed in our analyses supports the hypothesis that NRAMP1 might play an important role in the host defense to the development of tuberculosis.
Collapse
Affiliation(s)
- XiangWei Li
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Yang
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Zhou
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunzhi Zhang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qi Jin
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (QJ); (LG)
| | - Lei Gao
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (QJ); (LG)
| |
Collapse
|
26
|
Pedroza LSRA, Sauma MFLC, Vasconcelos JM, Takeshita LYC, Ribeiro-Rodrigues EM, Sastre D, Barbosa CM, Chies JAB, Veit TD, Lima CPS, Oliveira LF, Henderson BL, Castro APG, Maia MHT, Barbosa FB, Santos SEB, Guerreiro JF, Sena L, Santos EJM. Systemic lupus erythematosus: association with KIR and SLC11A1 polymorphisms, ethnic predisposition and influence in clinical manifestations at onset revealed by ancestry genetic markers in an urban Brazilian population. Lupus 2011; 20:265-73. [PMID: 21233146 DOI: 10.1177/0961203310385266] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder of the connective tissue with a wide and heterogeneous spectrum of manifestations, with renal and neurological involvement usually related to worse prognosis. SLE more frequently affects females of reproductive age, and a high prevalence and renal manifestation seem to be associated with non-European ethnicity. The present study aims to investigate candidate loci to SLE predisposition and evaluate the influence of ethnic ancestry in the disease risk and clinical phenotypic heterogeneity of lupus at onset. Samples represented by 111 patients and 345 controls, originated from the city of Belém, located in the Northern Region of Brazil, were investigated for polymorphisms in HLA-G, HLA-C, SLC11A1, MTHFR, CASP8 and 15 KIR genes, in addition to 89 Amerindian samples genotyped for SLC11A1. We also investigated 48 insertion/deletion ancestry markers to characterize individual African, European and Amerindian ancestry proportions in the samples. Predisposition to SLE was associated with GTGT deletion at the SLC11A1 3'UTR, presence of KIR2DS2 +/KIR2DS5 +/KIR3DS1 + profile, increased number of stimulatory KIR genes, and European and Amerindian ancestries. The ancestry analysis ruled out ethnic differences between controls and patients as the source of the observed associations. Moreover, the African ancestry was associated with renal manifestations.
Collapse
Affiliation(s)
- L S R A Pedroza
- 1Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stewart LC, Day AS, Pearson J, Barclay ML, Gearry RB, Roberts RL, Bentley RW. SLC11A1 polymorphisms in inflammatory bowel disease and Mycobacterium avium subspecies paratuberculosis status. World J Gastroenterol 2010; 16:5727-31. [PMID: 21128323 PMCID: PMC2997989 DOI: 10.3748/wjg.v16.i45.5727] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To test for association of SLC11A1 with inflammatory bowel disease (IBD) and Mycobacterium avium subspecies paratuberculosis (MAP) status in a Caucasian cohort.
METHODS: Five hundred and seven Crohn’s disease (CD) patients, 474 ulcerative colitis (UC) patients, and 569 healthy controls were genotyped for SLC11A1 1730G>A and SLC11A1 469+14G>C using pre-designed TaqMan® SNP assays. χ2 tests were applied to test for association of single nucleotide polymorphisms (SNPs) with disease, and the presence of MAP DNA.
RESULTS: SLC11A1 1730G>A and SLC11A 1469+14G>C were not associated with CD, UC, or IBD. The SLC11A1 1730A minor allele was over-represented in patients who did not require immunomodulator therapy (P = 0.002, OR: 0.29, 95% CI: 0.13-0.66). The frequency of the SLC11A1 469+14C allele was higher in the subset of study participants who tested positive for MAP DNA (P = 0.02, OR: 1.56, 95% CI: 1.06-2.29). No association of SLC11A1 1730G>A with MAP was observed.
CONCLUSION: Although SLC11A1 was not associated with IBD, association with MAP suggests that SLC11A1 is important in determining susceptibility to bacteria implicated in the etiology of CD.
Collapse
|
28
|
Trombone AP, Claudino M, Colavite P, de Assis GF, Avila-Campos MJ, Silva JS, Campanelli AP, Ibañez OM, De Franco M, Garlet GP. Periodontitis and arthritis interaction in mice involves a shared hyper-inflammatory genotype and functional immunological interferences. Genes Immun 2010; 11:479-89. [PMID: 20428191 DOI: 10.1038/gene.2010.13] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Periodontitis (PD) and rheumatoid arthritis (RA) have been found to be clinically associated and to share the chronic nature of the inflammatory reaction associated with bone resorption activity. However, the mechanisms underlying such association are unknown. Therefore, we examined the basis of Actinobacillus actinomycetemcomitans- and Porphyromonas gingivalis-induced PD and pristane-induced arthritis (PIA) interaction in mice. Higher severity PD in the genetically inflammation prone acute inflammatory reactivity maximum (AIRmax) mice strain was associated with higher levels of TNF-alpha, IL-1beta, IL-17, matrix metalloproteinase (MMP)-13, and RANKL, whereas PD/PIA co-induction resulted in even higher levels of IL-1beta, IFN-gamma, IL-17, RANKL, and MMP-13 levels. Conversely, PD/PIA co-induction in AIRmin strain did not alter the course of both pathologies. PIA/PD co-induction resulted in altered expression of T-cell subsets transcription factors expression, with T-bet and RORgamma levels being upregulated, whereas GATA-3 levels were unaltered. Interestingly, PIA induction resulted in alveolar bone loss, such response being highly dependent on the presence of commensal oral bacteria. No differences were found in PIA severity parameters by PD co-induction. Our results show that the interaction between experimental PD and arthritis in mice involves a shared hyper-inflammatory genotype and functional interferences in innate and adaptive immune responses.
Collapse
Affiliation(s)
- A P Trombone
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto--FMRP/USP, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
NRAMP1 (SLC11A1) variants: genetic susceptibility to multiple Sclerosis. J Clin Immunol 2010; 30:583-6. [PMID: 20405176 DOI: 10.1007/s10875-010-9422-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Multiple sclerosis (MS) is an inflammatory, autoimmune demyelinating disease of the central nervous system. Human Natural Resistance Associated Macrophage Protein 1 (NRAMP1) gene polymorphisms have been implicated in the immune mediated diseases susceptibility. This study aimed to investigate the plausible association between NRAMP1 gene and MS susceptibility. METHODS We analyzed (GT)(n,) INT4, 3'UTR and D543N polymorphisms of NRAMP1 gene in 100 MS patients and 104 healthy subjects by using amplification refractory mutation system-polymerase chain reaction and sequence analysis. RESULTS No significant association was found between (GT)(n,) INT4, 3'UTR and D543N polymorphisms and MS. There was also no correlation between NRAMP1 polymorphisms and MS clinical forms. CONCLUSIONS Our findings suggest that NRAMP1 polymorphisms do not play a role in MS susceptibility and clinical finding of MS in Turkish patients.
Collapse
|