1
|
Azarfar F, Abbasi B, Jalali A, Abbasian MH. Investigation of the relationship between monocyte chemoattractant protein 1 rs1024611 variant and severity of COVID-19. Cytokine 2023; 171:156367. [PMID: 37713941 DOI: 10.1016/j.cyto.2023.156367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Higher expression of Monocyte Chemoattractant Protein 1 (MCP-1) was reported in several studies. The clinical severity of Coronavirus disease 2019 (COVID-19) could be affected by genetic polymorphisms in MCP-1. This study aimed to examine the impact of MCP-1 2518A/G polymorphism and clinical parameters with COVID-19 severity. METHODS The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used for MCP-1 rs1024611 (A/G) genotyping in 116 outpatients, hospitalized, and ICU patients. The biochemical and hematological profiles were collected from the patient's medical records. RESULTS Based on the statistical analysis, there was no significant relationship between the -2518A/G (rs1024611) genetic polymorphism in the regulatory region of the MCP-1 gene and the severity of the COVID-19. Multivariate logistic regression analysis has shown that the severity of COVID-19 infection was associated with decreased levels of eosinophils, neutrophils, lymphocytes, and, monocyte and higher levels of SGPT, SGOT, NLR, CRP, ferritin, urea, and D-Dimer (P < 0.05). CONCLUSION The MCP-1 gene polymorphism had no impact on COVID-19 severity. However, to confirm these results, a large-scale study needs to be conducted.
Collapse
Affiliation(s)
- Fatemeh Azarfar
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Bahareh Abbasi
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amir Jalali
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran.
| | - Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
2
|
Hong L, Wang Q, Chen M, Shi J, Guo Y, Liu S, Pan R, Yuan X, Jiang S. Mas receptor activation attenuates allergic airway inflammation via inhibiting JNK/CCL2-induced macrophage recruitment. Biomed Pharmacother 2021; 137:111365. [PMID: 33588264 DOI: 10.1016/j.biopha.2021.111365] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Defective absorption of acute allergic airway inflammation is involved in the initiation and development of chronic asthma. After allergen exposure, there is a rapid recruitment of macrophages around the airways, which promote acute inflammatory responses. The Ang-(1-7)/Mas receptor axis reportedly plays protective roles in various tissue inflammation and remodeling processes in vivo. However, the exact role of Mas receptor and their underlying mechanisms during the pathology of acute allergic airway inflammation remains unclear. OBJECTIVE We investigated the role of Mas receptor in acute allergic asthma and explored its underlying mechanisms in vitro, aiming to find critical molecules and signal pathways. METHODS Mas receptor expression was assessed in ovalbumin (OVA)-induced acute asthmatic murine model. Then we estimated the anti-inflammatory role of Mas receptor in vivo and explored expressions of several known inflammatory cytokines as well as phosphorylation levels of MAPK pathways. Mas receptor functions and underlying mechanisms were studied further in the human bronchial epithelial cell line (16HBE). RESULTS Mas receptor expression decreased in acute allergic airway inflammation. Multiplex immunofluorescence co-localized Mas receptor and EpCAM, indicated that Mas receptor may function in the bronchial epithelium. Activating Mas receptor through AVE0991 significantly alleviated macrophage infiltration in airway inflammation, accompanied with down-regulation of CCL2 and phosphorylation levels of MAPK pathways. Further studies in 16HBE showed that AVE0991 pre-treatment inhibited LPS-induced or anisomycin-induced CCL2 increase and THP-1 macrophages migration via JNK pathways. CONCLUSION Our findings suggested that Mas receptor activation significantly attenuated CCL2 dependent macrophage recruitments in acute allergic airway inflammation through JNK pathways, which indicated that Mas receptor, CCL2 and phospho-JNK could be potential targets against allergic airway inflammation.
Collapse
Affiliation(s)
- Luna Hong
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiujie Wang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Chen
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianting Shi
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yimin Guo
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruijian Pan
- Departments of Electric Power Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Shanping Jiang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Kubo F, Ariestanti DM, Oki S, Fukuzawa T, Demizu R, Sato T, Sabirin RM, Hirose S, Nakamura N. Loss of the adhesion G-protein coupled receptor ADGRF5 in mice induces airway inflammation and the expression of CCL2 in lung endothelial cells. Respir Res 2019; 20:11. [PMID: 30654796 PMCID: PMC6337809 DOI: 10.1186/s12931-019-0973-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/02/2019] [Indexed: 01/09/2023] Open
Abstract
Background Adhesion G-protein coupled receptor F5 (ADGRF5) was recently identified as an essential regulator of pulmonary surfactant homeostasis in alveolar type II cells. We previously showed that in addition to abnormal surfactant accumulation, Adgrf5-deficient (Adgrf5−/−) mice exhibit emphysema-like signs, suggesting a possible role for ADGRF5 in immune regulation. Here, we extended the phenotypic analysis of Adgrf5−/− mice to help understand its biological role in the lung, and especially in immune regulation. Methods Histological features of lungs were evaluated by Alcian blue and Masson’s trichrome staining. Quantitative real-time PCR (qPCR) and western blot analyses were performed to analyze the differential expression of genes/proteins related to airway inflammation in lungs between wildtype and Adgrf5−/− mice. Acid–base status was assessed by performing blood gas tests and urine pH measurements. Inflammatory cell counting was performed using Giemsa-stained bronchoalveolar lavage cells. Serum IgE concentrations were determined by enzyme-linked immunosorbent assay. The expression of Ccl2, S100a8, S100a9, and Saa3 in primary lung endothelial cells (ECs) was determined by qPCR and/or western blotting. Finally, the effect of administrating RS504393 to 2-week-old Adgrf5−/− mice on gene expression in the lungs was analyzed by qPCR. Results Adgrf5−/− mice exhibited several features of chronic airway inflammation (mucous cell metaplasia, mucus hyperproduction, subepithelial fibrosis, respiratory acidosis, high serum IgE, mast cell accumulation, and neutrophilia) in parallel with elevated expression of genes involved in mucous cell metaplasia (Muc5ac, Muc5b, Slc26a4, and Clca1), fibrosis (Tgfb1, Col1a1, Fn1, and Tnc), and type 2 immune response (Il4, Il5, Il13, IL-25, and IL-33) at 12 and/or 30 weeks of age. In contrast, mRNA expression of Ccl2, S100a8, and S100a9 was upregulated in embryonic or neonatal Adgrf5−/− lungs as well as in lung ECs of Adgrf5−/− mice at 1 week of age. RS504393 treatment suppressed the upregulation of S100a8, S100a9, Slc26a4, and Il5 in Adgrf5−/− lungs. Conclusions Targeted disruption of ADGRF5 results in the development of airway inflammation, which is likely mediated by the type 2 immune response and possibly CCL2-mediated inflammation. ADGRF5 also has a potential role in the regulation of genes encoding CCL2 in lung ECs, thereby maintaining immune homeostasis. Electronic supplementary material The online version of this article (10.1186/s12931-019-0973-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fumimasa Kubo
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Donna Maretta Ariestanti
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Souta Oki
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Taku Fukuzawa
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Ryotaro Demizu
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Tomoya Sato
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Rahmaningsih Mara Sabirin
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Department of Physiology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, JI.Farmako Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Shigehisa Hirose
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Nobuhiro Nakamura
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
4
|
The +190 G/A (rs1799864) polymorphism in the C–C chemokine receptor 2 (CCR2) gene is associated with susceptibility to multiple sclerosis in HLA-DRB1*15:01-negative individuals. J Neurol Sci 2015; 349:138-42. [DOI: 10.1016/j.jns.2015.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/22/2014] [Accepted: 01/02/2015] [Indexed: 11/18/2022]
|
5
|
Schneider D, Hong JY, Bowman ER, Chung Y, Nagarkar DR, McHenry CL, Goldsmith AM, Bentley JK, Lewis TC, Hershenson MB. Macrophage/epithelial cell CCL2 contributes to rhinovirus-induced hyperresponsiveness and inflammation in a mouse model of allergic airways disease. Am J Physiol Lung Cell Mol Physiol 2012. [PMID: 23204071 DOI: 10.1152/ajplung.00182.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human rhinovirus (HRV) infections lead to exacerbations of lower airways disease in asthmatic patients but not in healthy individuals. However, underlying mechanisms remain to be completely elucidated. We hypothesized that the Th2-driven allergic environment enhances HRV-induced CC chemokine production, leading to asthma exacerbations. Ovalbumin (OVA)-sensitized and -challenged mice inoculated with HRV showed significant increases in the expression of lung CC chemokine ligand (CCL)-2/monocyte chemotactic protein (MCP)-1, CCL4/macrophage inflammatory protein (MIP)-1β, CCL7/MCP-3, CCL19/MIP-3β, and CCL20/MIP3α compared with mice treated with OVA alone. Inhibition of CCL2 with neutralizing antibody significantly attenuated HRV-induced airways inflammation and hyperresponsiveness in OVA-treated mice. Immunohistochemical stains showed colocalization of CCL2 with HRV in epithelial cells and CD68-positive macrophages, and flow cytometry showed increased CCL2(+), CD11b(+) cells in the lungs of OVA-treated, HRV-infected mice. Compared with lung macrophages from naïve mice, macrophages from OVA-exposed mice expressed significantly more CCL2 in response to HRV infection ex vivo. Pretreatment of mouse lung macrophages and BEAS-2B human bronchial epithelial cells with interleukin (IL)-4 and IL-13 increased HRV-induced CCL2 expression, and mouse lung macrophages from IL-4 receptor knockout mice showed reduced CCL2 expression in response to HRV, suggesting that exposure to these Th2 cytokines plays a role in the altered HRV response. Finally, bronchoalveolar macrophages from children with asthma elaborated more CCL2 upon ex vivo exposure to HRV than cells from nonasthmatic patients. We conclude that CCL2 production by epithelial cells and macrophages contributes to HRV-induced airway hyperresponsiveness and inflammation in a mouse model of allergic airways disease and may play a role in HRV-induced asthma exacerbations.
Collapse
Affiliation(s)
- Dina Schneider
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Guergnon J, Combadière C. Role of chemokines polymorphisms in diseases. Immunol Lett 2012; 145:15-22. [DOI: 10.1016/j.imlet.2012.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
|
7
|
Sanders AE, Maixner W, Nackley AG, Diatchenko L, By K, Miller VE, Slade GD. Excess risk of temporomandibular disorder associated with cigarette smoking in young adults. THE JOURNAL OF PAIN 2012; 13:21-31. [PMID: 22036516 PMCID: PMC3249502 DOI: 10.1016/j.jpain.2011.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/23/2011] [Accepted: 08/01/2011] [Indexed: 12/19/2022]
Abstract
UNLABELLED Evidence suggests that the effect of cigarette smoking on chronic pain is stronger in younger than older adults. This case-control study investigated whether age modified an effect of smoking on temporomandibular disorder (TMD) in 299 females aged 18 to 60 years. It also investigated the extent to which this relationship was explained by psychological profile, inflammatory response, and allergy. Cases were defined using the Research Diagnostic Criteria for Temporomandibular Disorders based on clinical examination. Psychological profile was evaluated using standardized instruments. Inflammatory response was evaluated with 11 cytokines isolated in plasma. History of allergy conditions was self-reported. Odds ratios (ORs) for the effect of smoking were calculated using binary logistic regression. Stratified analyses and the likelihood ratio test examined effect modification by smoking. Compared with nonsmokers, ever smokers aged <30 years had higher odds of TMD (OR = 4.14, 95% CI: 1.57, 11.35) than older adults (OR = 1.23, 95% CI: .55, 2.78) (P (effect modification) = .038). Adjustment for psychological profile, cytokines, and history of allergy-like conditions attenuated the effect by 45% to statistical nonsignificance. The main finding was reproduced with secondary analyses of 2 nationally representative surveys of adults conducted in the US and Australia. PERSPECTIVE This study showed that smoking was associated with TMD risk in females, but only in young adulthood. It replicated this finding in 2 nationally representative surveys of females in the US and Australia. Findings may alert clinicians to recognize that smoking is a concern for TMD in younger female patients.
Collapse
Affiliation(s)
- Anne E Sanders
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7450, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Ben-Selma W, Harizi H, Boukadida J. MCP-1 -2518 A/G functional polymorphism is associated with increased susceptibility to active pulmonary tuberculosis in Tunisian patients. Mol Biol Rep 2011; 38:5413-9. [PMID: 21384169 DOI: 10.1007/s11033-011-0695-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/26/2011] [Indexed: 11/30/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) plays crucial role in protective immunity against Mycobacterium tuberculosis (MT). In this study, we examined whether single nucleotide polymorphism (SNP) -2518 A/G (rs 1024611) of MCP-1 affect the susceptibility to active tuberculosis (TB) in Tunisian populations. Genomic DNA from patients with active TB (168 cases of pulmonary TB and 55 cases of extrapulmonary TB) and ethnically controls (150 cases) was genotyped for the MCP-1 -2518 A/G SNP by polymerase chain reaction fragment length polymorphism (PCR-RFLP). We observed that -2518 G allele and GG genotype (high MCP-1 producer) frequencies were significantly more elevated in active pulmonary TB group in comparison to control group [34 vs. 22%; P = 0.0007; 15 vs. 5%, P corrected for the number of genotypes (Pc) = 0.015; respectively]. Additionally, they were associated with increased risk development of this clinical form of TB [odds ratio (OR) = 1.83, 95% confidence intervals (CI) = 1.26-2.66; OR = 3.1, 95% CI = 1.28-7.76; respectively]. However, wild type allele -2518 A and AA genotype were over-represented in control group (78 and 62%) and seem to be protective factors against TB. Moreover, -2518 AA genotype was more frequent in control group and was associated with resistance against development of active pulmonary TB (OR = 0.56, 95% CI = 0.35-0.89, Pc = 0.03). Our findings confirm the key role of -2518 A/G SNP of MCP-1 and support its association with resistance/susceptibility to the development of active pulmonary TB in the Tunisian population.
Collapse
Affiliation(s)
- Walid Ben-Selma
- Laboratory of Microbiology and Immunology, UR02SP13, Farhat Hached University Hospital, CHU Farhat Hached - Av. Ibn el Jazzar, 4000 Sousse, Tunisia.
| | | | | |
Collapse
|
9
|
Hinz D, Simon JC, Maier-Simon C, Milkova L, Röder S, Sack U, Borte M, Lehmann I, Herberth G. Reduced maternal regulatory T cell numbers and increased T helper type 2 cytokine production are associated with elevated levels of immunoglobulin E in cord blood. Clin Exp Allergy 2010; 40:419-26. [PMID: 20067477 DOI: 10.1111/j.1365-2222.2009.03434.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is evidence that the basis of an atopic-skewed immune response is acquired early in life, perhaps at the fetal stage. Thus, we hypothesized that the development of the fetal immune system might be influenced by maternal regulatory T cells (Treg) and maternal T cell cytokine production during pregnancy. The aim of the present study was to assess the influence of maternal Treg and cytokine production during pregnancy on Treg and atopy at birth. METHODS Within the mother-child study LINA (Lifestyle and Environmental factors and their Influence on Newborns Allergy risk), we determined the frequency and function of Treg and the total IgE concentration in pregnant women in the 34th week of gestation and in corresponding cord bloods at birth (n=24). Furthermore, we assessed how maternal mitogen-induced T-helper type 1/T-helper type 2 and inflammatory cytokines influence the level of cord blood Treg and IgE. RESULTS Frequencies of CD4(+)CD25(high) T cells were higher (P=0.001), whereas percentages of FOXP3+ T cells were lower (P<0.001) in cord blood cells compared with maternal blood. Reduced maternal CD4(+)CD25(high) Treg frequencies correlated with increased total IgE concentrations at the 34th week of gestation (r=-0.32, P=0.028) and with increased IgE concentrations in cord blood (r=-0.50, P<0.001). Elevated maternal mitogen-induced Th2 cytokine production was related to increased total IgE levels in the serum of corresponding cord bloods (IL-4, r=0.53; IL-5, r=0.43; IL-13, r=0.52). CONCLUSIONS Because cord blood IgE has been shown to be predictive for allergic diseases in early childhood, our results indicate that reduced maternal Treg numbers and increased Th2 cytokine production during pregnancy might influence the allergy risk of the child.
Collapse
Affiliation(s)
- D Hinz
- Department of Environmental Immunology, UFZ - Helmholtz Centre for Environmental Research Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|